-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmore_records.v
799 lines (676 loc) · 23.4 KB
/
more_records.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
Require Import Ornamental.Ornaments.
Set DEVOID search prove equivalence. (* <-- Correctness proofs for search *)
Set DEVOID lift type. (* <-- Prettier types than the ones Coq infers *)
Set Nonrecursive Elimination Schemes. (* <--- Preprocess needs induction principles for records *)
(*
* This file includes more about records, including
* tests that the curry record functionality works correctly,
* rather than the simple walkthrough from minimal_records.v.
*
* Development time for all of these is a bit faster than the reference manual proofs.
* The tactics require tweaking in the end to get back useful tactic proofs.
* There is also a tiny bit of effort to port things in the right order when
* multiple types change at the same time, as with op.
*
* But once you figure this out once, you've figued it out forever.
* On the other hand, we didn't need to fix the functions and proofs ourselves,
* which saved us time (on the order of minutes for each module for us).
* This was especially true for not needing to reason about how tuple elements
* and fields correspond to one another, especially for more complex changes.
*)
(* --- Test a record with 4 fields --- *)
Module Handwritten4.
Record input := MkInput
{
field1 : bool;
field2 : nat;
field3 : bool;
field4 : nat;
}.
Record output := MkOutput
{
field2and4 : nat;
field1and3 : bool;
}.
Definition op (r : input) :=
MkOutput
(field2 r + field4 r)
(andb (field1 r) (field3 r)).
Theorem and_spec_true_true
(r : input)
(F : field1 r = true)
(S : field3 r = true)
: field1and3 (op r) = true.
Proof.
destruct r as [f n s].
unfold op.
simpl in *.
apply andb_true_intro.
intuition.
Qed.
Theorem plus_spec_O_l
(r : input)
(F : field2 r = O)
: field2and4 (op r) = field4 r.
Proof.
destruct r as [f n s].
unfold op.
simpl in *.
subst. reflexivity.
Qed.
Theorem plus_spec_O_r
(r : input)
(F : field4 r = O)
: field2and4 (op r) = field2 r.
Proof.
destruct r as [f n s].
unfold op.
simpl in *.
subst. auto.
Qed.
End Handwritten4.
Module Generated4.
Definition input := (prod bool (prod nat (prod bool nat))).
Definition output := (prod nat bool).
Definition MkInput (b1 : bool) (n1 : nat) (b2 : bool) (n2 : nat) :=
pair b1 (pair n1 (pair b2 n2)).
Definition MkOutput (n : nat) (b : bool) :=
pair n b.
Definition field1 (r : input) : bool :=
(fst r).
Definition field2 (r : input) : nat :=
(fst (snd r)).
Definition field3 (r : input) : bool :=
(fst (snd (snd r))).
Definition field4 (r : input) : nat :=
(snd (snd (snd r))).
Definition field2and4 (r : output) : nat :=
(fst r).
Definition field1and3 (r : output) : bool :=
(snd r).
Definition op (r : input) : output :=
(pair
(plus (field2 r) (field4 r))
(andb (field1 r) (field3 r))).
Theorem and_spec_true_true
(r : input)
(F : field1 r = true)
(S : field3 r = true)
: field1and3 (op r) = true.
Proof.
destruct r. repeat destruct p.
unfold op.
simpl in *.
apply andb_true_intro.
intuition.
Qed.
Theorem plus_spec_O_l
(r : input)
(F : field2 r = O)
: field2and4 (op r) = field4 r.
Proof.
destruct r. repeat destruct p.
unfold op.
simpl in *.
rewrite F.
reflexivity.
Qed.
Theorem plus_spec_O_r
(r : input)
(F : field4 r = O)
: field2and4 (op r) = field2 r.
Proof.
destruct r. repeat destruct p.
unfold op.
simpl in *.
rewrite F.
auto.
Qed.
End Generated4.
Preprocess Module Handwritten4 as Handwritten4' { opaque Nat.add andb eq_ind_r eq_ind plus_n_O eq_sym andb_true_intro }.
Preprocess Module Generated4 as Generated4' { opaque Nat.add andb eq_ind_r eq_ind plus_n_O eq_sym andb_true_intro }.
Configure Lift Handwritten4'.input Generated4'.input { opaque Nat.add andb eq_ind_r eq_ind plus_n_O eq_sym andb_true_intro Generated4'.output Generated4'.MkOutput }.
Configure Lift Handwritten4'.output Generated4'.output { opaque Nat.add andb eq_ind_r eq_ind plus_n_O eq_sym andb_true_intro Generated4'.input Generated4'.MkInput }.
Module LiftedHandwritten4.
Lift Handwritten4'.input Generated4'.input in Handwritten4'.MkInput as MkInput.
Lift Handwritten4'.output Generated4'.output in Handwritten4'.MkOutput as MkOutput.
Lift Handwritten4'.input Generated4'.input in Handwritten4'.field1 as field1.
Lift Handwritten4'.input Generated4'.input in Handwritten4'.field2 as field2.
Lift Handwritten4'.input Generated4'.input in Handwritten4'.field3 as field3.
Lift Handwritten4'.input Generated4'.input in Handwritten4'.field4 as field4.
Lift Handwritten4'.output Generated4'.output in Handwritten4'.field2and4 as field2and4.
Lift Handwritten4'.output Generated4'.output in Handwritten4'.field1and3 as field1and3.
Lift Handwritten4'.input Generated4'.input in Handwritten4'.op as op_1.
Lift Handwritten4'.output Generated4'.output in op_1 as op.
Lift Handwritten4'.input Generated4'.input in Handwritten4'.and_spec_true_true as and_spec_true_true_1.
Lift Handwritten4'.output Generated4'.output in and_spec_true_true_1 as and_spec_true_true.
Lift Handwritten4'.input Generated4'.input in Handwritten4'.plus_spec_O_l as plus_spec_O_l_1.
Lift Handwritten4'.output Generated4'.output in plus_spec_O_l_1 as plus_spec_O_l.
Lift Handwritten4'.input Generated4'.input in Handwritten4'.plus_spec_O_r as plus_spec_O_l_r.
Lift Handwritten4'.output Generated4'.output in plus_spec_O_l_r as plus_spec_O_r.
Lemma testMkInput:
MkInput = Generated4.MkInput.
Proof.
auto.
Qed.
Lemma testMkOutput:
MkOutput = Generated4.MkOutput.
Proof.
auto.
Qed.
Lemma testField1:
field1 = Generated4.field1.
Proof.
auto.
Qed.
Lemma testField2:
forall i, field2 i = Generated4.field2 i.
Proof.
intros. induction i. auto.
Qed.
Lemma testField3:
forall i, field3 i = Generated4.field3 i.
Proof.
intros. induction i. auto.
Qed.
Lemma testField4:
forall i, field4 i = Generated4.field4 i.
Proof.
intros. induction i. auto.
Qed.
Lemma testField2and4:
field2and4 = Generated4.field2and4.
Proof.
auto.
Qed.
Lemma testField1and3:
field1and3 = Generated4.field1and3.
Proof.
auto.
Qed.
Lemma testOp:
forall r, op r = Generated4.op r.
Proof.
intros. induction r. auto.
Qed.
Lemma testAndSpecTrueTrue:
forall r : Generated4.input,
Generated4.field1 r = true ->
Generated4.field3 r = true ->
Generated4.field1and3 (Generated4.op r) = true.
Proof.
intros. induction r. apply and_spec_true_true; auto.
Qed.
Lemma testPlusSpecOl:
forall r : Generated4.input,
Generated4.field2 r = 0 ->
Generated4.field2and4 (Generated4.op r) = Generated4.field4 r.
Proof.
intros. induction r. rewrite <- testOp. apply plus_spec_O_l; auto.
Qed.
Lemma testPlusSpecOr:
forall r : Generated4.input,
Generated4.field4 r = 0 ->
Generated4.field2and4 (Generated4.op r) = Generated4.field2 r.
Proof.
intros. induction r. rewrite <- testOp. apply plus_spec_O_r; auto.
Qed.
End LiftedHandwritten4.
Module LiftedGenerated4.
Lift Generated4'.input Handwritten4'.input in Generated4'.MkInput as MkInput.
Lift Generated4'.output Handwritten4'.output in Generated4'.MkOutput as MkOutput.
Lift Generated4'.input Handwritten4'.input in Generated4'.field1 as field1.
Lift Generated4'.input Handwritten4'.input in Generated4'.field2 as field2.
Lift Generated4'.input Handwritten4'.input in Generated4'.field3 as field3.
Lift Generated4'.input Handwritten4'.input in Generated4'.field4 as field4.
Lift Generated4'.output Handwritten4'.output in Generated4'.field2and4 as field2and4.
Lift Generated4'.output Handwritten4'.output in Generated4'.field1and3 as field1and3.
Lift Generated4'.output Handwritten4'.output in Generated4'.op as .._1.
Lift Generated4'.input Handwritten4'.input in op_1 as op.
Lift Generated4'.output Handwritten4'.output in Generated4'.and_spec_true_true as .._1.
Lift Generated4'.input Handwritten4'.input in and_spec_true_true_1 as and_spec_true_true.
Lift Generated4'.output Handwritten4'.output in Generated4'.plus_spec_O_l as plus_spec_O_l_1.
Lift Generated4'.input Handwritten4'.input in plus_spec_O_l_1 as plus_spec_O_l.
Lift Generated4'.output Handwritten4'.output in Generated4'.plus_spec_O_r as plus_spec_O_l_r.
Lift Generated4'.input Handwritten4'.input in plus_spec_O_l_r as plus_spec_O_r.
(* Note that Handwritten4.input and Handwritten4'.input are equivalent, but not equal because
of how Coq's equality works (will not prove). *)
Lemma testMkInput:
MkInput = Handwritten4'.MkInput.
Proof.
auto.
Qed.
Lemma testMkOutput:
MkOutput = Handwritten4'.MkOutput.
Proof.
auto.
Qed.
Lemma testField1:
field1 = Handwritten4'.field1.
Proof.
auto.
Qed.
Lemma testField2:
forall i, field2 i = Handwritten4'.field2 i.
Proof.
intros. induction i. auto.
Qed.
Lemma testField3:
forall i, field3 i = Handwritten4'.field3 i.
Proof.
intros. induction i. auto.
Qed.
Lemma testField4:
forall i, field4 i = Handwritten4'.field4 i.
Proof.
intros. induction i. auto.
Qed.
Lemma testField2and4:
field2and4 = Handwritten4'.field2and4.
Proof.
auto.
Qed.
Lemma testField1and3:
field1and3 = Handwritten4'.field1and3.
Proof.
auto.
Qed.
Lemma testOp:
forall r, op r = Handwritten4'.op r.
Proof.
intros. induction r. auto.
Qed.
Lemma testAndSpecTrueTrue':
forall r : Handwritten4'.input,
Handwritten4'.field1 r = true ->
Handwritten4'.field3 r = true ->
Handwritten4'.field1and3 (Handwritten4'.op r) = true.
Proof.
intros. induction r. apply and_spec_true_true; auto.
Qed.
Lemma testAndSpecTrueTrue:
forall r : Handwritten4.input,
Handwritten4.field1 r = true ->
Handwritten4.field3 r = true ->
Handwritten4.field1and3 (Handwritten4.op r) = true.
Proof.
intros. induction r.
pose proof (testAndSpecTrueTrue' (Handwritten4'.MkInput field5 field6 field7 field8)).
auto.
Qed.
Lemma testPlusSpecOl':
forall r : Handwritten4'.input,
Handwritten4'.field2 r = 0 ->
Handwritten4'.field2and4 (Handwritten4'.op r) = Handwritten4'.field4 r.
Proof.
intros. induction r. rewrite <- testOp. apply plus_spec_O_l; auto.
Qed.
Lemma testPlusSpecOl:
forall r : Handwritten4.input,
Handwritten4.field2 r = 0 ->
Handwritten4.field2and4 (Handwritten4.op r) = Handwritten4.field4 r.
Proof.
intros. induction r.
pose proof (testPlusSpecOl' (Handwritten4'.MkInput field5 field6 field7 field8)).
auto.
Qed.
Lemma testPlusSpecOr':
forall r : Handwritten4'.input,
Handwritten4'.field4 r = 0 ->
Handwritten4'.field2and4 (Handwritten4'.op r) = Handwritten4'.field2 r.
Proof.
intros. induction r. rewrite <- testOp. apply plus_spec_O_r; auto.
Qed.
Lemma testPlusSpecOr:
forall r : Handwritten4.input,
Handwritten4.field4 r = 0 ->
Handwritten4.field2and4 (Handwritten4.op r) = Handwritten4.field2 r.
Proof.
intros. induction r.
pose proof (testPlusSpecOr' (Handwritten4'.MkInput field5 field6 field7 field8)).
auto.
Qed.
End LiftedGenerated4.
(* --- Test a record with parameters --- *)
Module HandwrittenParams.
Record input (T1 T2 T3 T4 : Type) := MkInput
{
field1 : T1;
field2 : T2;
field3 : T3;
field4 : T4;
}.
Record output (T1 T2 : Type) := MkOutput
{
field2and4 : T1;
field1and3 : T2;
}.
Definition op {T1 T2 T3 T4 T5 T6 : Type} (f : T2 -> T4 -> T5) (g : T1 -> T3 -> T6) (r : input T1 T2 T3 T4) :=
MkOutput _ _
(f (field2 _ _ _ _ r) (field4 _ _ _ _ r))
(g (field1 _ _ _ _ r) (field3 _ _ _ _ r)).
Theorem and_spec_true_true :
forall {T1 T2 T3 : Type} (f : T1 -> T2 -> T3)
(r : input bool T1 bool T2)
(F : field1 _ _ _ _ r = true)
(S : field3 _ _ _ _ r = true),
field1and3 _ _ (op f andb r) = true.
Proof.
intros.
destruct r as [f' n s].
unfold op.
simpl in *.
apply andb_true_intro.
intuition.
Qed.
Theorem plus_spec_O_l:
forall {T1 T2 T3 : Type} (g : T1 -> T2 -> T3)
(r : input T1 nat T2 nat)
(F : field2 _ _ _ _ r = O),
field2and4 _ _ (op plus g r) = field4 _ _ _ _ r.
Proof.
intros.
destruct r as [f n s].
unfold op.
simpl in *.
subst. reflexivity.
Qed.
Theorem plus_spec_O_r:
forall {T1 T2 T3 : Type} (g : T1 -> T2 -> T3)
(r : input T1 nat T2 nat)
(F : field4 _ _ _ _ r = O),
field2and4 _ _ (op plus g r) = field2 _ _ _ _ r.
Proof.
intros.
destruct r as [f n s].
unfold op.
simpl in *.
subst. auto.
Qed.
End HandwrittenParams.
Module GeneratedParams.
Definition input (T1 T2 T3 T4 : Type) := (prod T1 (prod T2 (prod T3 T4))).
Definition output (T1 T2 : Type) := (prod T1 T2).
Definition MkInput (T1 T2 T3 T4 : Type) (t1 : T1) (t2 : T2) (t3 : T3) (t4 : T4) :=
pair t1 (pair t2 (pair t3 t4)).
Definition MkOutput (T1 T2 : Type) (t1 : T1) (t2 : T2) :=
pair t1 t2.
Definition field1 (T1 T2 T3 T4 : Type) (r : input T1 T2 T3 T4) : T1 :=
(fst r).
Definition field2 (T1 T2 T3 T4 : Type) (r : input T1 T2 T3 T4) : T2 :=
(fst (snd r)).
Definition field3 (T1 T2 T3 T4 : Type) (r : input T1 T2 T3 T4) : T3 :=
(fst (snd (snd r))).
Definition field4 (T1 T2 T3 T4 : Type) (r : input T1 T2 T3 T4) : T4 :=
(snd (snd (snd r))).
Definition field2and4 (T1 T2 : Type) (r : output T1 T2) : T1 :=
(fst r).
Definition field1and3 (T1 T2 : Type) (r : output T1 T2) : T2 :=
(snd r).
Definition op {T1 T2 T3 T4 T5 T6 : Type} (f : T2 -> T4 -> T5) (g : T1 -> T3 -> T6) (r : input T1 T2 T3 T4) : output T5 T6 :=
(pair
(f (field2 _ _ _ _ r) (field4 _ _ _ _ r))
(g (field1 _ _ _ _ r) (field3 _ _ _ _ r))).
Theorem and_spec_true_true:
forall {T1 T2 T3 : Type} (f : T1 -> T2 -> T3)
(r : input bool T1 bool T2)
(F : field1 _ _ _ _ r = true)
(S : field3 _ _ _ _ r = true),
field1and3 _ _ (op f andb r) = true.
Proof.
intros.
destruct r. repeat destruct p.
unfold op.
simpl in *.
apply andb_true_intro.
intuition.
Qed.
Theorem plus_spec_O_l:
forall {T1 T2 T3 : Type} (g : T1 -> T2 -> T3)
(r : input T1 nat T2 nat)
(F : field2 _ _ _ _ r = O),
field2and4 _ _ (op plus g r) = field4 _ _ _ _ r.
Proof.
intros.
destruct r. repeat destruct p.
unfold op.
simpl in *.
rewrite F.
reflexivity.
Qed.
Theorem plus_spec_O_r:
forall {T1 T2 T3 : Type} (g : T1 -> T2 -> T3)
(r : input T1 nat T2 nat)
(F : field4 _ _ _ _ r = O),
field2and4 _ _ (op plus g r) = field2 _ _ _ _ r.
Proof.
intros.
destruct r. repeat destruct p.
unfold op.
simpl in *.
rewrite F.
auto.
Qed.
End GeneratedParams.
Preprocess Module HandwrittenParams as HandwrittenParams' { opaque Nat.add }.
Preprocess Module GeneratedParams as GeneratedParams' { opaque Nat.add }.
Module LiftedHandwrittenParams.
Configure Lift HandwrittenParams'.input GeneratedParams'.input { opaque HandwrittenParams'.input_rect }.
Fail Lift HandwrittenParams'.input GeneratedParams'.input in HandwrittenParams'.input_rect as input_rect'.
Configure Lift HandwrittenParams'.input GeneratedParams'.input { ~opaque HandwrittenParams'.input_rect }.
Lift HandwrittenParams'.input GeneratedParams'.input in HandwrittenParams'.input_rect as input_rect'.
Lift HandwrittenParams'.input GeneratedParams'.input in HandwrittenParams'.output_rect as output_rect'.
Lift HandwrittenParams'.input GeneratedParams'.input in HandwrittenParams'.MkInput as MkInput.
Lift HandwrittenParams'.output GeneratedParams'.output in HandwrittenParams'.MkOutput as MkOutput.
Lift HandwrittenParams'.input GeneratedParams'.input in HandwrittenParams'.field1 as field1.
Lift HandwrittenParams'.input GeneratedParams'.input in HandwrittenParams'.field2 as field2.
Lift HandwrittenParams'.input GeneratedParams'.input in HandwrittenParams'.field3 as field3.
Lift HandwrittenParams'.input GeneratedParams'.input in HandwrittenParams'.field4 as field4.
Lift HandwrittenParams'.output GeneratedParams'.output in HandwrittenParams'.field2and4 as field2and4.
Lift HandwrittenParams'.output GeneratedParams'.output in HandwrittenParams'.field1and3 as field1and3.
Lift HandwrittenParams'.input GeneratedParams'.input in HandwrittenParams'.op as op_1.
Lift HandwrittenParams'.output GeneratedParams'.output in op_1 as op.
Lift HandwrittenParams'.input GeneratedParams'.input in HandwrittenParams'.and_spec_true_true as and_spec_true_true_1.
Lift HandwrittenParams'.output GeneratedParams'.output in and_spec_true_true_1 as and_spec_true_true.
Lift HandwrittenParams'.input GeneratedParams'.input in HandwrittenParams'.plus_spec_O_l as plus_spec_O_l_1.
Lift HandwrittenParams'.output GeneratedParams'.output in plus_spec_O_l_1 as plus_spec_O_l.
Lift HandwrittenParams'.input GeneratedParams'.input in HandwrittenParams'.plus_spec_O_r as plus_spec_O_l_r.
Lift HandwrittenParams'.output GeneratedParams'.output in plus_spec_O_l_r as plus_spec_O_r.
Lemma testMkInput:
forall (T1 T2 T3 T4 : Type),
MkInput = GeneratedParams.MkInput.
Proof.
auto.
Qed.
Lemma testMkOutput:
MkOutput = GeneratedParams.MkOutput.
Proof.
auto.
Qed.
Lemma testField1:
field1 = GeneratedParams.field1.
Proof.
auto.
Qed.
Lemma testField2:
forall T1 T2 T3 T4 i,
field2 T1 T2 T3 T4 i = GeneratedParams.field2 T1 T2 T3 T4 i.
Proof.
intros. induction i. auto.
Qed.
Lemma testField3:
forall T1 T2 T3 T4 i,
field3 T1 T2 T3 T4 i = GeneratedParams.field3 T1 T2 T3 T4 i.
Proof.
intros. induction i. auto.
Qed.
Lemma testField4:
forall T1 T2 T3 T4 i,
field4 T1 T2 T3 T4 i = GeneratedParams.field4 T1 T2 T3 T4 i.
Proof.
intros. induction i. auto.
Qed.
Lemma testField2and4:
field2and4 = GeneratedParams.field2and4.
Proof.
auto.
Qed.
Lemma testField1and3:
field1and3 = GeneratedParams.field1and3.
Proof.
auto.
Qed.
Lemma testOp:
forall T1 T2 T3 T4 T5 T6 g f r,
op T1 T2 T3 T4 T5 T6 g f r = GeneratedParams.op g f r.
Proof.
intros. induction r. auto.
Qed.
Lemma testAndSpecTrueTrue:
forall (T1 T2 T3 : Type) (f : T1 -> T2 -> T3) (r : GeneratedParams.input bool T1 bool T2),
GeneratedParams.field1 _ _ _ _ r = true ->
GeneratedParams.field3 _ _ _ _ r = true ->
GeneratedParams.field1and3 _ _ (GeneratedParams.op f andb r) = true.
Proof.
intros. induction r. induction b. induction b.
apply (and_spec_true_true T1 T2 T3 f); auto.
Qed.
Lemma testPlusSpecOl:
forall (T1 T2 T3 : Type) (g : T1 -> T2 -> T3) (r : GeneratedParams.input T1 nat T2 nat),
GeneratedParams.field2 _ _ _ _ r = 0 ->
GeneratedParams.field2and4 _ _ (GeneratedParams.op Nat.add g r) = GeneratedParams.field4 _ _ _ _ r.
Proof.
intros. induction r. induction b. induction b.
rewrite <- testOp. apply (plus_spec_O_l T1 T2 T3 g). auto.
Qed.
Lemma testPlusSpecOr:
forall (T1 T2 T3 : Type) (g : T1 -> T2 -> T3) (r : GeneratedParams.input T1 nat T2 nat),
GeneratedParams.field4 _ _ _ _ r = 0 ->
GeneratedParams.field2and4 _ _ (GeneratedParams.op Nat.add g r) = GeneratedParams.field2 _ _ _ _ r.
Proof.
intros. induction r. induction b. induction b.
rewrite <- testOp. apply (plus_spec_O_r T1 T2 T3 g); auto.
Qed.
End LiftedHandwrittenParams.
Module LiftedGeneratedParams.
Lift GeneratedParams'.input HandwrittenParams'.input in GeneratedParams'.MkInput as MkInput.
Lift GeneratedParams'.output HandwrittenParams'.output in GeneratedParams'.MkOutput as MkOutput.
Lift GeneratedParams'.input HandwrittenParams'.input in GeneratedParams'.field1 as field1.
Lift GeneratedParams'.input HandwrittenParams'.input in GeneratedParams'.field2 as field2.
Lift GeneratedParams'.input HandwrittenParams'.input in GeneratedParams'.field3 as field3.
Lift GeneratedParams'.input HandwrittenParams'.input in GeneratedParams'.field4 as field4.
Lift GeneratedParams'.output HandwrittenParams'.output in GeneratedParams'.field2and4 as field2and4.
Lift GeneratedParams'.output HandwrittenParams'.output in GeneratedParams'.field1and3 as field1and3.
Lift GeneratedParams'.input HandwrittenParams'.input in GeneratedParams'.op as op_1.
Lift GeneratedParams'.output HandwrittenParams'.output in op_1 as op
{ opaque
Nat.add GeneratedParams'.Coq_Init_Datatypes_andb
field1 field2 field3 field4
}.
(* It is much better to start with the bigger constant, here input. Might even need to sometimes,
since you are basically playing egraph here. *)
Lift GeneratedParams'.input HandwrittenParams'.input in GeneratedParams'.and_spec_true_true as and_spec_true_true_1 {
opaque Nat.add GeneratedParams'.Coq_Init_Datatypes_andb
GeneratedParams'.Coq_Init_Datatypes_andb_true_intro
GeneratedParams'.field1and3 GeneratedParams'.field2and4 }.
Lift GeneratedParams'.output HandwrittenParams'.output in and_spec_true_true_1 as and_spec_true_true {
opaque GeneratedParams'.Coq_Init_Datatypes_andb_true_intro
field1 field2 field3 field4 MkInput HandwrittenParams'.field1and3 HandwrittenParams'.field2and4 }.
Lift GeneratedParams'.input HandwrittenParams'.input in GeneratedParams'.plus_spec_O_l as plus_spec_O_l_1
{ opaque
Nat.add GeneratedParams'.Coq_Init_Datatypes_andb
GeneratedParams'.Coq_Init_Datatypes_andb_true_intro
GeneratedParams'.field1and3 GeneratedParams'.field2and4 }.
Lift GeneratedParams'.output HandwrittenParams'.output in plus_spec_O_l_1 as plus_spec_O_l
{ opaque
Nat.add GeneratedParams'.Coq_Init_Datatypes_andb
GeneratedParams'.Coq_Init_Logic_eq_ind_r
field1 field2 field3 field4 MkInput }.
Lift GeneratedParams'.input HandwrittenParams'.input in GeneratedParams'.plus_spec_O_r as plus_spec_O_l_r
{ opaque
Nat.add GeneratedParams'.Coq_Init_Datatypes_andb
GeneratedParams'.Coq_Init_Datatypes_andb_true_intro
GeneratedParams'.field1and3 GeneratedParams'.field2and4 }.
Lift GeneratedParams'.output HandwrittenParams'.output in plus_spec_O_l_r as plus_spec_O_r
{ opaque
Nat.add GeneratedParams'.Coq_Init_Datatypes_andb
GeneratedParams'.Coq_Init_Peano_plus_n_O
GeneratedParams'.Coq_Init_Logic_eq_sym
GeneratedParams'.Coq_Init_Logic_eq_ind_r
field1 field2 field3 field4 }.
Lemma testMkInput:
forall (T1 T2 T3 T4 : Type),
MkInput = HandwrittenParams'.MkInput.
Proof.
auto.
Qed.
Lemma testMkOutput:
MkOutput = HandwrittenParams'.MkOutput.
Proof.
auto.
Qed.
Lemma testField1:
field1 = HandwrittenParams'.field1.
Proof.
auto.
Qed.
Lemma testField2:
forall T1 T2 T3 T4 i,
field2 T1 T2 T3 T4 i = HandwrittenParams'.field2 T1 T2 T3 T4 i.
Proof.
intros. induction i. auto.
Qed.
Lemma testField3:
forall T1 T2 T3 T4 i,
field3 T1 T2 T3 T4 i = HandwrittenParams'.field3 T1 T2 T3 T4 i.
Proof.
intros. induction i. auto.
Qed.
Lemma testField4:
forall T1 T2 T3 T4 i,
field4 T1 T2 T3 T4 i = HandwrittenParams'.field4 T1 T2 T3 T4 i.
Proof.
intros. induction i. auto.
Qed.
Lemma testField2and4:
field2and4 = HandwrittenParams'.field2and4.
Proof.
auto.
Qed.
Lemma testField1and3:
field1and3 = HandwrittenParams'.field1and3.
Proof.
auto.
Qed.
Lemma testOp:
forall T1 T2 T3 T4 T5 T6 g f r,
op T1 T2 T3 T4 T5 T6 g f r = HandwrittenParams'.op _ _ _ _ _ _ g f r.
Proof.
intros. induction r. auto.
Qed.
Lemma testAndSpecTrueTrue:
forall (T1 T2 T3 : Type) (f : T1 -> T2 -> T3) (r : HandwrittenParams'.input bool T1 bool T2),
HandwrittenParams'.field1 _ _ _ _ r = true ->
HandwrittenParams'.field3 _ _ _ _ r = true ->
HandwrittenParams'.field1and3 _ _ (HandwrittenParams'.op _ _ _ _ _ _ f andb r) = true.
Proof.
intros. induction r.
apply (and_spec_true_true T1 T2 T3 f); auto.
Qed.
Lemma testPlusSpecOl:
forall (T1 T2 T3 : Type) (g : T1 -> T2 -> T3) (r : HandwrittenParams'.input T1 nat T2 nat),
HandwrittenParams'.field2 _ _ _ _ r = 0 ->
HandwrittenParams'.field2and4 _ _ (HandwrittenParams'.op _ _ _ _ _ _ Nat.add g r) = HandwrittenParams'.field4 _ _ _ _ r.
Proof.
intros. induction r.
rewrite <- testOp. apply plus_spec_O_l; auto.
Qed.
Lemma testPlusSpecOr:
forall (T1 T2 T3 : Type) (g : T1 -> T2 -> T3) (r : HandwrittenParams'.input T1 nat T2 nat),
HandwrittenParams'.field4 _ _ _ _ r = 0 ->
HandwrittenParams'.field2and4 _ _ (HandwrittenParams'.op _ _ _ _ _ _ Nat.add g r) = HandwrittenParams'.field2 _ _ _ _ r.
Proof.
intros. induction r.
rewrite <- testOp. apply plus_spec_O_r; auto.
Qed.
End LiftedGeneratedParams.