-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpyserini_augment.py
58 lines (48 loc) · 1.82 KB
/
pyserini_augment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import pandas as pd
from pyserini.search.lucene import LuceneSearcher
from pyserini.search.faiss import FaissSearcher, TctColBertQueryEncoder
import argparse
import json
from tqdm import tqdm
import torch
tqdm.pandas()
torch.set_grad_enabled(False)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
searcher = LuceneSearcher.from_prebuilt_index('enwiki-paragraphs')
searcher_faiss = FaissSearcher(
'/nas/home/darshang/dpr_index',
'facebook/dpr-question_encoder-multiset-base'
)
doc_retriever = LuceneSearcher.from_prebuilt_index("wikipedia-dpr")
def get_similar(query, method="bert", num_items=2, sep_token="[SEP]"):
if method == "bert":
hits = searcher_faiss.search(query, k=num_items)
context = ""
for i in range(num_items):
d = json.loads(doc_retriever.doc(hits[i].docid).raw())['contents']
if i != num_items - 1:
context += d + sep_token + " "
else:
context += d
return context
else:
hits = searcher.search(query, k=num_items)
context = ""
for i in range(num_items):
if i != num_items - 1:
context += hits[i].raw + sep_token + " "
else:
context += hits[i].raw
return context
def read_dataset(dataset_path):
df = pd.read_csv(dataset_path)
return df
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_path", default="train_ibm_30k.csv", type=str, required=False)
parser.add_argument("--out_path", type=str, required=True)
parser.add_argument("--col_name", type=str, required=False, default="title")
args = parser.parse_args()
df = read_dataset(args.dataset_path)
df["similar"] = df[args.col_name].progress_map(get_similar,)
df.to_csv(args.out_path, index=False)