-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvis_masks.py
166 lines (142 loc) · 4.8 KB
/
vis_masks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#!/usr/bin/env python3
"""
Blend a binary with a corresponding image, with an option to choose color and
weight of the mask.
"""
import os
import argparse
import numpy as np
from PIL import Image, ImageOps
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument(
"input_masks",
type=str,
help="The directory with the input masks",
)
parser.add_argument(
"input_images",
type=str,
help="The directory with the input images",
)
parser.add_argument(
"output_images",
type=str,
help="The directory where the output images will be stored",
)
parser.add_argument(
"--mode",
type=str,
choices=["black_to_0", "white_to_0"],
default="black_to_0",
help="Mode of mask conversion",
)
parser.add_argument(
"--mask_color",
type=int,
nargs=3,
default=[255, 0, 0],
help="Mask color as triple of uint8 values [0-255]",
)
parser.add_argument(
"--mask_weight",
type=float,
default=0.5,
help="Weight of the mask color",
)
parser.add_argument(
"--input_mask_suffix",
type=str, default="",
help="Input mask file name suffix"
)
parser.add_argument(
"--input_image_suffix",
type=str,
default="",
help="Input image file name suffix"
)
parser.add_argument(
"--output_image_suffix",
type=str,
default="",
help="Output image file name suffix"
)
def main(args: argparse.Namespace):
mask_path_list = []
img_path_list = []
output_path_list = []
if os.path.isdir(args.input_masks):
assert os.path.isdir(args.input_images)
assert os.path.isdir(args.output_images)
mask_list = os.listdir(args.input_masks)
img_list = os.listdir(args.input_images)
mask_list.sort()
img_list.sort()
img_base_list = [os.path.splitext(img)[0] for img in img_list]
if args.input_mask_suffix != "":
args.input_mask_suffix = os.path.splitext(args.input_mask_suffix)[0]
if args.input_mask_suffix != "":
mask_list = [
mask
for mask in mask_list
if os.path.splitext(mask)[0].endswith(args.input_mask_suffix)
]
if args.input_image_suffix != "":
args.input_image_suffix = os.path.splitext(args.input_image_suffix)[0]
img_base_list = [
img_base[-len(args.input_image_suffix) :]
for img_base in img_base_list
if img_base.endswith(args.input_image_suffix)
]
if args.output_image_suffix != "":
args.output_image_suffix = os.path.splitext(args.output_image_suffix)[0]
for mask in mask_list:
if args.input_mask_suffix:
name = os.path.splitext(mask)[0][: -len(args.input_mask_suffix)]
else:
name = os.path.splitext(mask)[0]
if name not in img_base_list:
print("WARN: Mask {} does not have a corresponding image".format(mask))
continue
img_idx = img_base_list.index(name)
mask_path = os.path.join(args.input_masks, mask)
img_path = os.path.join(args.input_images, img_list[img_idx])
out_path = os.path.join(
args.output_images,
img_base_list[img_idx] + args.output_image_suffix + ".jpg",
)
mask_path_list.append(mask_path)
img_path_list.append(img_path)
output_path_list.append(out_path)
elif os.path.isfile(args.input_masks):
assert os.path.isfile(args.input_images)
mask_path_list = [args.input_masks]
img_path_list = [args.input_images]
output_path_list = [args.output_images]
for mask_path, img_path, out_path in tqdm(
zip(mask_path_list, img_path_list, output_path_list)
):
image_in = Image.open(img_path)
image_in = image_in.convert("RGB")
mask_in = Image.open(mask_path)
mask_in = mask_in.convert("L")
if args.mode == "white_to_0":
mask_in = ImageOps.invert(mask_in)
mask_in_np = np.array(mask_in)
mask_in_color = np.tile(
np.array(args.mask_color)[None, None, :],
(mask_in_np.shape[0], mask_in_np.shape[1], 1),
)
mask_in_np = np.tile(mask_in_np[:, :, None], (1, 1, 3))
image_in_np = np.array(image_in).astype(np.float32)
image_in_np_masked = np.copy(image_in_np)
image_in_np_masked[mask_in_np == 0] = mask_in_color[mask_in_np == 0]
image_in_np = (
args.mask_weight * image_in_np_masked + (1 - args.mask_weight) * image_in_np
)
image_in_np = image_in_np.astype(np.uint8)
image_in = Image.fromarray(image_in_np)
image_in.save(out_path)
if __name__ == "__main__":
args = parser.parse_args()
main(args)