-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathml_obtainer.py
executable file
·45 lines (32 loc) · 1.3 KB
/
ml_obtainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#!/usr/bin/env python3
########################################################################################################################
# Purpose: get even Fibonacci numbers using Machine Learning techniques
# Programmer: Andrew Art
########################################################################################################################
import numpy as np
import tensorflow as tf
import math
def f(quant: int=0) -> int:
'''Print even numbers from the Fibonacci sequence.
:param quant: required quantity of even Fibonacci numbers
:returns: status (0 if successful)
'''
if isinstance(quant, int) != True or quant <= 0 or quant > 6:
print("Invalid argument")
return 1
# Get model from storage
try:
model = tf.keras.models.load_model("fibmodel")
except IOError as e:
print("Error: ", str(e))
return 2
# Use the model to predict an even Fibonacci number from its index
x_values = np.linspace(start=0, stop=quant-1, num=quant, dtype=int)
y_estimated = model.predict(x_values).astype(int)
for i in range(len(y_estimated)):
print(math.ceil(y_estimated[i][0] / 2.) * 2, end="", flush=True)
if i+1 != len(y_estimated):
print(", ", end="", flush=True)
print("")
return 0
f(4)