Skip to content
@ulysses-camara

Ulysses

Recursos do projeto Ulysses da Câmara dos Deputados do Brasil.

Ulysses: Enhancing Machine Learning for Brazil's Chamber of Deputies

Ulysses is a comprehensive set of machine learning modules tailored specifically for Brazil's Chamber of Deputies. Our project aims providing tools for data analysis and decision-making processes within the legislative domain of Brazil.


Published works

2024

  • O. ALBUQUERQUE, Hidelberg et al. UlyssesNERQ: Expanding Queries from Brazilian Portuguese Legislative Documents through Named Entity Recognition. 16th International Conference on Computational Processing of Portuguese (PROPOR 2024). (Qualis A4)

  • PRESSATO, Diany et al. (2024) Natural Language Processing Application in Legislative Activity: a Case Study of Similar Amendments in the Brazilian Senate. 16th International Conference on Computational Processing of Portuguese (PROPOR 2024). (Qualis A4)

  • MAIA, Dyonatan. F.; et al. (2024) Enhancing Stance Detection in Low-Resource Brazilian Portuguese Using Corpus Expansion generated by GPT-3.5. 16th International Conference on Computational Processing of Portuguese (PROPOR 2024). (Qualis A4)

  • GARCIA, Eduardo; et al. (2024) RoBERTaLexPT: A Legal RoBERTa Model pretrained with deduplication for Portuguese. 16th International Conference on Computational Processing of Portuguese (PROPOR 2024). (Qualis A4)

  • Siqueira, Felipe A., Vitório, Douglas, Souza, Ellen, Santos, José A. P., Albuquerque, Hidelberg O., Dias, Márcio S., Silva, Nádia F. F., de Carvalho, André C. P. L. F., Oliveira, Adriano L. I., and Bastos-Filho, Carmelo. 2024. "Ulysses Tesemõ: a new large corpus for Brazilian legal and governmental domain." Language Resources and Evaluation. https://doi.org/10.1007/s10579-024-09762-8. (Qualis A1)

  • Vitório, D., Souza, E., Martins, L., da Silva, N. F. F., de Carvalho, A. C. P. L., Oliveira, A. L. I., & de Andrade, F. E. (2024). Building a relevance feedback corpus for legal information retrieval in the real-case scenario of the Brazilian Chamber of Deputies. Language Resources and Evaluation. https://doi.org/10.1007/s10579-024-09767-3 (Qualis A1)

  • Siqueira, F. A., Pressato, D., Pereira, F. S. F., da Silva, N. F. F., Souza, E., Dias, M. S., and de Carvalho, A. C. P. L. F. (2024). Segmenting Brazilian legislative text using weak supervision and active learning. Artificial Intelligence and Law. https://doi.org/10.1007/s10506-024-09419-5. (Qualis A1)

2023

2022

  • ALBUQUERQUE, Hidelberg. O. et al. (2022) UlyssesNER-Br: a Corpus of Brazilian Legislative Documents for Named Entity. In: 15th International Conference on Computational Processing of Portuguese (PROPOR 2022). Lecture Notes in Computer Science, vol 13208. Springer, Cham. https://doi.org/10.1007/978-3-030-98305-5_1. (Qualis A4)

  • COSTA, Rosimeire. P. et al. (2022) . Expanding UlyssesNER-Br Named Entity Recognition Corpus with Informal User-generated Text. In: European Conference on Artificial Intelligence (EPIA 2022). Proceedings of the EPIA. (Qualis B2)

  • MAIA, Dyonatan. F.; et al. (2022). UlyssesSD-Br: Stance Detection in Brazilian Political Polls. In: European Conference on Artificial Intelligence (EPIA 2022). Proceedings of the EPIA. (Qualis B2)

  • VITÓRIO, Douglas et al. (2022) Ulysses-RFSQ: a novel method to improve Legal Information Retrieval based on Relevance Feedback. In: 11th Brazilian Conference on Intelligent Systems (BRACIS 2022). Proceedings of the BRACIS. (Qualis A4)

  • COSTA, Marília et. al. No Pattern, No Recognition: a Survey about Reproducibility and Distortion Issues of Text Clustering and Topic Modeling. Preprint. https://www.researchgate.net/publication/362467723_No_Pattern_No_Recognition_a_Survey_about_Reproducibility_and_Distortion_Issues_of_Text_Clustering_and_Topic_Modeling/stats (sem Qualis)

2021

  • SILVA, Nádia.F.F.. et al. (2021) Evaluating Topic Models in Portuguese Political Comments About Bills from Brazil’s Chamber of Deputies. In: Britto A., Valdivia Delgado K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science, vol 13074. Springer, Cham. https://doi.org/10.1007/978-3-030-91699-2_8. (Qualis A4)

  • SOUZA, Ellen. et al. (2021) Assessing the Impact of Stemming Algorithms Applied to Brazilian Legislative Documents Retrieval. In: XIII Brazilian Symposium in Information and Human Language Technology (STIL 2021). DOI: https://doi.org/10.5753/stil.2021.17802. (Qualis B1)

  • SOUZA, Ellen. et al. (2021) An Information Retrieval Pipeline for Legislative Documents from the Brazilian Chamber of Deputies. In: 34th International Conference on Legal Knowledge and Information Systems (JURIX 2021). https:/DOI:10.3233/FAIA210326. (Qualis B1)


Module overview

flowchart LR

package_optimizer("Ulysses Optimizer")
package_curiosity("Ulysses Curiosity")
package_segmenter("Ulysses Segmenter")
package_fetcher("Ulysses Fetcher")

subgraph microservice_comparer["Ulysses Document Comparer"]
    direction TB
    microservice_expandQuery["expand-query"]
    microservice_lookForReferenced["look-for-referenced"]
    microservice_lookForSimilar["look-for-similar"]
    microservice_saveRelevanceFeedback["save-relevance-feedback"]

    microservice_expandQuery --- microservice_lookForReferenced --- microservice_lookForSimilar --- microservice_saveRelevanceFeedback

    linkStyle 0 stroke-width:0px;
    linkStyle 1 stroke-width:0px;
    linkStyle 2 stroke-width:0px;
end

subgraph microservice_analyzer["Ulysses Argumentation Analyzer"]
    direction TB
    microservice_clusterComments["clusterComments"]
    microservice_mapToDocument["mapToDocument (map2doc)"]

    microservice_clusterComments --- microservice_mapToDocument

    linkStyle 3 stroke-width:0px;
end

package_segmenter --> microservice_analyzer
package_fetcher   --> microservice_analyzer
package_optimizer --> microservice_analyzer
package_fetcher   --> package_segmenter
package_fetcher   --> package_curiosity

microservice_analyzer --- microservice_comparer
linkStyle 9 stroke-width:0px;

classDef default fill:#333333,color:white,stroke-width:2px,stroke:#AAAAAA;
classDef clsBaseModule fill:#4D644D;
classDef clsIntegrationModule fill:#644D51,font-size:13px,color:white;
classDef clsMicroservice fill:#514D64,font-size:16px;

class package_optimizer,package_curiosity,package_segmenter,package_fetcher clsBaseModule;
class microservice_analyzer,microservice_comparer clsIntegrationModule;
class microservice_clusterComments,microservice_mapToDocument clsMicroservice;
class microservice_expandQuery,microservice_lookForReferenced,microservice_lookForSimilar,microservice_saveRelevanceFeedback clsMicroservice;
Loading

Available modules

  1. Base modules:
    • Ulysses Fetcher: fetch pretrained models stored in cloud services;
    • Ulysses Optimizer: quantization and optimization methods pretrained model;
    • Ulysses Segmenter: semantic segmentation of legal documents into legal items;
    • Ulysses Curiosity: probe and validate pretrained models;
  2. Integration modules:
    • Ulysses Argumentation Analyzer:
      • (microservice) clusterComments;
      • (microservice) mapToDocument.
    • Ulysses Document Comparer:
      • (microservice) look-for-similar;
      • (microservice) look-for-referenced;
      • (microservice) expand-query;
      • (microservice) save-relevance-feedback.

Publication code

Additional research code meant for scientific publication is available at Ulysses (publicações).

Popular repositories Loading

  1. ulysses-segmenter ulysses-segmenter Public

    Pretrained segmenter models for Portuguese legislative text.

    Python 12 4

  2. ulysses-ner-br ulysses-ner-br Public

    PT-br Legal Named Entity Recognition (NER) resources

    5

  3. ulysses-tesemo ulysses-tesemo Public

    Ulysses Tesemõ corpus: Brazilian corpus for judicial, legislative, and governmental textual data, scraped from more than 150 sources.

    5 1

  4. ulysses-curiosity ulysses-curiosity Public

    Framework for probing tasks.

    Python 3

  5. ulysses-fetcher ulysses-fetcher Public

    Fetch pretrained models for Ulysses project.

    Python 1

  6. Ulysses-RFCorpus Ulysses-RFCorpus Public

    Relevance Feedback dataset for Legal Information Retrieval.

    1

Repositories

Showing 10 of 11 repositories
  • ulysses-ner-br Public

    PT-br Legal Named Entity Recognition (NER) resources

    ulysses-camara/ulysses-ner-br’s past year of commit activity
    5 0 0 0 Updated Nov 13, 2024
  • ulysses-segmenter Public

    Pretrained segmenter models for Portuguese legislative text.

    ulysses-camara/ulysses-segmenter’s past year of commit activity
    Python 12 MIT 4 0 0 Updated Oct 13, 2024
  • .github Public
    ulysses-camara/.github’s past year of commit activity
    0 MIT 0 0 0 Updated Sep 26, 2024
  • Ulysses-RFCorpus Public

    Relevance Feedback dataset for Legal Information Retrieval.

    ulysses-camara/Ulysses-RFCorpus’s past year of commit activity
    1 0 0 0 Updated Aug 19, 2024
  • ulysses-tesemo Public

    Ulysses Tesemõ corpus: Brazilian corpus for judicial, legislative, and governmental textual data, scraped from more than 150 sources.

    ulysses-camara/ulysses-tesemo’s past year of commit activity
    5 1 0 0 Updated Jul 18, 2024
  • ulysses-fetcher Public

    Fetch pretrained models for Ulysses project.

    ulysses-camara/ulysses-fetcher’s past year of commit activity
    Python 1 MIT 0 0 0 Updated May 6, 2024
  • ulysses-camara/ulysses-amendment-comparer’s past year of commit activity
    Python 0 1 0 0 Updated May 1, 2024
  • ulysses-camara/ulysses-document-comparer’s past year of commit activity
    Python 0 MIT 2 0 3 Updated Apr 25, 2024
  • ulysses-optimizer Public

    Optimization and quantization methods for pretrained Ulysses models.

    ulysses-camara/ulysses-optimizer’s past year of commit activity
    Python 0 MIT 0 0 0 Updated Feb 9, 2024
  • ulysses-senteval Public

    Benchmark for assessing contextual-semantic sentence models in Brazilian legal domain.

    ulysses-camara/ulysses-senteval’s past year of commit activity
    Python 1 MIT 1 0 0 Updated Feb 6, 2024

People

This organization has no public members. You must be a member to see who’s a part of this organization.

Top languages

Loading…

Most used topics

Loading…