-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
170 lines (157 loc) · 7.32 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import time
import random
import argparse
import datetime
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
import pandas as pd
import paddle
import paddle.nn.functional as F
from paddle.io import DataLoader
import datasets.mvtec as mvtec
from model import get_model
from utils import str2bool
from eval import eval
#CLASS_NAMES = ['bottle', 'cable', 'capsule', 'carpet', 'grid',
# 'hazelnut', 'leather', 'metal_nut', 'pill', 'screw',
# 'tile', 'toothbrush', 'transistor', 'wood', 'zipper']
textures = ['carpet', 'grid', 'leather', 'tile', 'wood']
objects = ['bottle','cable', 'capsule','hazelnut', 'metal_nut',
'pill', 'screw', 'toothbrush', 'transistor', 'zipper']
CLASS_NAMES = textures+objects
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=str, default='D:/dataset/mvtec_anomaly_detection')
parser.add_argument('--save_path', type=str, default='./output')
parser.add_argument("--category", type=str , default='tile', help="category name for MvTec AD dataset")
parser.add_argument('--resize', type=int, default=256)
parser.add_argument('--crop_size', type=int, default=256)
parser.add_argument('--num_workers', type=int, default=0)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--test_batch_size', type=int, default=1)
parser.add_argument("--arch", type=str, default='resnet18', help="backbone model arch, one of [resnet18, resnet50, wide_resnet50_2]")
parser.add_argument("--k", type=int, default=100, help="feature used")
parser.add_argument("--method", type=str, default='sample',choices=['sample','h_sample', 'ortho', 'svd_ortho', 'gaussian', 'coreset'], help="projection method, one of [sample, ortho, svd_ortho, gaussian, coreset]")
parser.add_argument("--save_model", type=str2bool, default=True)
parser.add_argument("--save_pic", type=str2bool, default=True)
parser.add_argument("--inc", action='store_true', help="use incremental cov & mean")
parser.add_argument("--eval", action='store_true')
parser.add_argument('--eval_PRO', action='store_true')
parser.add_argument('--non_partial_AUC', action='store_true')
parser.add_argument('--eval_threthold_step', type=int, default=500, help="threthold_step when computing PRO Score")
parser.add_argument('--einsum', action='store_true')
parser.add_argument('--cpu', action='store_true', help="use cpu device")
parser.add_argument("--save_model_subfolder", type=str2bool, default=True)
parser.add_argument("--seed", type=int, default=521)
parser.add_argument("--load_projection", type=str, default=None)
parser.add_argument("--debug", action='store_true')
args, _ = parser.parse_known_args()
if args.debug:
import sys
from IPython.core import ultratb
sys.excepthook = ultratb.FormattedTB(mode='Verbose', call_pdb=1)
return args
@paddle.no_grad()
def main():
args = parse_args()
if args.save_model_subfolder: args.save_path += f"/{args.method}_{args.arch}_{args.k}"
if args.method =='coreset': args.test_batch_size=1
print(args)
random.seed(args.seed)
np.random.seed(args.seed)
paddle.seed(args.seed)
if args.cpu: paddle.device.set_device("cpu")
# build model
model = get_model(args.method)(arch=args.arch, pretrained=True, k=args.k, method=args.method)
if args.load_projection:
model.projection = paddle.to_tensor(np.load(args.load_projection))
else:
model.init_projection()
model.eval()
#print(model.projection)
result = []
assert args.category in mvtec.CLASS_NAMES + ['all', 'textures', 'objects']
if args.category == 'all':
class_names = mvtec.CLASS_NAMES
elif args.category == 'textures':
class_names = mvtec.textures
elif args.category == 'objects':
class_names = mvtec.objects
else:
class_names = [args.category]
csv_columns = ['category','Image_AUROC','Pixel_AUROC', 'PRO_score']
csv_name = os.path.join(args.save_path, '{}_seed{}.csv'.format(args.category, args.seed))
for i,class_name in enumerate(class_names):
print("Training model {}/{} for {}".format(i+1, len(class_names), class_name))
# build datasets
train_dataset = mvtec.MVTecDataset(args.data_path, class_name=class_name, is_train=True, resize=args.resize, cropsize=args.crop_size)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers)
train(args, model, train_dataloader, class_name)
if args.eval:
test_dataset = mvtec.MVTecDataset(args.data_path, class_name=class_name, is_train=False, resize=args.resize, cropsize=args.crop_size)
test_dataloader = DataLoader(test_dataset, batch_size=args.test_batch_size, num_workers=args.num_workers)
result.append([class_name, *eval(args, model, test_dataloader, class_name)])
if args.category in ['all', 'textures', 'objects']:
pd.DataFrame(result, columns=csv_columns).set_index('category').to_csv(csv_name)
model.reset_stats()
if args.eval:
result = pd.DataFrame(result, columns=csv_columns).set_index('category')
if not args.eval_PRO: del result['PRO_score']
if args.category in ['all', 'textures', 'objects']:
result.loc['mean'] = result.mean(numeric_only=True)
print(result)
print("Evaluation result saved at{}:".format(csv_name))
result.to_csv(csv_name)
@paddle.no_grad()
def train(args, model, train_dataloader, class_name):
epoch_begin = time.time()
#paddle.device.set_device("gpu")
# extract train set features
if args.inc:
c = model.k #args.k
h = w = args.crop_size//4
N = 0 # sample num
for (x,_) in tqdm(train_dataloader, '| feature extraction | train | %s |' % class_name):
# model prediction
out = model(x)
out = model.project(out, True) #hwbc
model.compute_stats_incremental(out)
N += x.shape[0]
del out, x
else:
outs = []
for (x,_) in tqdm(train_dataloader, '| feature extraction | train | %s |' % class_name):
# model prediction
out = model(x)
out = model.project(out)
outs.append(out)
del out, x
outs = paddle.concat(outs, 0)
#paddle.device.set_device("cpu")
if args.inc:
model.compute_inv_incremental(N)
else:
if args.einsum:
model.compute_stats_einsum(outs)
else:
model.compute_stats(outs)
del outs
t = time.time() - epoch_begin
print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + '\t' +
"Train ends, total {:.2f}s".format(t))
#print(list(model.named_buffers()))
if args.save_model:
print("Saving model...")
save_name = os.path.join(args.save_path, '{}.pdparams'.format(class_name))
dir_name = os.path.dirname(save_name)
os.makedirs(dir_name, exist_ok=True)
state_dict = {
"params":model.model.state_dict(),
"stats":model._buffers,
}
paddle.save(state_dict, save_name)
print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + '\t' + "Save model in {}".format(str(save_name)))
if __name__ == '__main__':
main()