-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathinfer.py
90 lines (63 loc) · 2.41 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#-*- coding:utf-8 -*-
import os
import argparse
import numpy as np
import time
import sys
import argparse
import paddle
import paddle.fluid as fluid
import cv2
from collections import Counter
from model.mobilenetv2 import build_model
os.environ['FLAGS_fraction_of_gpu_memory_to_use'] = '0.99'
path = os.getcwd()
# 绘制关键点
def draw_landmark_point(image, points):
"""
Draw landmark point on image.
"""
for point in points:
cv2.circle(image, (int(point[0]), int(
point[1])), 1, (0, 255, 0), -1, cv2.LINE_AA)
def create_model(model='',image_shape=[112,112],class_num=98):
img = fluid.layers.data(name='img', shape=[3] + image_shape, dtype='float32')
landmarks_pre,angles_pre = build_model(img)
print('img.shape = ',img.shape)
return landmarks_pre,angles_pre
def load_model(exe,program,model=''):
if model == 'mobilenetv2':
fluid.io.load_params(executor=exe, dirname="", filename=path+'/params/mobilenetv2.params', main_program=program)
print('load model succeed')
def infer(model):
#landmarks_pre,angles_pre = create_model(model='ResNet')
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
[inference_program, feed_target_names, fetch_targets] = (fluid.io.load_inference_model(dirname=path+'/inference', executor=exe))
imgs = [] #work/Face-Localization/data/test_data/imgs/7_35_Basketball_playingbasketball_35_872_0.png
img = cv2.imread("data/test_data/imgs/7_35_Basketball_playingbasketball_35_872_0.png")
print('img.shape',img.shape)
image = cv2.resize(img, (112, 112))
image = image.transpose((2,0,1))
imgs.append(image)
imgs = np.array(imgs)
imgs = imgs.astype(np.float32)
imgs /= 255.0
result = exe.run(inference_program,
feed={feed_target_names[0]: imgs},
fetch_list=fetch_targets)
pre_landmark = result[0]
print(pre_landmark.shape)
pre_landmark = pre_landmark.reshape(-1, 2)
print(pre_landmark)
pre_landmark = pre_landmark * [112, 112]
for (x, y) in pre_landmark.astype(np.int32):
cv2.circle(img, (x, y), 1, (0, 0, 255))
cv2.imwrite("infer.jpg", img)
if __name__ == "__main__":
parse = argparse.ArgumentParser(description='')
parse.add_argument('--model', help='model name', nargs='?')
args = parse.parse_args()
model = "mobilenetv2"
#DataSet = create_reader()
infer(model)