-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultiAgentHeterogenous.m
412 lines (386 loc) · 20.5 KB
/
MultiAgentHeterogenous.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
classdef MultiAgentHeterogenous
%MULTIAGENTHETEROGENOUS Summary of this class goes here
% Detailed explanation goes here
properties (SetAccess = protected)
adjacencyMatrix double;
network (1,1) model.Network;
singleSys cell;
informedAgents (:,1);
end
properties (Dependent = true)
H double; %Leader-follower matrix
L double; %Laplacian matrix
N (1,1) {mustBeInteger, mustBeNonnegative}; % number of agents
H_ext double;
agent1IsLeader
end
methods
function obj = MultiAgentHeterogenous(hyperbolicSystems, adjacencyMatrix, NameValue)
%MULTIAGENTHETEROGENOUS Construct an instance of the class
%MultiAgentHeterogenous which allows to simulate heterogenous
%multi agent systems of hyperbolic agents
arguments
hyperbolicSystems {cell} = {};
adjacencyMatrix double = 0;
NameValue.nCoefRef (1,1) {mustBeInteger, mustBePositive} = 20;
NameValue.nCoefDist (1,1) {mustBeInteger, mustBePositive} = 20;
NameValue.informedAgents (:,1) = adjacencyMatrix(:,1);
end
obj.adjacencyMatrix = adjacencyMatrix;
obj.informedAgents = NameValue.informedAgents;
obj.singleSys = {obj.N};
agents = [];
for idx = 1:length(hyperbolicSystems)
unitVector = [zeros(1, idx-1), 1, zeros(1, obj.N - idx)];
agent = hyperbolicSystems{idx}.copy;
obj.singleSys{idx} = MultiAgent(0, agent.Lambda, "A", agent.A, "G1", agent.input.input(2).B, "G2", agent.input.input(2).B0, ...
"G3", agent.input.input(2).B1, "G4", agent.input.input(2).D.value, "diffusiveDisturbance", false, "Q0", agent.Q0, "Q1", agent.Q1, ...
"output", agent.output.output, "nCoefRef", NameValue.nCoefRef, "nCoefDist", NameValue.nCoefDist);
obj.singleSys{idx}.network.agent.output.add(agent.output.output);
obj.singleSys{idx}.network.agent.output.remove(obj.singleSys{idx}.network.agent.output.output(1).type);
distInput = model.Input("disturbance", "B", kron(unitVector, agent.input.input(2).B), "B0", kron(unitVector, agent.input.input(2).B0),...
"B1", kron(unitVector, agent.input.input(2).B1), ...
"D", misc.Gain("disturbance", kron(unitVector, agent.input.input(2).D.value), "outputType", "agent" + idx + ".controlOutput"));
controlInput = agent.input.input(1).strrepType("control", "agent" + idx + ".control");
measurementOutput = model.Output("agent" + idx + ".measurement", "C1", agent.e2.');
agent = hyperbolicSystems{idx}.copyAndReplace("input", controlInput+distInput, "output", agent.output + measurementOutput);
agents = cat(1, agents, agent);
end
obj.network = model.Network(agents, obj.adjacencyMatrix, obj.adjacencyMatrix(:, 1));
end
function simData = adaptiveControlSimulation(obj, simulationSetting, distModelDim, distOutDim, referenceObserver, NameValue)
%ADAPTIVECONTROLSIMULATION Runs a simulation in a for-loop
% A controller and observer is designed for each agent
arguments
obj;
simulationSetting;
distModelDim (1,1) double {mustBeInteger, mustBeNonnegative}; %Dimension of v(t)
distOutDim (1,1) double {mustBeInteger, mustBeNonnegative}; %Dimension of d(t)
referenceObserver (1,1) ReferenceObserver; %The reference observer to be used
NameValue.exogenousInput = {};
NameValue.initialCondition = {};
%Parameters of the adaptive disturbance observer
NameValue.mu_S (1,1) double = 1; %Observer gain for S
NameValue.mu_P (1,1) double = 1; %Observer gain for P
NameValue.adaptationDelayObserver = 0; %Determines how frequently the decoupling eqautions are solved
NameValue.distCoef (1,1) double {mustBeInteger, mustBeNonnegative} = 5; %Determines the number of coefficients used to solve the decoupling equations
NameValue.targetEvOde (1,:) double = -1*[1, 2]; %The target eigenvalues of the ODE of e_v(t)
%Paramters of the controller
NameValue.adaptationDelayController = 0; %Determines how frequently the regulator eqautions are solved
NameValue.checkControllability = false;
end % arguments
simulationSettingStruct = struct(simulationSetting{:});
if isfield(simulationSettingStruct, "t")
t = simulationSettingStruct.t;
tStep = t(2)-t(1);
else
t = [];
end
tDomain = quantity.Domain("t", t);
% Handle exogenous signals
exSig = struct(NameValue.exogenousInput{:});
if isa(exSig.S, "double")
exSig.S = quantity.Discrete.ones(1, tDomain)*exSig.S;
end
%Prepare an adaptive disturbance observer for each agent
disturbanceObserver = {obj.N};
for idx = 1:obj.N
disturbanceObserver{idx} = AdaptiveDisturbanceObserver(obj.singleSys{idx}, distModelDim, ...
distOutDim, NameValue.mu_S, "mu_P", NameValue.mu_P, "nCoef", NameValue.distCoef, "targetEvOde", NameValue.targetEvOde);
end
SObs = kron(ones(obj.N,1),zeros(distModelDim));
PObs = kron(ones(obj.N,1),zeros(distOutDim, distModelDim));
vObs = zeros(size(SObs, 1), 1);
icObs = {};
for idx = 1:2:length(NameValue.initialCondition)
if contains(NameValue.initialCondition{idx}, "observer.x")
icObs{end+1} = strrep(NameValue.initialCondition{idx}, "observer.x", "x");
icObs{end+1} = NameValue.initialCondition{idx+1};
end
end
for indAgent = 1 : obj.N
%Add measurement output to MulitAgent objects
measurementOutput = model.Output("measurement", "C1", obj.network.agent(indAgent).e2.');
obj.singleSys{indAgent}.network.agent.output.add(measurementOutput);
stateSpaceCell{indAgent} = disturbanceObserver{indAgent}.getStateSpaceApproximation...
(quantity.Discrete.zeros([obj.singleSys{indAgent}.n, obj.singleSys{indAgent}.m], obj.singleSys{indAgent}.domain),...
"t", t, "agent", indAgent);
end
observerStateSpace = stateSpace.parallel(stateSpaceCell{:});
observerStateSpaceB = observerStateSpace.B;
adaptationDelayObserver = 0;
if isfield(exSig, "P") && isa(exSig.P, 'double')
exSig.P = exSig.P*quantity.Discrete.ones(1, tDomain);
end
if ~isfield(exSig, "Sr")
exSig.Sr = 0;
end
%Get discrete state space representation
plantStateSpace = obj.network.getSimulationModel(simulationSetting);
plantStateSpace = stateSpace.addInput2Output(plantStateSpace);
% stitch initial condition together
x = obj.network.combineInitialCondition(plantStateSpace, NameValue.initialCondition);
% stitch exogenous signals together
u = stateSpace.combineInputSignals(plantStateSpace, t, NameValue.exogenousInput{:});
ud = u.on(t);
%Compute control input parameters
for idx = 1:obj.N
obj.singleSys{idx}.setBacksteppingKernel();
obj.singleSys{idx}.setRegulatorEquationRefCoefficients(size(exSig.Sr,1));
obj.singleSys{idx}.setRegulatorEquationDistCoefficients(size(exSig.S,1));
uStab{idx} = obj.singleSys{idx}.getStabilizingStateFeedback();
uStab{idx}.setApproximation(obj.network.agent(idx).grid);
uStabCop{idx} = uStab{idx}.Cop;
end
uStabDisc = blkdiag(uStabCop{:});
controlInput = 0;
adaptationDelayController = 0;
%Run simulation of reference observer
if ~isfield(exSig, "w")
exSig.w = quantity.Discrete.zeros([referenceObserver.nDimensions, 1], tDomain);
end
if ~isfield(exSig, "Sr")
exSig.Sr = zeros(referenceObserver.nDimensions);
end
if ~isfield(exSig, "Pr")
exSig.Pr = eye(referenceObserver.nDimensions);
end
simDataRef = referenceObserver.simulate(exSig.w, exSig.Sr, exSig.Pr);
wAgg = [];
for indAgent = 0 : obj.N-1
[PI_w.("agent"+indAgent), gain_w{indAgent + 1}] = obj.singleSys{indAgent+1}.solveRegulatorEquationsReference(simDataRef.("agent" + indAgent).S.atIndex(1), simDataRef.("agent" + indAgent).P.atIndex(1));
wAgg = cat(1, wAgg, simDataRef.("agent"+indAgent).w.atIndex(1));
end
Kw = blkdiag(gain_w{:});
controlInput = controlInput + Kw*wAgg;
%Initialize simulation values
for i = 1:2:length(NameValue.initialCondition)
if NameValue.initialCondition{i} == "S"
SObs = NameValue.initialCondition{i+1};
end
if NameValue.initialCondition{i} == "P"
PObs = NameValue.initialCondition{i+1};
end
if NameValue.initialCondition{i} == "v"
vObs = NameValue.initialCondition{i+1};
end
end
xObs = obj.network.combineInitialCondition(plantStateSpace, icObs);
xIcOut = plantStateSpace.C*x;
xObsIcOut = observerStateSpace.C*xObs;
measurement = xIcOut(contains(plantStateSpace.OutputName, "agent" + digitsPattern(1) + ".measurement"));
measurementPrediction = xObsIcOut(contains(observerStateSpace.OutputName, "agent" + digitsPattern(1) + ".observer.measurement"));
measurementError = measurement - measurementPrediction;
obsIn = zeros(length(observerStateSpace.InputName), 1);
obsIn(contains(observerStateSpace.InputName, "agent" + digitsPattern(1) + ".error.measurement")) = measurementError;
obsIn(contains(observerStateSpace.InputName, "agent" + digitsPattern(1) + ".measurement")) = measurement;
obsIn(contains(observerStateSpace.InputName, "agent" + digitsPattern(1) + ".disturbance")) = kron(ones(1,obj.N),PObs).*kron(eye(obj.N), ones(size(PObs,1)/obj.N, size(PObs,2)))*vObs(:,end);
controlInput = controlInput + uStabDisc * xObsIcOut(contains(plantStateSpace.OutputName, "x"));
if exist("vObs", 'var') && exist("SObs", 'var')
for indAgent = 1 : obj.N
SObsAgent = SObs((indAgent-1)*size(SObs,2)+1:indAgent*size(SObs,2), :);
PObsAgent = PObs((indAgent-1)*(size(PObs,1)/obj.N)+1:indAgent*(size(PObs,1)/obj.N), :);
[PI_v.("agent"+indAgent), gain_v{indAgent}] = obj.singleSys{indAgent}.solveRegulatorEquationsDisturbance(SObsAgent, PObsAgent);
end
Kv = blkdiag(gain_v{:});
controlInput = controlInput + Kv*vObs;
end
obsIn(contains(observerStateSpace.InputName, "agent" + digitsPattern(1) + ".control")) = controlInput;
simDataObs = observerStateSpace.C*xObs + observerStateSpace.D*obsIn;
yObs = simDataObs;
ud(1, contains(plantStateSpace.InputName, "control")) = controlInput;
simDataNy = plantStateSpace.C*x + plantStateSpace.D*ud(1,:).';
SLead = exSig.S.on(t);
SObs(1:size(SObs, 2),:) = SLead(1, :, :);
PLead = exSig.P.on(t);
PObs(1:size(PObs, 1)/obj.N,:) = PLead(1, :, :);
L_v = {};
L_x = {};
averageIterationTime = 0;
runningTime = 0;
h = waitbar(0, "Simulation in progress");
for i = 1:length(t)-1
waitbar(i/(length(t)-1), h, "Simulation in progress, ETA: " + ceil(((length(t)-1-i)*averageIterationTime)) + "s");
startingTime = tic;
if adaptationDelayController == 0
solveRegEq = true;
adaptationDelayController = NameValue.adaptationDelayController;
else
adaptationDelayController = adaptationDelayController - 1;
solveRegEq = false;
end
%Adapt observer parameters if one is specified
if adaptationDelayObserver == 0
endidxprev = 0;
for indAgent = 1 : obj.N
SObsAgent = SObs((indAgent-1)*size(SObs,2)+1:indAgent*size(SObs,2), :, i);
PObsAgent = PObs((indAgent-1)*(size(PObs,1)/obj.N)+1:indAgent*(size(PObs,1)/obj.N), :, i);
if NameValue.checkControllability
%Check controllability condition
outputTil = obj.singleSys{indAgent}.output.backstepping(obj.singleSys{indAgent}.backsteppingKernel, "inverse", true);
invLambda = 1/obj.singleSys{indAgent}.Lambda;
phi = int(subs(invLambda, "z", "zeta"), "zeta", 0, "z");
eigVals = eig(SObsAgent);
controllable = true;
for indEv = 1:length(eigVals)
psi = expm(eigVals(indEv)*(phi - phi.subs("z", "zeta")));
M = psi.subs("zeta", 0)*(obj.singleSys{indAgent}.E1+obj.singleSys{indAgent}.E2*obj.singleSys{indAgent}.Q0)...
- int(psi*invLambda.subs("z", "zeta")*obj.singleSys{indAgent}.backsteppingKernel.getA0Target().subs("z","zeta"), "zeta", 0, "z");
N = outputTil.out(M);
if det(N) == 0
controllable = false;
end
end
if controllable
[L_v{indAgent}, L_x{indAgent}] = disturbanceObserver{indAgent}.getObserverGains(SObsAgent, PObsAgent);
else
warning("Controllability issue on time step " + i);
end
else
[L_v{indAgent}, L_x{indAgent}] = disturbanceObserver{indAgent}.getObserverGains(SObsAgent, PObsAgent);
end
gainLocal = model.Input("agent" + indAgent + ".error.measurement", "B", L_x{indAgent});
B = tStep*obj.network.agent(indAgent).domain2indomain * gainLocal.getBDiscrete(obj.network.agent(indAgent).grid);
if B == 0
B = zeros(size(obj.network.agent(indAgent).domain2indomain, 1), size(L_x{indAgent}, 2));
end
observerStateSpaceB(:, contains(observerStateSpace.InputName, "agent" + indAgent + ".error.measurement")) = [zeros(endidxprev, size(B, 2)); B; zeros(size(observerStateSpaceB, 1)-length(B) - endidxprev, size(B, 2))];
endidxprev = endidxprev + length(B);
if solveRegEq
[PI_v.("agent"+indAgent), gain_v{indAgent}] = obj.singleSys{indAgent}.solveRegulatorEquationsDisturbance(SObsAgent, PObsAgent);
end
end
L_vAgg = blkdiag(L_v{:});
adaptationDelayObserver = NameValue.adaptationDelayObserver;
else
adaptationDelayObserver = adaptationDelayObserver - 1;
end
measurement = simDataNy(contains(plantStateSpace.OutputName, "agent" + digitsPattern(1) + ".measurement"), end);
measurementPrediction = simDataObs(contains(observerStateSpace.OutputName, "agent" + digitsPattern(1) + ".observer.measurement"), end);
measurementError = measurement - measurementPrediction;
obsIn(contains(observerStateSpace.InputName, "agent" + digitsPattern(1) + ".measurement")) = measurement;
%Get observer input
obsIn(contains(observerStateSpace.InputName, "agent" + digitsPattern(1) + ".error.measurement")) = measurementError;
%Compute updated state variables and output
SObs = cat(3, SObs, SObs(:,:,i)+tStep*NameValue.mu_S*kron(obj.H_ext, eye(size(SObs, 2)))*(kron(ones(obj.N, 1),squeeze(SLead(i,:,:)))-SObs(:,:,i)));
SObs(1:distModelDim,:,end) = SLead(i,:,:);
PObs = cat(3, PObs, PObs(:,:,i)+tStep*NameValue.mu_P*kron(obj.H_ext, eye(size(PObs, 1)/obj.N))*(kron(ones(obj.N, 1),reshape(PLead(i,:,:),[],size(PLead,3)))-PObs(:,:,i)));
PObs(1:distOutDim,:,end) = PLead(i,:,:);
vObs = cat(2, vObs, vObs(:,i)+tStep*(SObs(:,:,end)*kron(ones(1, obj.N), eye(size(SObs, 2))).*kron(eye(obj.N),...
ones(size(SObs, 2)))*vObs(:,end) + L_vAgg*measurementError));
obsIn(contains(observerStateSpace.InputName, "agent" + digitsPattern(1) + ".control")) = controlInput;
obsIn(contains(observerStateSpace.InputName, "agent" + digitsPattern(1) + ".disturbance")) = kron(ones(1,obj.N),PObs(:,:,end)).*kron(eye(obj.N), ones(size(PObs,1)/obj.N, size(PObs,2)))*vObs(:,end);
xObs = observerStateSpace.A*xObs + observerStateSpaceB*obsIn;
controlInput = 0;
controlInput = controlInput + Kw*wAgg;
controlInput = controlInput + uStabDisc * yObs(contains(observerStateSpace.OutputName, "x"));
% Kv = HkronIr * blkdiag(gain_v{:});
Kv = blkdiag(gain_v{:});
controlInput = controlInput + Kv*vObs(:, end);
obsIn(contains(observerStateSpace.InputName, "agent" + digitsPattern(1) + ".control")) = controlInput;
% simDataObs = cat(2, simDataObs, observerStateSpace.C*xObs + observerStateSpace.D*obsIn);
yObs = observerStateSpace.C*xObs + observerStateSpace.D*obsIn;
%Compute control input for this time step if NameValue.controller is
%set to true
controlInput = 0;
wAgg = [];
for indAgent = 0 : obj.N - 1
if solveRegEq
if NameValue.checkControllability
%Check controllability condition
outputTil = obj.singleSys{indAgent+1}.output.backstepping(obj.singleSys{indAgent+1}.backsteppingKernel, "inverse", true);
invLambda = 1/obj.singleSys{indAgent+1}.Lambda;
phi = int(subs(invLambda, "z", "zeta"), "zeta", 0, "z");
eigVals = eig(simDataRef.("agent" + indAgent).S.atIndex(i));
controllable = true;
for indEv = 1:length(eigVals)
psi = expm(eigVals(indEv)*(phi - phi.subs("z", "zeta")));
M = psi.subs("zeta", 0)*(obj.singleSys{indAgent+1}.E1+obj.singleSys{indAgent+1}.E2*obj.singleSys{indAgent+1}.Q0)...
- int(psi*invLambda.subs("z", "zeta")*obj.singleSys{indAgent+1}.backsteppingKernel.getA0Target().subs("z","zeta"), "zeta", 0, "z");
N = outputTil.out(M);
if det(N) == 0
controllable = false;
end
end
if controllable
[PI_w.("agent"+indAgent), gain_w{indAgent + 1}] = ...
obj.singleSys{indAgent + 1}.solveRegulatorEquationsReference(simDataRef.("agent" + indAgent).S.atIndex(i), simDataRef.("agent" + indAgent).P.atIndex(i));
else
warning("Controllability issue on time step " + i);
end
else
[PI_w.("agent"+indAgent), gain_w{indAgent + 1}] = ...
obj.singleSys{indAgent + 1}.solveRegulatorEquationsReference(simDataRef.("agent" + indAgent).S.atIndex(i), simDataRef.("agent" + indAgent).P.atIndex(i));
end
end
wAgg = cat(1, wAgg, simDataRef.("agent"+indAgent).w.atIndex(i));
end
Kw = blkdiag(gain_w{:});
controlInput = controlInput + Kw*wAgg;
controlInput = controlInput + uStabDisc * yObs(contains(observerStateSpace.OutputName, "x"));
Kv = blkdiag(gain_v{:});
controlInput = controlInput + Kv*vObs(:, end);
obsIn(contains(observerStateSpace.InputName, "agent" + digitsPattern(1) + ".control")) = controlInput;
ud(i+1, contains(plantStateSpace.InputName, "control")) = controlInput;
%Update the state variable and compute the output using the discretized system
x = plantStateSpace.A*x + plantStateSpace.B*ud(i,:).';
simDataNy = cat(2, simDataNy, plantStateSpace.C*x + plantStateSpace.D*ud(i+1,:).');
measurement = simDataNy(contains(plantStateSpace.OutputName, "agent" + digitsPattern(1) + ".measurement"), end);
obsIn(contains(observerStateSpace.InputName, "agent" + digitsPattern(1) + ".measurement")) = measurement;
simDataObs = cat(2, simDataObs, observerStateSpace.C*xObs + observerStateSpace.D*obsIn);
closingTime = toc(startingTime);
runningTime = runningTime + closingTime;
averageIterationTime = runningTime / i;
end
try
close(h);
catch
%Do nothing, the waitbar was closed manually
end
%Format raw data into function output
simOutput = simDataNy.';
outputNames = plantStateSpace.OutputName;
grid = obj.network.getSpatialGridsOfSimulation();
simOutput = [simOutput, simDataObs.'];
outputNames = [outputNames; observerStateSpace.OutputName];
grid{1} = cat(1, grid{1}, replace(grid{1}, "x", "observer.x"));
grid{2} = cat(1, grid{2}, grid{2});
simData = stateSpace.simulationOutput2Quantity(...
simOutput, t, outputNames, "z", grid);
simData.predefinedInput = u;
SObs = quantity.Discrete(permute(SObs(:,:,1:end), [3 1 2]), quantity.Domain("t", t));
PObs = quantity.Discrete(permute(PObs(:,:,1:end), [3 1 2]), quantity.Domain("t", t));
vObs = quantity.Discrete(permute(vObs(:,1:end), [2 1]), quantity.Domain("t", t));
for iAgent = 1:obj.N
simData.("agent"+iAgent).observer.S = SObs((iAgent-1)*size(SObs,2)+1:iAgent*size(SObs,2), :);
simData.("agent"+iAgent).observer.P = PObs((iAgent-1)*size(PObs,1)/obj.N+1:iAgent*size(PObs,1)/obj.N, :);
simData.("agent"+iAgent).observer.v = vObs((iAgent-1)*size(SObs,2)+1:iAgent*size(SObs,2));
end
for iAgent = 0 : obj.N - 1
simData.("agent"+(iAgent + 1)).observer.Sr = simDataRef.("agent"+iAgent).S;
simData.("agent"+(iAgent + 1)).observer.Pr = simDataRef.("agent"+iAgent).P;
simData.("agent"+(iAgent + 1)).observer.w = simDataRef.("agent"+iAgent).w;
end
end
%% get dependent properties
function L = get.L(obj)
L = diag(sum(obj.adjacencyMatrix, 2)) - obj.adjacencyMatrix;
end % get.L()
function agent1IsLeader = get.agent1IsLeader(obj)
agent1IsLeader = isempty(find(obj.adjacencyMatrix(1,:)));
end % agent1IsLeader
function H = get.H(obj)
if obj.agent1IsLeader
H = obj.H_ext(2:end, 2:end);
else
H = obj.H_ext;
end
end
function H_ext = get.H_ext(obj)
H_ext = obj.L + diag(obj.informedAgents);
end % get.H()
function N = get.N(obj)
N = size(obj.adjacencyMatrix, 1);
end % get.N()
end
end