diff --git a/DESCRIPTION b/DESCRIPTION
new file mode 100644
index 0000000..a9c4e6a
--- /dev/null
+++ b/DESCRIPTION
@@ -0,0 +1,38 @@
+Package: sovereign
+Title: State-Dependant Empirical Analysis
+Version: 0.0.0.9000
+Authors@R:
+ person(given = "Tyler",
+ family = "Pike",
+ role = c("aut", "cre"),
+ email = "tjpike7@gmail.com")
+Description: A set of tools for state-dependant empirical analysis
+ through both VAR- and local projection-based state-dependant forecasts,
+ impulse response functions, and forecast error variance decomposition.
+License: GPL-3
+Encoding: UTF-8
+LazyData: true
+Roxygen: list(markdown = TRUE)
+RoxygenNote: 7.1.1
+Imports:
+ broom,
+ dplyr,
+ ggplot2,
+ gridExtra,
+ lmtest,
+ lubridate,
+ magrittr,
+ purrr,
+ randomForest,
+ sandwich,
+ stats,
+ tidyr,
+ xts,
+ zoo
+Suggests:
+ testthat,
+ knitr,
+ rmarkdown,
+ quantmod,
+ covr
+VignetteBuilder: knitr
diff --git a/LICENSE.md b/LICENSE.md
new file mode 100644
index 0000000..e136d50
--- /dev/null
+++ b/LICENSE.md
@@ -0,0 +1,595 @@
+GNU General Public License
+==========================
+
+_Version 3, 29 June 2007_
+_Copyright © 2007 Free Software Foundation, Inc. <>_
+
+Everyone is permitted to copy and distribute verbatim copies of this license
+document, but changing it is not allowed.
+
+## Preamble
+
+The GNU General Public License is a free, copyleft license for software and other
+kinds of works.
+
+The licenses for most software and other practical works are designed to take away
+your freedom to share and change the works. By contrast, the GNU General Public
+License is intended to guarantee your freedom to share and change all versions of a
+program--to make sure it remains free software for all its users. We, the Free
+Software Foundation, use the GNU General Public License for most of our software; it
+applies also to any other work released this way by its authors. You can apply it to
+your programs, too.
+
+When we speak of free software, we are referring to freedom, not price. Our General
+Public Licenses are designed to make sure that you have the freedom to distribute
+copies of free software (and charge for them if you wish), that you receive source
+code or can get it if you want it, that you can change the software or use pieces of
+it in new free programs, and that you know you can do these things.
+
+To protect your rights, we need to prevent others from denying you these rights or
+asking you to surrender the rights. Therefore, you have certain responsibilities if
+you distribute copies of the software, or if you modify it: responsibilities to
+respect the freedom of others.
+
+For example, if you distribute copies of such a program, whether gratis or for a fee,
+you must pass on to the recipients the same freedoms that you received. You must make
+sure that they, too, receive or can get the source code. And you must show them these
+terms so they know their rights.
+
+Developers that use the GNU GPL protect your rights with two steps: **(1)** assert
+copyright on the software, and **(2)** offer you this License giving you legal permission
+to copy, distribute and/or modify it.
+
+For the developers' and authors' protection, the GPL clearly explains that there is
+no warranty for this free software. For both users' and authors' sake, the GPL
+requires that modified versions be marked as changed, so that their problems will not
+be attributed erroneously to authors of previous versions.
+
+Some devices are designed to deny users access to install or run modified versions of
+the software inside them, although the manufacturer can do so. This is fundamentally
+incompatible with the aim of protecting users' freedom to change the software. The
+systematic pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable. Therefore, we have designed
+this version of the GPL to prohibit the practice for those products. If such problems
+arise substantially in other domains, we stand ready to extend this provision to
+those domains in future versions of the GPL, as needed to protect the freedom of
+users.
+
+Finally, every program is threatened constantly by software patents. States should
+not allow patents to restrict development and use of software on general-purpose
+computers, but in those that do, we wish to avoid the special danger that patents
+applied to a free program could make it effectively proprietary. To prevent this, the
+GPL assures that patents cannot be used to render the program non-free.
+
+The precise terms and conditions for copying, distribution and modification follow.
+
+## TERMS AND CONDITIONS
+
+### 0. Definitions
+
+“This License” refers to version 3 of the GNU General Public License.
+
+“Copyright” also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+“The Program” refers to any copyrightable work licensed under this
+License. Each licensee is addressed as “you”. “Licensees” and
+“recipients” may be individuals or organizations.
+
+To “modify” a work means to copy from or adapt all or part of the work in
+a fashion requiring copyright permission, other than the making of an exact copy. The
+resulting work is called a “modified version” of the earlier work or a
+work “based on” the earlier work.
+
+A “covered work” means either the unmodified Program or a work based on
+the Program.
+
+To “propagate” a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for infringement under
+applicable copyright law, except executing it on a computer or modifying a private
+copy. Propagation includes copying, distribution (with or without modification),
+making available to the public, and in some countries other activities as well.
+
+To “convey” a work means any kind of propagation that enables other
+parties to make or receive copies. Mere interaction with a user through a computer
+network, with no transfer of a copy, is not conveying.
+
+An interactive user interface displays “Appropriate Legal Notices” to the
+extent that it includes a convenient and prominently visible feature that **(1)**
+displays an appropriate copyright notice, and **(2)** tells the user that there is no
+warranty for the work (except to the extent that warranties are provided), that
+licensees may convey the work under this License, and how to view a copy of this
+License. If the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+### 1. Source Code
+
+The “source code” for a work means the preferred form of the work for
+making modifications to it. “Object code” means any non-source form of a
+work.
+
+A “Standard Interface” means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of interfaces
+specified for a particular programming language, one that is widely used among
+developers working in that language.
+
+The “System Libraries” of an executable work include anything, other than
+the work as a whole, that **(a)** is included in the normal form of packaging a Major
+Component, but which is not part of that Major Component, and **(b)** serves only to
+enable use of the work with that Major Component, or to implement a Standard
+Interface for which an implementation is available to the public in source code form.
+A “Major Component”, in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system (if any) on which
+the executable work runs, or a compiler used to produce the work, or an object code
+interpreter used to run it.
+
+The “Corresponding Source” for a work in object code form means all the
+source code needed to generate, install, and (for an executable work) run the object
+code and to modify the work, including scripts to control those activities. However,
+it does not include the work's System Libraries, or general-purpose tools or
+generally available free programs which are used unmodified in performing those
+activities but which are not part of the work. For example, Corresponding Source
+includes interface definition files associated with source files for the work, and
+the source code for shared libraries and dynamically linked subprograms that the work
+is specifically designed to require, such as by intimate data communication or
+control flow between those subprograms and other parts of the work.
+
+The Corresponding Source need not include anything that users can regenerate
+automatically from other parts of the Corresponding Source.
+
+The Corresponding Source for a work in source code form is that same work.
+
+### 2. Basic Permissions
+
+All rights granted under this License are granted for the term of copyright on the
+Program, and are irrevocable provided the stated conditions are met. This License
+explicitly affirms your unlimited permission to run the unmodified Program. The
+output from running a covered work is covered by this License only if the output,
+given its content, constitutes a covered work. This License acknowledges your rights
+of fair use or other equivalent, as provided by copyright law.
+
+You may make, run and propagate covered works that you do not convey, without
+conditions so long as your license otherwise remains in force. You may convey covered
+works to others for the sole purpose of having them make modifications exclusively
+for you, or provide you with facilities for running those works, provided that you
+comply with the terms of this License in conveying all material for which you do not
+control copyright. Those thus making or running the covered works for you must do so
+exclusively on your behalf, under your direction and control, on terms that prohibit
+them from making any copies of your copyrighted material outside their relationship
+with you.
+
+Conveying under any other circumstances is permitted solely under the conditions
+stated below. Sublicensing is not allowed; section 10 makes it unnecessary.
+
+### 3. Protecting Users' Legal Rights From Anti-Circumvention Law
+
+No covered work shall be deemed part of an effective technological measure under any
+applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
+adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
+of such measures.
+
+When you convey a covered work, you waive any legal power to forbid circumvention of
+technological measures to the extent such circumvention is effected by exercising
+rights under this License with respect to the covered work, and you disclaim any
+intention to limit operation or modification of the work as a means of enforcing,
+against the work's users, your or third parties' legal rights to forbid circumvention
+of technological measures.
+
+### 4. Conveying Verbatim Copies
+
+You may convey verbatim copies of the Program's source code as you receive it, in any
+medium, provided that you conspicuously and appropriately publish on each copy an
+appropriate copyright notice; keep intact all notices stating that this License and
+any non-permissive terms added in accord with section 7 apply to the code; keep
+intact all notices of the absence of any warranty; and give all recipients a copy of
+this License along with the Program.
+
+You may charge any price or no price for each copy that you convey, and you may offer
+support or warranty protection for a fee.
+
+### 5. Conveying Modified Source Versions
+
+You may convey a work based on the Program, or the modifications to produce it from
+the Program, in the form of source code under the terms of section 4, provided that
+you also meet all of these conditions:
+
+* **a)** The work must carry prominent notices stating that you modified it, and giving a
+relevant date.
+* **b)** The work must carry prominent notices stating that it is released under this
+License and any conditions added under section 7. This requirement modifies the
+requirement in section 4 to “keep intact all notices”.
+* **c)** You must license the entire work, as a whole, under this License to anyone who
+comes into possession of a copy. This License will therefore apply, along with any
+applicable section 7 additional terms, to the whole of the work, and all its parts,
+regardless of how they are packaged. This License gives no permission to license the
+work in any other way, but it does not invalidate such permission if you have
+separately received it.
+* **d)** If the work has interactive user interfaces, each must display Appropriate Legal
+Notices; however, if the Program has interactive interfaces that do not display
+Appropriate Legal Notices, your work need not make them do so.
+
+A compilation of a covered work with other separate and independent works, which are
+not by their nature extensions of the covered work, and which are not combined with
+it such as to form a larger program, in or on a volume of a storage or distribution
+medium, is called an “aggregate” if the compilation and its resulting
+copyright are not used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit. Inclusion of a covered work in an aggregate
+does not cause this License to apply to the other parts of the aggregate.
+
+### 6. Conveying Non-Source Forms
+
+You may convey a covered work in object code form under the terms of sections 4 and
+5, provided that you also convey the machine-readable Corresponding Source under the
+terms of this License, in one of these ways:
+
+* **a)** Convey the object code in, or embodied in, a physical product (including a
+physical distribution medium), accompanied by the Corresponding Source fixed on a
+durable physical medium customarily used for software interchange.
+* **b)** Convey the object code in, or embodied in, a physical product (including a
+physical distribution medium), accompanied by a written offer, valid for at least
+three years and valid for as long as you offer spare parts or customer support for
+that product model, to give anyone who possesses the object code either **(1)** a copy of
+the Corresponding Source for all the software in the product that is covered by this
+License, on a durable physical medium customarily used for software interchange, for
+a price no more than your reasonable cost of physically performing this conveying of
+source, or **(2)** access to copy the Corresponding Source from a network server at no
+charge.
+* **c)** Convey individual copies of the object code with a copy of the written offer to
+provide the Corresponding Source. This alternative is allowed only occasionally and
+noncommercially, and only if you received the object code with such an offer, in
+accord with subsection 6b.
+* **d)** Convey the object code by offering access from a designated place (gratis or for
+a charge), and offer equivalent access to the Corresponding Source in the same way
+through the same place at no further charge. You need not require recipients to copy
+the Corresponding Source along with the object code. If the place to copy the object
+code is a network server, the Corresponding Source may be on a different server
+(operated by you or a third party) that supports equivalent copying facilities,
+provided you maintain clear directions next to the object code saying where to find
+the Corresponding Source. Regardless of what server hosts the Corresponding Source,
+you remain obligated to ensure that it is available for as long as needed to satisfy
+these requirements.
+* **e)** Convey the object code using peer-to-peer transmission, provided you inform
+other peers where the object code and Corresponding Source of the work are being
+offered to the general public at no charge under subsection 6d.
+
+A separable portion of the object code, whose source code is excluded from the
+Corresponding Source as a System Library, need not be included in conveying the
+object code work.
+
+A “User Product” is either **(1)** a “consumer product”, which
+means any tangible personal property which is normally used for personal, family, or
+household purposes, or **(2)** anything designed or sold for incorporation into a
+dwelling. In determining whether a product is a consumer product, doubtful cases
+shall be resolved in favor of coverage. For a particular product received by a
+particular user, “normally used” refers to a typical or common use of
+that class of product, regardless of the status of the particular user or of the way
+in which the particular user actually uses, or expects or is expected to use, the
+product. A product is a consumer product regardless of whether the product has
+substantial commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+“Installation Information” for a User Product means any methods,
+procedures, authorization keys, or other information required to install and execute
+modified versions of a covered work in that User Product from a modified version of
+its Corresponding Source. The information must suffice to ensure that the continued
+functioning of the modified object code is in no case prevented or interfered with
+solely because modification has been made.
+
+If you convey an object code work under this section in, or with, or specifically for
+use in, a User Product, and the conveying occurs as part of a transaction in which
+the right of possession and use of the User Product is transferred to the recipient
+in perpetuity or for a fixed term (regardless of how the transaction is
+characterized), the Corresponding Source conveyed under this section must be
+accompanied by the Installation Information. But this requirement does not apply if
+neither you nor any third party retains the ability to install modified object code
+on the User Product (for example, the work has been installed in ROM).
+
+The requirement to provide Installation Information does not include a requirement to
+continue to provide support service, warranty, or updates for a work that has been
+modified or installed by the recipient, or for the User Product in which it has been
+modified or installed. Access to a network may be denied when the modification itself
+materially and adversely affects the operation of the network or violates the rules
+and protocols for communication across the network.
+
+Corresponding Source conveyed, and Installation Information provided, in accord with
+this section must be in a format that is publicly documented (and with an
+implementation available to the public in source code form), and must require no
+special password or key for unpacking, reading or copying.
+
+### 7. Additional Terms
+
+“Additional permissions” are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions. Additional
+permissions that are applicable to the entire Program shall be treated as though they
+were included in this License, to the extent that they are valid under applicable
+law. If additional permissions apply only to part of the Program, that part may be
+used separately under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+When you convey a copy of a covered work, you may at your option remove any
+additional permissions from that copy, or from any part of it. (Additional
+permissions may be written to require their own removal in certain cases when you
+modify the work.) You may place additional permissions on material, added by you to a
+covered work, for which you have or can give appropriate copyright permission.
+
+Notwithstanding any other provision of this License, for material you add to a
+covered work, you may (if authorized by the copyright holders of that material)
+supplement the terms of this License with terms:
+
+* **a)** Disclaiming warranty or limiting liability differently from the terms of
+sections 15 and 16 of this License; or
+* **b)** Requiring preservation of specified reasonable legal notices or author
+attributions in that material or in the Appropriate Legal Notices displayed by works
+containing it; or
+* **c)** Prohibiting misrepresentation of the origin of that material, or requiring that
+modified versions of such material be marked in reasonable ways as different from the
+original version; or
+* **d)** Limiting the use for publicity purposes of names of licensors or authors of the
+material; or
+* **e)** Declining to grant rights under trademark law for use of some trade names,
+trademarks, or service marks; or
+* **f)** Requiring indemnification of licensors and authors of that material by anyone
+who conveys the material (or modified versions of it) with contractual assumptions of
+liability to the recipient, for any liability that these contractual assumptions
+directly impose on those licensors and authors.
+
+All other non-permissive additional terms are considered “further
+restrictions” within the meaning of section 10. If the Program as you received
+it, or any part of it, contains a notice stating that it is governed by this License
+along with a term that is a further restriction, you may remove that term. If a
+license document contains a further restriction but permits relicensing or conveying
+under this License, you may add to a covered work material governed by the terms of
+that license document, provided that the further restriction does not survive such
+relicensing or conveying.
+
+If you add terms to a covered work in accord with this section, you must place, in
+the relevant source files, a statement of the additional terms that apply to those
+files, or a notice indicating where to find the applicable terms.
+
+Additional terms, permissive or non-permissive, may be stated in the form of a
+separately written license, or stated as exceptions; the above requirements apply
+either way.
+
+### 8. Termination
+
+You may not propagate or modify a covered work except as expressly provided under
+this License. Any attempt otherwise to propagate or modify it is void, and will
+automatically terminate your rights under this License (including any patent licenses
+granted under the third paragraph of section 11).
+
+However, if you cease all violation of this License, then your license from a
+particular copyright holder is reinstated **(a)** provisionally, unless and until the
+copyright holder explicitly and finally terminates your license, and **(b)** permanently,
+if the copyright holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+Moreover, your license from a particular copyright holder is reinstated permanently
+if the copyright holder notifies you of the violation by some reasonable means, this
+is the first time you have received notice of violation of this License (for any
+work) from that copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+Termination of your rights under this section does not terminate the licenses of
+parties who have received copies or rights from you under this License. If your
+rights have been terminated and not permanently reinstated, you do not qualify to
+receive new licenses for the same material under section 10.
+
+### 9. Acceptance Not Required for Having Copies
+
+You are not required to accept this License in order to receive or run a copy of the
+Program. Ancillary propagation of a covered work occurring solely as a consequence of
+using peer-to-peer transmission to receive a copy likewise does not require
+acceptance. However, nothing other than this License grants you permission to
+propagate or modify any covered work. These actions infringe copyright if you do not
+accept this License. Therefore, by modifying or propagating a covered work, you
+indicate your acceptance of this License to do so.
+
+### 10. Automatic Licensing of Downstream Recipients
+
+Each time you convey a covered work, the recipient automatically receives a license
+from the original licensors, to run, modify and propagate that work, subject to this
+License. You are not responsible for enforcing compliance by third parties with this
+License.
+
+An “entity transaction” is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an organization, or
+merging organizations. If propagation of a covered work results from an entity
+transaction, each party to that transaction who receives a copy of the work also
+receives whatever licenses to the work the party's predecessor in interest had or
+could give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if the predecessor
+has it or can get it with reasonable efforts.
+
+You may not impose any further restrictions on the exercise of the rights granted or
+affirmed under this License. For example, you may not impose a license fee, royalty,
+or other charge for exercise of rights granted under this License, and you may not
+initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging
+that any patent claim is infringed by making, using, selling, offering for sale, or
+importing the Program or any portion of it.
+
+### 11. Patents
+
+A “contributor” is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based. The work thus
+licensed is called the contributor's “contributor version”.
+
+A contributor's “essential patent claims” are all patent claims owned or
+controlled by the contributor, whether already acquired or hereafter acquired, that
+would be infringed by some manner, permitted by this License, of making, using, or
+selling its contributor version, but do not include claims that would be infringed
+only as a consequence of further modification of the contributor version. For
+purposes of this definition, “control” includes the right to grant patent
+sublicenses in a manner consistent with the requirements of this License.
+
+Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
+under the contributor's essential patent claims, to make, use, sell, offer for sale,
+import and otherwise run, modify and propagate the contents of its contributor
+version.
+
+In the following three paragraphs, a “patent license” is any express
+agreement or commitment, however denominated, not to enforce a patent (such as an
+express permission to practice a patent or covenant not to sue for patent
+infringement). To “grant” such a patent license to a party means to make
+such an agreement or commitment not to enforce a patent against the party.
+
+If you convey a covered work, knowingly relying on a patent license, and the
+Corresponding Source of the work is not available for anyone to copy, free of charge
+and under the terms of this License, through a publicly available network server or
+other readily accessible means, then you must either **(1)** cause the Corresponding
+Source to be so available, or **(2)** arrange to deprive yourself of the benefit of the
+patent license for this particular work, or **(3)** arrange, in a manner consistent with
+the requirements of this License, to extend the patent license to downstream
+recipients. “Knowingly relying” means you have actual knowledge that, but
+for the patent license, your conveying the covered work in a country, or your
+recipient's use of the covered work in a country, would infringe one or more
+identifiable patents in that country that you have reason to believe are valid.
+
+If, pursuant to or in connection with a single transaction or arrangement, you
+convey, or propagate by procuring conveyance of, a covered work, and grant a patent
+license to some of the parties receiving the covered work authorizing them to use,
+propagate, modify or convey a specific copy of the covered work, then the patent
+license you grant is automatically extended to all recipients of the covered work and
+works based on it.
+
+A patent license is “discriminatory” if it does not include within the
+scope of its coverage, prohibits the exercise of, or is conditioned on the
+non-exercise of one or more of the rights that are specifically granted under this
+License. You may not convey a covered work if you are a party to an arrangement with
+a third party that is in the business of distributing software, under which you make
+payment to the third party based on the extent of your activity of conveying the
+work, and under which the third party grants, to any of the parties who would receive
+the covered work from you, a discriminatory patent license **(a)** in connection with
+copies of the covered work conveyed by you (or copies made from those copies), or **(b)**
+primarily for and in connection with specific products or compilations that contain
+the covered work, unless you entered into that arrangement, or that patent license
+was granted, prior to 28 March 2007.
+
+Nothing in this License shall be construed as excluding or limiting any implied
+license or other defenses to infringement that may otherwise be available to you
+under applicable patent law.
+
+### 12. No Surrender of Others' Freedom
+
+If conditions are imposed on you (whether by court order, agreement or otherwise)
+that contradict the conditions of this License, they do not excuse you from the
+conditions of this License. If you cannot convey a covered work so as to satisfy
+simultaneously your obligations under this License and any other pertinent
+obligations, then as a consequence you may not convey it at all. For example, if you
+agree to terms that obligate you to collect a royalty for further conveying from
+those to whom you convey the Program, the only way you could satisfy both those terms
+and this License would be to refrain entirely from conveying the Program.
+
+### 13. Use with the GNU Affero General Public License
+
+Notwithstanding any other provision of this License, you have permission to link or
+combine any covered work with a work licensed under version 3 of the GNU Affero
+General Public License into a single combined work, and to convey the resulting work.
+The terms of this License will continue to apply to the part which is the covered
+work, but the special requirements of the GNU Affero General Public License, section
+13, concerning interaction through a network will apply to the combination as such.
+
+### 14. Revised Versions of this License
+
+The Free Software Foundation may publish revised and/or new versions of the GNU
+General Public License from time to time. Such new versions will be similar in spirit
+to the present version, but may differ in detail to address new problems or concerns.
+
+Each version is given a distinguishing version number. If the Program specifies that
+a certain numbered version of the GNU General Public License “or any later
+version” applies to it, you have the option of following the terms and
+conditions either of that numbered version or of any later version published by the
+Free Software Foundation. If the Program does not specify a version number of the GNU
+General Public License, you may choose any version ever published by the Free
+Software Foundation.
+
+If the Program specifies that a proxy can decide which future versions of the GNU
+General Public License can be used, that proxy's public statement of acceptance of a
+version permanently authorizes you to choose that version for the Program.
+
+Later license versions may give you additional or different permissions. However, no
+additional obligations are imposed on any author or copyright holder as a result of
+your choosing to follow a later version.
+
+### 15. Disclaimer of Warranty
+
+THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
+EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
+PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
+EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
+QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
+DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+### 16. Limitation of Liability
+
+IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
+COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS
+PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
+INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
+PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
+OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
+WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGES.
+
+### 17. Interpretation of Sections 15 and 16
+
+If the disclaimer of warranty and limitation of liability provided above cannot be
+given local legal effect according to their terms, reviewing courts shall apply local
+law that most closely approximates an absolute waiver of all civil liability in
+connection with the Program, unless a warranty or assumption of liability accompanies
+a copy of the Program in return for a fee.
+
+_END OF TERMS AND CONDITIONS_
+
+## How to Apply These Terms to Your New Programs
+
+If you develop a new program, and you want it to be of the greatest possible use to
+the public, the best way to achieve this is to make it free software which everyone
+can redistribute and change under these terms.
+
+To do so, attach the following notices to the program. It is safest to attach them
+to the start of each source file to most effectively state the exclusion of warranty;
+and each file should have at least the “copyright” line and a pointer to
+where the full notice is found.
+
+
+ Copyright (C) 2021 Tyler J. Pike
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see .
+
+Also add information on how to contact you by electronic and paper mail.
+
+If the program does terminal interaction, make it output a short notice like this
+when it starts in an interactive mode:
+
+ sovereign Copyright (C) 2021 Tyler J. Pike
+ This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.
+ This is free software, and you are welcome to redistribute it
+ under certain conditions; type 'show c' for details.
+
+The hypothetical commands `show w` and `show c` should show the appropriate parts of
+the General Public License. Of course, your program's commands might be different;
+for a GUI interface, you would use an “about box”.
+
+You should also get your employer (if you work as a programmer) or school, if any, to
+sign a “copyright disclaimer” for the program, if necessary. For more
+information on this, and how to apply and follow the GNU GPL, see
+<>.
+
+The GNU General Public License does not permit incorporating your program into
+proprietary programs. If your program is a subroutine library, you may consider it
+more useful to permit linking proprietary applications with the library. If this is
+what you want to do, use the GNU Lesser General Public License instead of this
+License. But first, please read
+<>.
diff --git a/NAMESPACE b/NAMESPACE
new file mode 100644
index 0000000..3d375d5
--- /dev/null
+++ b/NAMESPACE
@@ -0,0 +1,16 @@
+# Generated by roxygen2: do not edit by hand
+
+export("%>%")
+export(VAR)
+export(individual_var_irf_plot)
+export(learn_regimes)
+export(lp_irf)
+export(lp_irf_chart)
+export(threshold_VAR)
+export(threshold_lp_irf)
+export(threshold_var_fevd)
+export(threshold_var_irf)
+export(var_fevd)
+export(var_irf)
+export(var_irf_plot)
+importFrom(magrittr,"%>%")
diff --git a/R/external_imports.R b/R/external_imports.R
new file mode 100644
index 0000000..e79f3d8
--- /dev/null
+++ b/R/external_imports.R
@@ -0,0 +1,11 @@
+#' Pipe operator
+#'
+#' See \code{magrittr::\link[magrittr:pipe]{\%>\%}} for details.
+#'
+#' @name %>%
+#' @rdname pipe
+#' @keywords internal
+#' @export
+#' @importFrom magrittr %>%
+#' @usage lhs \%>\% rhs
+NULL
diff --git a/R/helper.R b/R/helper.R
new file mode 100644
index 0000000..4562e65
--- /dev/null
+++ b/R/helper.R
@@ -0,0 +1,58 @@
+#------------------------------------------
+# Data helper functions
+# (copied from OOS package)
+#------------------------------------------
+# create n lags
+n.lag = function(
+ Data, # data.frame: data frame of variables to lag and a 'date' column
+ lags, # int: number of lags to create
+ variables = NULL # string: vector of variable names to lag, default is all non-date variables
+){
+
+ if(is.null(variables)){
+ variables = names(dplyr::select(Data, -contains('date')))
+ }
+
+ Data = c(0:lags) %>%
+ purrr::map(
+ .f = function(n){
+
+ if(n == 0){return(Data)}
+
+ X = Data %>%
+ dplyr::mutate_at(variables, dplyr::lag, n)
+
+ names(X)[names(X) != 'date'] = paste0(names(X)[names(X) != 'date'], '.l', n)
+
+ return(X)
+ }
+ ) %>%
+ purrr::reduce(dplyr::full_join, by = 'date')
+
+
+ return(Data)
+}
+
+# adjust forecast dates
+forecast_date = function(
+ forecast.date,
+ horizon,
+ freq
+){
+
+ date = forecast.date
+
+ if(freq == 'day'){
+ date = forecast.date + horizon
+ }else if(freq == 'week'){
+ lubridate::week(date) = lubridate::week(date) + horizon
+ }else if(freq == 'month'){
+ lubridate::month(date) = lubridate::month(date) + horizon
+ }else if(freq == 'quarter'){
+ lubridate::month(date) = lubridate::month(date) + horizon*3
+ }else if(freq == 'year'){
+ lubridate::year(date) = lubridate::year(date) + horizon
+ }
+
+ return(date)
+}
\ No newline at end of file
diff --git a/R/local_projections.R b/R/local_projections.R
new file mode 100644
index 0000000..156cc5a
--- /dev/null
+++ b/R/local_projections.R
@@ -0,0 +1,242 @@
+
+#-------------------------------------------------
+# Function to produce IRF
+#-------------------------------------------------
+#' Estimate single-regime local projection IRFs
+#'
+#' @param data data.frame, matrix, ts, xts, zoo: Endogenous regressors
+#' @param shock string: variable to shock
+#' @param target string: variable betas to collect
+#' @param horizons int: horizons to forecast out to
+#' @param lags int: lags to include in regressions
+#'
+#' @return data.frame
+#'
+#' @examples
+#' \dontrun{
+#' lp_irf(
+#' data = Data,
+#' shock = 'x',
+#' target = 'y',
+#' horizons = 20,
+#' lags = 2)
+#' }
+#'
+#' @export
+
+lp_irf = function(
+ data, # dataframe of covariate
+ shock, # string denoting variable to shock
+ target, # string denoting variable betas to collect
+ horizons, # horizons to forecast out to
+ lags # lags to include in regressions
+){
+
+ # function warnings
+ if(!is.matrix(data) & !is.data.frame(data)){
+ errorCondition('data must be a matrix or data.frame')
+ }
+ if(!is.numeric(lags) | lags %% 1 != 0){
+ errorCondition('lags must be an integer')
+ }
+ if(!is.numeric(horizons) | horizons %% 1 != 0 | horizons <= 0){
+ errorCondition('horizons must be a positive integer')
+ }
+
+ # cast as data frame if ts, xts, or zoo object
+ if(is.ts(data) | xts::is.xts(data) | zoo::is.zoo(data)){
+ data = data.frame(date = zoo::index(date), data)
+ }
+
+ # first create the proper table and variable names
+ data = data %>% dplyr::rename(target = target)
+ data = as.data.frame(data)
+ data = na.omit(data)
+
+ ####################################################
+ # generate the lags and leads
+ ####################################################
+ date = data$date
+ data = data %>% dplyr::select(-date)
+ final = data
+ # generate lags
+ for(i in 1:lags){
+ temp = as.data.frame(lapply(data, MARGIN = 2, FUN = lag, n=i))
+ colnames(temp) = paste0(colnames(temp),'.lag',i)
+ final = cbind(temp,final)
+ }
+ # generate leads
+ # not the most efficient but it works nonetheless
+ temp = matrix(ncol = horizons, nrow = length(data$target))
+ for(i in 1:horizons){
+ temp[,i] = dplyr::lead(data$target, n = i)
+ }
+ colnames(temp) = paste0('target.l',c(1:horizons))
+ leads = colnames(temp) #used later
+ final = cbind(temp,final)
+ final$date = date
+ data = final
+
+
+ ####################################################
+ # perform local impulse response regressions
+ ####################################################
+ # strip out the non-explanetory variables
+ explanetory = data %>% dplyr::select(-date, -leads)
+
+ # strip out target variables
+ targets = data %>% dplyr::select(leads)
+
+ # generate the coef and sd for plotting
+ # create storage matrix
+ irfData = matrix(ncol = 3, nrow = horizons)
+ colnames(irfData) = c('Horizon','Coef','Std.dev')
+ irfData[,1] = c(1:horizons)
+ # calculate regressions
+ for(i in 1:horizons){
+ # generate the projections
+ directProjection = stats::lm(targets[,i] ~., data = explanetory)
+ out = lmtest::coeftest(directProjection,vcov = sandwich::NeweyWest(directProjection,prewhite=FALSE))
+ shockIndex = match(shock,rownames(out))
+ # store the data
+ irfData[i,2] <- out[shockIndex,1]
+ irfData[i,3] <- out[shockIndex,2]
+ }
+
+ ####################################################
+ # finalize data and return
+ ####################################################
+ irfData = as.data.frame(irfData)
+ # generate and store upper/lower bound
+ irfData$lowerBound <- irfData$Coef - 1.64*irfData$Std
+ irfData$upperBound <- irfData$Coef + 1.64*irfData$Std
+ return(irfData)
+
+}
+
+#-------------------------------------------------
+# Function to produce threshold IRF
+# calculates responses in n different regimes
+#-------------------------------------------------
+#' Estimate multi-regime local projection IRFs
+#'
+#' @param data data.frame, matrix, ts, xts, zoo: Endogenous regressors
+#' @param shock string: variable to shock
+#' @param target string: variable betas to collect
+#' @param thresholdVar data.frame of regime binaries
+#' @param horizons int: horizons to forecast out to
+#' @param lags int: lags to include in regressions
+#'
+#' @return data.frame
+#'
+#' @examples
+#' \dontrun{
+#' threshold_lp_irf(
+#' data = Data,
+#' shock = 'x',
+#' target = 'y',
+#' thresholdVar = Data.regime,
+#' horizons = 20,
+#' lags = 2)
+#' }
+#'
+#' @export
+
+threshold_lp_irf <- function(
+ data, # dataframe of covariate
+ shock, # string denoting variable to shock
+ target, # string denoting variable betas to collect
+ thresholdVar = NULL, # dataframe of regime binaries
+ horizons, # horizons to forecast out to
+ lags){ # lags to include in regressions
+
+ # first create the proper table and variable names
+ data = data %>% dplyr::rename(target = target)
+ data = as.data.frame(data)
+ data = na.omit(data)
+
+ # use only dates in both data and thresholdvar
+ data = data %>% dplyr::filter(date %in% thresholdVar$date)
+ thresholdVar = thresholdVar %>% dplyr::filter(date %in% data$date)
+
+ ####################################################
+ # generate the lags and leads
+ ####################################################
+ date = data$date
+ data = data %>% dplyr::select(-date)
+ final = data
+ # generate lags
+ for(i in 1:lags){
+ temp = as.data.frame(lapply(data, MARGIN = 2, FUN = lag, n=i))
+ colnames(temp) = paste0(colnames(temp),'.lag',i)
+ final = cbind(temp,final)
+ }
+ # generate leads
+ # not the most efficient but it works nonetheless
+ temp = matrix(ncol = horizons, nrow = length(data$target))
+ for(i in 1:horizons){
+ temp[,i] = dplyr::lead(data$target, n = i)
+ }
+ colnames(temp) = paste0('target.l',c(1:horizons))
+ leads = colnames(temp) #used later
+ final = cbind(temp,final)
+ final$date = date
+ data = final
+
+
+ ####################################################
+ # perform local impulse response regressions
+ ####################################################
+ # strip out the non-explanetory variables
+ explanetory = data %>% dplyr::select(-leads)
+
+ # strip out target variables
+ targets = data %>% dplyr::select(leads)
+
+ # create list to store results per threshold
+ outputList = list()
+
+ # iteratre through thresholds creating the IRs
+ for(t in 1:(ncol(thresholdVar)-1)){
+ # threshold variable
+ threshold = dplyr::select(thresholdVar, date, colnames(dplyr::select(thresholdVar, -date))[t]) %>% as.data.frame()
+ # carefully align s.t. matrix goes date, threshold, explanetory variables
+ X = dplyr::inner_join(threshold, explanetory, by = 'date')
+ # condition each row on regime (this appears to be the most robust way to do it)
+ X = data.frame(t(t(X[,3:ncol(X)] * X[,2])))
+
+ # generate the coef and sd for plotting
+ # create storage matrix
+ irfData = matrix(ncol = 3, nrow = horizons)
+ colnames(irfData) = c('Horizon','Coef','Std.dev')
+ irfData[,1] = c(1:horizons)
+ # calculate regressions
+ for(i in 1:horizons){
+ # generate the projections
+ directProjection = lm(targets[,i] ~., data = X)
+ out = lmtest::coeftest(directProjection,
+ vcov = sandwich::NeweyWest(directProjection,
+ lag = lags,
+ prewhite=FALSE))
+ shockIndex = match(shock,rownames(out))
+ # store the data
+ irfData[i,2] = out[shockIndex,1]
+ irfData[i,3] = out[shockIndex,2]
+ }
+
+ # finalize data and place in list
+ irfData = as.data.frame(irfData)
+ # generate and store upper/lower bound
+ irfData$lowerBound <- irfData$Coef - 1.64*irfData$Std
+ irfData$upperBound <- irfData$Coef + 1.64*irfData$Std
+
+ outputList[[t]] = irfData
+ }
+
+ ####################################################
+ # finalizing and returning output
+ ####################################################
+ names(outputList) = colnames(dplyr::select(thresholdVar, -date))
+ return(outputList)
+}
+
diff --git a/R/lp_irf_chart.R b/R/lp_irf_chart.R
new file mode 100644
index 0000000..5d3be47
--- /dev/null
+++ b/R/lp_irf_chart.R
@@ -0,0 +1,223 @@
+# File: direct_projection_chart_functions.R
+# Author: Tyler Pike
+# Section: MA-MFA
+# Date: 2/5/2020
+# Note(s): Houses functions to chart different types of Jorda (2005) style direct projections
+
+
+#-------------------------------------------------
+# Function to plot IRF
+#-------------------------------------------------
+#' Chart local projection IRFs
+#'
+#' @param plotData lp_irf output
+#' @param title string: chart title
+#' @param ylim int: y-axis limits, c(lower limit, upper limit)
+#' @param ystep int: step size inbetween y-axis tick marks
+#' @param ylab string: y-axis label
+#'
+#' @return plot
+#'
+#' @export
+
+lp_irf_chart = function(
+ plotData,
+ title,
+ ylim,
+ ystep,
+ ylab){
+
+ #create the functions and set options for creating the plots
+ opt = list(frame.lwd = 1.5,
+ line.lwd = c(1.7, 2),
+ label.cex = .75,
+ axis.cex = .65,
+ exhibit.title.cex = 1,
+ chart.title.line = 0.8,
+ chart.title.cex = 0.8,
+ foot.cex = .55,
+ legend.cex = .7,
+ line.types = rep(1,20),
+ legend.inset = .03,
+ yaxis.line = 0,
+ tick.length = 0.025,
+ yaxis.pos= .5,
+ colors = c("black","firebrick","SteelBlue", "DarkOliveGreen3", "goldenrod1", "blueviolet","magenta"),
+ key_adj_x=1,
+ key.cex=0.75,
+ paneltitleline=1.2,
+ paneltitlecex=.85,
+ tealbook.months = c("Jan.", "Feb.", "Mar.", "Apr.", "May", "Jun.", "July", "Aug.", "Sept.", "Oct.", "Nov.", "Dec."),
+ tealbook.quarters = c("Q1","Q2","Q3","Q4"))
+
+
+
+ forecasts <- function(dbpath=NULL,
+ keynames="",
+ chart_title="",
+ units="",
+ ymin,
+ ymax,
+ ystep,
+ xtickfreq,
+ frequency="",
+ horizshift=0,
+ vertshift=0,
+ note="",
+ footnote.placement=1,
+ key="topleft",
+ start.date=min(plot.data$date),
+ end.date=max(plot.data$date),
+ show.recent.months=FALSE,
+ n.months=0,
+ mult.conv.opt=1,
+ legcol=1,
+ lineatzero=FALSE,
+ dbtype="fame",
+ dataframe=NULL,
+ extra.xlim = 0,
+ colors=opt$colors,
+ interp=TRUE,
+ xmajortickfreq="year",
+ xminortickfreq="month",
+ xhighfreq="month",
+ xlowfreq="year",
+ hadj=opt$yaxis.pos,
+ lty1=opt$line.types[1],
+ lty2=opt$line.types[1],
+ two.printlastvalue=FALSE,
+ horizshift2=0,
+ vertshift2=0,
+ rmlastlabel=FALSE,
+ lowdateplacement=seq(place1, place2, by = xlowfreq),
+ xmin=ymin,
+ xmax=ymax,
+ xstep=ystep,
+ yaxis.shock.label="") {
+
+ xmin = 0
+ xmax = nrow(plotData)
+ xstep = 1
+
+
+ plot(plotData$Horizon, plotData$Coef,
+ type = 'l',
+ xlab = "",
+ ylab = "",
+ ylim = ylim,#c(ymin,ymax),
+ axes = FALSE,
+ col = "firebrick",
+ #lty = lty1,
+ #lwd = 1.7,
+ main = "",
+ bty = 'u',
+ yaxs = "i",
+ xaxs = "i",
+ xlim = c(.8,(nrow(plotData) + .2)),
+ pch = 16 #Consider 16, 19, 20
+ #cex=1.3
+ )
+
+
+ polygon(c(plotData$Horizon,rev(plotData$Horizon)),c(plotData$upperBound,rev(plotData$lowerBound)),col="lightblue",border=NA)
+
+ par(new=TRUE)
+ plot(plotData$Horizon, plotData$Coef,
+ type = 'l',
+ xlab = "",
+ ylab = "",
+ ylim = ylim,#c(ymin,ymax),
+ axes = FALSE,
+ col = "firebrick",
+ #lty = lty1,
+ #lwd = 1.7,
+ main = "",
+ bty = 'u',
+ yaxs = "i",
+ xaxs = "i",
+ xlim = c(.8,(nrow(plotData) + .2)),
+ pch = 16 #Consider 16, 19, 20
+ #cex=1.3
+ )
+
+
+ set_chart_parameters()
+ plotHookBox(lwd=opt$frame.lwd)
+
+ #y axis
+
+ axis(side = 4,
+ at = seq(ymin,ymax, by = ystep),
+ tck = opt$tick.length,
+ cex.axis = opt$axis.cex,
+ las = 2,
+ hadj=hadj)
+
+ axis(side = 2,
+ at = seq(ymin,ymax, by = ystep),
+ tck = opt$tick.length,
+ cex.axis = opt$axis.cex,
+ las = 2,
+ labels=FALSE)
+
+
+ axis(side = 1, at = seq(xmin,xmax,by = xstep),
+ tck = opt$tick.length+.015,
+ cex.axis = opt$axis.cex,
+ las = 0,
+ labels=FALSE,hadj=hadj)
+
+
+ axis(side = 1, at = seq(xmin,xmax,by = xstep),
+ tick=FALSE,
+ cex.axis = opt$axis.cex,
+ las = 0,
+ labels=TRUE,
+ hadj=hadj,
+ line = -1)
+
+
+ #title
+ #
+ # title(main = chart_title,
+ # cex.main = paneltitle.cex,
+ # line=.1,font.main=1,
+ # adj=0)
+
+ #labels
+ mtext(units, side = 3, line =0 , adj = 1, outer = FALSE, cex = opt$legend.cex)
+ mtext(chart_title, side = 3, line =0 , adj = 0, outer = FALSE, cex = paneltitle.cex)
+ mtext(frequency, side = 3, line =-.5 , adj = .08, outer = FALSE, cex = opt$legend.cex)
+ mtext(note, side = 1, line = footnote.placement, adj = 0, outer = FALSE, cex = opt$legend.cex)
+ mtext(yaxis.shock.label, side = 2, line = .5, adj = .5, outer = FALSE, cex = .7)
+ #mtext("Quarters ahead", side = 1, line = 1.5, adj = .5, outer = FALSE, cex = .7)
+
+
+ abline(h=0,lwd = .5)
+ #abline(v=0)
+
+ }
+
+ options(digits = 4)
+
+ #print the plot
+ forecasts(ymin= ylim[1],
+ ymax= ylim[2],
+ ystep= ystep,
+ xmin=1,
+ xmax=nrow(plotData),
+ xstep=1,
+ colors=c("firebrick","firebrick","firebrick"),
+ legcol=1,
+ keynames=c(""),
+ hadj=.5,
+ #note="Note: IRFs are calculated with zero short-run restrictions (cholesky) and represent the response to a one standard deviation \nshock to the Alternative FCI. The blue bands represent the 95 percent confidence interval around the point estimate in red.",
+ footnote.placement=2.5,
+ units = ylab,
+ chart_title = title
+ #yaxis.shock.label="Percentage Points"
+ )
+
+ mtext('Horizon (Quarters)',side = 1, line = .9, adj=.5, cex = .75)
+
+}
diff --git a/R/regimes.R b/R/regimes.R
new file mode 100644
index 0000000..3f81454
--- /dev/null
+++ b/R/regimes.R
@@ -0,0 +1,66 @@
+#------------------------------------------
+# Function to assign regimes via
+# unsupervised machine learning
+#------------------------------------------
+#' Assign regimes via unsupervised machine learning methods
+#'
+#' @param data data.frame, matrix, ts, xts, zoo: Endogenous regressors
+#' @param regime.n int: number of regimes to estimate (only applies to kmeans)
+#' @param engine string: regime assignment technique ('rf' or 'kmeans')
+#'
+#' @return `data` as a data.frame with a regime column assigning rows to mutually exclusive regimes. If engine = 'rf' is used then regime probabilities will be returned as well.
+#'
+#' @examples
+#' \dontrun{
+#'
+#' learn_regimes(
+#' data = Data,
+#' regime.n = 3,
+#' engine = 'kmeans')
+#' }
+#'
+#' @export
+
+learn_regimes = function(
+ data, # data.frame, matrix, ts, xts, zoo: Endogenous regressors
+ regime.n = 2, # int: number of regimes to estimate (only applies to kmeans)
+ engine = 'rf' # string: regime assignment technique ('rf' or 'kmeans')
+){
+
+ # function warnings
+ if(!is.matrix(data) & !is.data.frame(data)){
+ errorCondition('data must be a matrix or data.frame')
+ }
+ if(!is.numeric(regime.n) | regime.n %% 1 != 0 | regime.n <= 0){
+ errorCondition('regime.n must be a positive integer')
+ }
+
+ # cast as data frame if ts, xts, or zoo object
+ if(is.ts(data) | xts::is.xts(data) | zoo::is.zoo(data)){
+ data = data.frame(date = zoo::index(date), data)
+ }
+
+ # clean data
+ X = dplyr::select(data, -date)
+ X.date = data$date
+
+ # assign regimes
+ if(engine == 'rf'){
+
+ model = randomForest::randomForest(X)
+ regime = data.frame(model$votes)
+ colnames(regime) = paste0('Prob_regime_',c(1:ncol(regime)))
+ regime$regime = apply(X = regime, MARGIN = 1, which.max)
+ regime = data.frame(date = X.date, X, regime)
+
+ }else if(engine == 'kmeans'){
+
+ model = stats::kmeans(X, centers = regime.n)
+ regime = data.frame(date = X.date, X, model$cluster)
+
+ }
+
+ # return regime assignments
+ return(regime)
+
+}
diff --git a/R/threshold_var.R b/R/threshold_var.R
new file mode 100644
index 0000000..fb2f0ef
--- /dev/null
+++ b/R/threshold_var.R
@@ -0,0 +1,208 @@
+
+#-------------------------------------------------------------------
+# Function to estimate threshold VAR
+# i.e. state-dependent VARs with an exogenous state-variable
+#-------------------------------------------------------------------
+#' Estimate multi-regime VAR
+#'
+#' @param data data.frame, matrix, ts, xts, zoo: Endogenous regressors
+#' @param regime string: name or regime assignment vector in the design matrix (data)
+#' @param p int: lags
+#' @param horizon int: forecast horizons
+#' @param freq string: frequency of data (day, week, month, quarter, year)
+#'
+#' @return list of lists, each regime returns its own list with elements `data`, `model`, `forecasts`, `residuals`
+#'
+#' @examples
+#' \dontrun{
+#' threshold_VAR(
+#' data = Data,
+#' regime = 'regime',
+#' p = 1,
+#' horizon = 10,
+#' freq = 'month')
+#' }
+#'
+#' @export
+
+# var function
+threshold_VAR = function(
+ data, # data.frame, matrix, ts, xts, zoo: Endogenous regressors
+ regime, # string: name or regime assignment vector in the design matrix (data)
+ p = 1, # int: lags
+ horizon = 10, # int: forecast horizons
+ freq = 'month' # string: frequency of data (day, week, month, quarter, year)
+){
+
+ # function warnings
+ if(!is.matrix(data) & !is.data.frame(data)){
+ errorCondition('data must be a matrix or data.frame')
+ }
+ if(!is.numeric(p) | p %% 1 != 0){
+ errorCondition('p must be an integer')
+ }
+ if(!is.numeric(horizon) | horizon %% 1 != 0 | horizon <= 0){
+ errorCondition('horizon must be a positive integer')
+ }
+ if(!freq %in% c('day','week','month','quarter','year')){
+ errorCondition("freq must be one of the following strings: 'day','week','month','quarter','year'")
+ }
+ if(!regime %in% colnames(data)){
+ errorCondition('regime must be the name of a column in data')
+ }
+
+ # cast as data frame if ts, xts, or zoo object
+ if(is.ts(data) | xts::is.xts(data) | zoo::is.zoo(data)){
+ data = data.frame(date = zoo::index(date), data)
+ }
+
+ # declare regressors
+ regressors = colnames(dplyr::select(data, -date, -regime))
+
+ # create regressors
+ Y = data.frame(data) %>%
+ dplyr::select(regressors, date) %>%
+ n.lag(lags = p) %>%
+ dplyr::full_join(
+ dplyr::select(data, regime = regime, date),
+ by = 'date')
+
+ ### estimate coefficients ----------------------
+
+ models = Y %>%
+ # split by regime
+ dplyr::group_split(regime) %>%
+ purrr::map(.f = function(Y){
+
+ # calculate equation by equation
+ models = as.list(regressors) %>%
+ purrr::map(.f = function(target){
+
+ X = Y %>% dplyr::select(dplyr::contains('.l'), target = target)
+
+ # estimate OLS
+ model = stats::lm(target ~ ., data = X)
+
+ # coefficients
+ c = broom::tidy(model) %>% dplyr::select(term, coef = estimate)
+ c$y = target
+
+ se = broom::tidy(model) %>% dplyr::select(term, std.error)
+ se$y = target
+
+ # return results
+ return(list(coef = c, se = se))
+ })
+
+ # extract coefficients
+ coef =
+ purrr::map(models, .f = function(X){return(X$coef)}) %>%
+ purrr::reduce(dplyr::bind_rows) %>%
+ tidyr::pivot_wider(values_from = coef, names_from = term)
+
+
+ # extract coefficients
+ se =
+ purrr::map(models, .f = function(X){return(X$se)}) %>%
+ purrr::reduce(dplyr::bind_rows) %>%
+ tidyr::pivot_wider(values_from = std.error, names_from = term)
+
+ # package for return
+ model = list(coef = coef, se = se, p = p, freq = freq, horizon = horizon, regime = regime)
+
+ })
+
+ names(models) = paste0('regime_', unique(Y$regime))
+
+ ### estimate forecasts -----------------------
+
+ forecasts = Y %>%
+ # split by regime
+ dplyr::group_split(regime) %>%
+ purrr::map(.f = function(Y){
+
+ # set appropriate model for the regime
+ model = models[[paste0('regime_',unique(Y$regime))]]
+ coef = model$coef
+
+ forecasts = list()
+ for(i in 1:horizon){
+
+ # update X
+ if(i == 1){
+ X = Y %>% dplyr::select(dplyr::contains('.l'))
+ }else{
+ X = forecast_prev %>%
+ n.lag(lags = p) %>%
+ dplyr::select(dplyr::contains('.l'))
+ }
+
+ # estimate i-step ahead forecast
+ forecast = as.matrix(data.frame(1, X)) %*% as.matrix(t(coef[,-1]))
+ colnames(forecast) = regressors
+
+ # add in dates
+ forecast =
+ data.frame(
+ date = forecast_date(
+ forecast.date = Y$date,
+ horizon = i,
+ freq = freq),
+ forecast
+ )
+
+ # store forecasts
+ forecasts[[paste0('H_',i)]] = forecast
+ forecast_prev = forecast
+ }
+
+ return(forecasts)
+
+ })
+
+ names(forecasts) = paste0('regime_', unique(Y$regime))
+
+ # merge forecasts
+ forecasts = as.list(c(1:horizon)) %>%
+ purrr::map(.f = function(horizon){
+
+ r = forecasts %>%
+ purrr::map(.f = function(regime){
+ return(regime[[paste0('H_',horizon)]])
+ })
+
+ r = purrr::reduce(r, dplyr::bind_rows) %>%
+ dplyr::arrange(date) %>%
+ dplyr::left_join(
+ dplyr::select(Y, regime, date),
+ by = 'date')
+
+ })
+
+ names(forecasts) = paste0('H_', c(1:horizon))
+
+
+
+ ### calculate residuals -----------------------
+
+ residuals = forecasts %>%
+ # error by forecast horizon
+ purrr::map(.f = function(forecast){
+
+ error = data.frame(forecast)
+ error[,c(regressors)] = forecast[,c(regressors)] - data.frame(data)[, c(regressors)]
+
+ return(error)
+
+ })
+
+ ### return output --------------
+ return(
+ list(
+ model = models,
+ data = data,
+ forecasts = forecasts,
+ residuals = residuals
+ )
+ )
+}
diff --git a/R/threshold_var_fevd.R b/R/threshold_var_fevd.R
new file mode 100644
index 0000000..1286593
--- /dev/null
+++ b/R/threshold_var_fevd.R
@@ -0,0 +1,66 @@
+#--------------------------------------------------------
+# Wrapper function to estimate forecast error variance
+#--------------------------------------------------------
+#' Estimate multi-regime forecast error variance decomposition
+#'
+#' @param threshold_var threshold_var output
+#' @param horizon int: number of periods
+#'
+#' @return list, each regime returns its own long-form data.frame
+#'
+#' @examples
+#' \dontrun{
+#' threshold_var_fevd(
+#' threshold_var,
+#' bootstraps.num = 10)
+#' }
+#'
+#' @export
+
+# uses the fevd function found in var_fevd.R
+threshold_var_fevd = function(
+ threshold_var, # threshold_VAR output
+ horizon = 10 # int: number of periods
+){
+
+ # function warnings
+ if(!is.numeric(horizon) | horizon %% 1 != 0 | horizon <= 0){
+ errorCondition('horizon must be a positive integer')
+ }
+
+ # set data
+ data = threshold_var$data
+ regime = threshold_var$model[[1]]$regime
+ regimes = unlist(unique(dplyr::select(data, regime)))
+ regressors = colnames(dplyr::select(data, -date, -regime))
+
+ # estimate impulse responses by regime
+ results = split(regimes, seq_along(regimes)) %>%
+ purrr::map(.f = function(regime.val){
+
+ # set regime specific data
+ coef = threshold_var$model[[paste0('regime_',regime.val)]]$coef
+ residuals = threshold_var$residuals[[1]] %>% dplyr::filter(regime == regime.val)
+
+ # error covariance matrix
+ cov.matrix = var(na.omit(dplyr::select(residuals, -date, -regime)))
+
+ # forecast error variance decomposition
+ errors = fevd(Phi = coef[,-c(1,2)], Sig = cov.matrix, lag = horizon)
+
+ # reorganize results
+ response = data.frame(t(errors$OmegaR))
+ response$shock = rep(regressors, horizon + 1)
+ response$horizon = sort(rep(c(0:horizon), length(regressors)))
+ response = response %>% dplyr::arrange(shock, horizon)
+ rownames(response) = NULL
+
+ return(response)
+
+ })
+
+ names(results) = paste0('regime_', regimes)
+
+ return(results)
+
+}
diff --git a/R/threshold_var_irf.R b/R/threshold_var_irf.R
new file mode 100644
index 0000000..fdcaf7e
--- /dev/null
+++ b/R/threshold_var_irf.R
@@ -0,0 +1,341 @@
+#------------------------------------------
+# Function to estimate impulse responses
+#------------------------------------------
+#' Estimate multi-regime impulse response functions
+#'
+#' @param threshold_var threshold_VAR output
+#' @param horizon int: number of periods
+#' @param bootstraps.num int: number of bootstraps
+#' @param CI numeric vector: c(lower ci bound, upper ci bound)
+#'
+#' @return list of lists, each regime returns its own list with elements `irfs`, `ci.lower`, and `ci.upper`; all elements are long-form data.frames
+#'
+#' @examples
+#' \dontrun{
+#' threshold_var_irf(
+#' threshold_var,
+#' bootstraps.num = 10,
+#' CI = c(0.05,0.95))
+#' }
+#'
+#' @export
+
+threshold_var_irf = function(
+ threshold_var, # threshold VAR output
+ horizon = 10, # int: number of periods
+ bootstraps.num = 100, # int: number of bootstraps
+ CI = c(0.1, 0.9) # numeric vector: c(lower ci bound, upper ci bound)
+){
+
+ # function warnings
+ if(!is.numeric(bootstraps.num) | bootstraps.num %% 1 != 0){
+ errorCondition('bootstraps.num must be an integer')
+ }
+ if(!is.numeric(CI) | length(CI) != 2 | min(CI) < 0 | max(CI) > 1 | is.na(sum(CI))){
+ errorCondition('CI must be a two element numeric vector bound [0,1]')
+ }
+ if(!is.numeric(horizon) | horizon %% 1 != 0 | horizon <= 0){
+ errorCondition('horizon must be a positive integer')
+ }
+
+ # set data
+ residuals = threshold_var$residuals[[1]]
+ data = threshold_var$data
+ regime = threshold_var$model[[1]]$regime
+
+ p = threshold_var$model[[1]]$p
+ freq = threshold_var$model[[1]]$freq
+
+ regressors = colnames(dplyr::select(data, -date, -regime))
+ regimes = unlist(unique(dplyr::select(data, regime)))
+
+ p.lower = CI[1]
+ p.upper = CI[2]
+
+ # estimate impulse responses by regime
+ results = split(regimes, seq_along(regimes)) %>%
+ purrr::map(.f = function(regime.val){
+
+ # set regime specific data
+ coef = threshold_var$model[[paste0('regime_',regime.val)]]$coef
+ residuals = residuals %>%
+ dplyr::filter(regime == regime.val) %>%
+ dplyr::select(-date, -regime)
+
+ ### calculate impulse responses --------------
+ # error covariance matrix
+ cov.matrix = var(na.omit(residuals))
+ # cholesky decomposition
+ cholesky.matrix = t(chol(cov.matrix))
+
+ # extract responses
+ irfs = regressors %>%
+ purrr::map(.f = function(shock){
+
+ # loop overhead
+ irf = matrix(ncol = length(regressors), nrow = (horizon+1))
+ colnames(irf) = regressors
+ irf[1,] = cholesky.matrix[,shock]
+
+ # responses per horizon
+ for(j in 1:(horizon)){
+
+ # initial impact
+ if(j == 1){
+
+ AA = c(cholesky.matrix[,shock], rep(0, length(regressors)*(p)-length(regressors)))
+ response = AA %*% as.matrix(t(coef[,-c(1,2)]))
+
+ # recursively forecasted impact
+ }else{
+
+ require.length = length(AA)
+ current = as.vector(t(irf[j:j-p+1,]))
+ A = c(current, rep(0, require.length - length(current)))
+ response = A %*% as.matrix(t(coef[,-c(1,2)]))
+
+ }
+
+ # store
+ irf[j+1,] = response
+
+ }
+
+ irf = data.frame(shock = shock, horizon = c(0:horizon), irf)
+
+ # return irf
+ return(irf)
+
+ })
+
+ irfs = purrr::reduce(irfs, dplyr::bind_rows)
+
+ ### bootstrap irf standard errors --------------
+ # see Lutkepohl (2005)
+
+ # 1. create bootstrap time series
+ bagged.series = as.list(1:bootstraps.num) %>%
+ purrr::map(.f = function(count){
+
+ # draw bootstrapped residuals
+ U = na.omit(residuals)[sample(
+ c(1:nrow(na.omit(residuals))),
+ size = nrow(data),
+ replace = TRUE),
+ ]
+ U = U %>%
+ dplyr::mutate_all(function(X){return(X-mean(X, na.rm = T))})
+
+ # create lags
+ X = data %>%
+ dplyr::select(-regime) %>%
+ n.lag(lags = p) %>%
+ dplyr::select(dplyr::contains('.l'))
+
+ # estimate time series
+ Y = as.matrix(data.frame(1, X)) %*% as.matrix(t(coef[,-1]))
+ Y = Y + U
+ colnames(Y) = regressors
+ Y = data.frame(Y, date = data$date)
+
+ # filter for regimes
+ Y = Y %>%
+ dplyr::full_join(
+ dplyr::select(data, regime = regime, date),
+ by = 'date') %>%
+ dplyr::filter(regime == regime.val) %>%
+ dplyr::select(-regime) %>%
+ na.omit()
+
+ # return synthetic observations
+ return(Y)
+
+ })
+
+ # 2. create bootstrapped residuals
+ bagged.irf = bagged.series %>%
+ purrr::map(.f = function(synth){
+
+ # re-estimate VAR with bagged series
+ var.boot =
+ suppressMessages(
+ VAR(data = synth,
+ p = p,
+ horizon = 1,
+ freq = freq)
+ )
+
+ residuals = var.boot$residuals[[1]] %>% dplyr::select(-date)
+ coef = var.boot$model$coef
+
+ # error covariance matrix
+ cov.matrix = var(na.omit(residuals))
+ # cholesky decomposition
+ cholesky.matrix = t(chol(cov.matrix))
+ colnames(cholesky.matrix) = regressors
+
+ # extract responses
+ irfs = regressors %>%
+ purrr::map(.f = function(shock){
+
+ # loop overhead
+ irf = matrix(ncol = length(regressors), nrow = (horizon+1))
+ colnames(irf) = regressors
+ irf[1,] = cholesky.matrix[,shock]
+
+ # responses per horizon
+ for(j in 1:(horizon)){
+
+ # initial impact
+ if(j == 1){
+
+ AA = c(cholesky.matrix[,shock], rep(0, length(regressors)*(p)-length(regressors)))
+ response = AA %*% as.matrix(t(coef[,-c(1,2)]))
+
+ # recursively forecasted impact
+ }else{
+
+ require.length = length(AA)
+ current = as.vector(t(irf[j:j-p+1,]))
+ A = c(current, rep(0, require.length - length(current)))
+ response = A %*% as.matrix(t(coef[,-c(1,2)]))
+
+ }
+
+ # store
+ irf[j+1,] = response
+
+ }
+
+ irf = data.frame(shock = shock, horizon = c(0:horizon), irf)
+
+ # return irf
+ return(irf)
+
+ })
+
+ irfs = purrr::reduce(irfs, dplyr::bind_rows)
+
+ return(irfs)
+
+ })
+
+ # 3. calculate confidence intervals
+ ci.lower = bagged.irf %>%
+ purrr::reduce(dplyr::bind_rows) %>%
+ dplyr::group_by(shock, horizon) %>%
+ dplyr::summarise_all(quantile, p.lower, na.rm = T) %>%
+ dplyr::arrange(shock, horizon)
+
+ ci.upper = bagged.irf %>%
+ purrr::reduce(dplyr::bind_rows) %>%
+ dplyr::group_by(shock, horizon) %>%
+ dplyr::summarise_all(quantile, p.upper, na.rm = T) %>%
+ dplyr::arrange(shock, horizon)
+
+ ci.med = bagged.irf %>%
+ purrr::reduce(dplyr::bind_rows) %>%
+ dplyr::group_by(shock, horizon) %>%
+ dplyr::summarise_all(quantile, 0.5, na.rm = T) %>%
+ dplyr::arrange(shock, horizon)
+
+ irfs = irfs %>%
+ dplyr::arrange(shock, horizon)
+
+ ci.adjust = irfs[,-c(1,2)] - ci.med[,-c(1,2)]
+ ci.lower[,-c(1,2)] = ci.lower[,-c(1,2)] + ci.adjust
+ ci.upper[,-c(1,2)] = ci.upper[,-c(1,2)] + ci.adjust
+
+ irfs = list(irfs = irfs, ci.upper = ci.upper, ci.lower = ci.lower)
+
+ return(irfs)
+
+ })
+
+ names(results) = paste0('regime_', regimes)
+
+ ### return output --------------
+ return(results)
+
+}
+
+#------------------------------------------
+# Function to plot IRfs
+#------------------------------------------
+### Function to plot individual irf plot
+individual_irf_plot = function(
+ irfs, # var_irf object
+ shock.var, # string: name of variable to treat as the shock
+ response.var, # string: name of variable to treat as the response
+ title, # string: title of the chart
+ ylab # string: y-axis label
+){
+
+ # set data
+ irf = irfs$irfs
+ irf.lower = irfs$ci.lower
+ irf.upper = irfs$ci.upper
+
+ # filter for one shock
+ irf = irf %>% filter(shock == shock.var)
+ irf.lower = irf.lower %>% filter(shock == shock.var)
+ irf.upper = irf.upper %>% filter(shock == shock.var)
+
+ # filter for one response
+ irf = irf %>% select(point = response.var, horizon)
+ irf.lower = irf.lower %>% ungroup() %>% select(lower = response.var)
+ irf.upper = irf.upper %>% ungroup() %>% select(upper = response.var)
+
+ plotdata = cbind(irf.lower, irf, irf.upper)
+
+ # plot GDP
+ response.gdp <- plotdata %>%
+ ggplot(aes(x=horizon, y=point, ymin=lower, ymax=upper)) +
+ geom_hline(yintercept = 0, color="red") +
+ geom_ribbon(fill="grey", alpha=0.2) +
+ geom_line() +
+ theme_light() +
+ ggtitle(title)+
+ ylab(ylab)+
+ xlab("") +
+ theme(plot.title = element_text(size = 11, hjust=0.5),
+ axis.title.y = element_text(size=11))
+
+ response.gdp
+
+}
+
+### function to plot all irfs
+irf_plot = function(
+ irfs, # var_irf object
+ shocks, # string vector: shocks to plot
+ responses # string vector: responses to plot
+){
+
+ # set shocks and responses
+ shocks = unique(irfs$irfs$shock)
+ responses = unique(irfs$irfs$shock)
+
+ # generate plots
+ plot.names = expand_grid(shock = shocks, response = responses)
+ plots = split(plot.names, seq(nrow(plot.names))) %>%
+ purrr::map(.f = function(x){
+
+ chart =
+ individual_irf_plot(
+ irfs,
+ shock.var = x$shock,
+ response.var = x$response,
+ title = paste0(x$response, ' response to ', x$shock, ' shock'),
+ ylab = '')
+
+ return(chart)
+
+ })
+
+ # create plot
+ n <- length(plots)
+ nCol <- floor(sqrt(n))
+ do.call(gridExtra::grid.arrange, c(plots, ncol=nCol))
+
+}
diff --git a/R/var.R b/R/var.R
new file mode 100644
index 0000000..8e695ef
--- /dev/null
+++ b/R/var.R
@@ -0,0 +1,152 @@
+#------------------------------------------
+# Function to estimate VAR
+#------------------------------------------
+#' Estimate single-regime VAR
+#'
+#' @param data data.frame, matrix, ts, xts, zoo: Endogenous regressors
+#' @param p int: lags
+#' @param horizon int: forecast horizons
+#' @param freq string: frequency of data (day, week, month, quarter, year)
+#'
+#' @return list object with elements `data`, `model`, `forecasts`, `residuals`
+#'
+#' @examples
+#' \dontrun{
+#' VAR(
+#' data = Data,
+#' p = 1,
+#' horizon = 10,
+#' freq = 'month')
+#' }
+#'
+#' @export
+
+# var function
+VAR = function(
+ data, # data.frame, matrix, ts, xts, zoo: Endogenous regressors
+ p = 1, # int: lags
+ horizon = 10, # int: forecast horizons
+ freq = 'month' # string: frequency of data (day, week, month, quarter, year)
+){
+
+ # function warnings
+ if(!is.matrix(data) & !is.data.frame(data)){
+ errorCondition('data must be a matrix or data.frame')
+ }
+ if(!is.numeric(p) | p %% 1 != 0){
+ errorCondition('p must be an integer')
+ }
+ if(!is.numeric(horizon) | horizon %% 1 != 0 | horizon <= 0){
+ errorCondition('horizon must be a positive integer')
+ }
+ if(!freq %in% c('day','week','month','quarter','year')){
+ errorCondition("freq must be one of the following strings: 'day','week','month','quarter','year'")
+ }
+
+ # cast as data frame if ts, xts, or zoo object
+ if(is.ts(data) | xts::is.xts(data) | zoo::is.zoo(data)){
+ data = data.frame(date = zoo::index(date), data)
+ }
+
+ # declare regressors
+ regressors = colnames(dplyr::select(data, -date))
+
+ # create regressors
+ Y = data.frame(data) %>%
+ n.lag(lags = p)
+
+ # remove date
+ Y = Y %>% dplyr::select(-date)
+
+
+ ### estimate coefficients ----------------------
+ models = as.list(regressors) %>%
+ purrr::map(.f = function(target){
+
+ X = Y %>% dplyr::select(dplyr::contains('.l'), target = target)
+
+ # estimate OLS
+ model = stats::lm(target ~ ., data = X)
+
+ # coefficients
+ c = broom::tidy(model) %>% dplyr::select(term, coef = estimate)
+ c$y = target
+
+ se = broom::tidy(model) %>% dplyr::select(term, std.error)
+ se$y = target
+
+ # return results
+ return(list(coef = c, se = se))
+ })
+
+ # extract coefficients
+ coef =
+ purrr::map(models, .f = function(X){return(X$coef)}) %>%
+ purrr::reduce(dplyr::bind_rows) %>%
+ tidyr::pivot_wider(values_from = coef, names_from = term)
+
+
+ # extract coefficients
+ se =
+ purrr::map(models, .f = function(X){return(X$se)}) %>%
+ purrr::reduce(dplyr::bind_rows) %>%
+ tidyr::pivot_wider(values_from = std.error, names_from = term)
+
+ # package for return
+ model = list(coef = coef, se = se, p = p, freq = freq, horizon = horizon)
+
+ ### estimate forecasts -----------------------
+ forecasts = list()
+ for(i in 1:horizon){
+
+ # update X
+ if(i == 1){
+ X = Y %>% dplyr::select(dplyr::contains('.l'))
+ }else{
+ X = forecast_prev %>%
+ n.lag(lags = p) %>%
+ dplyr::select(dplyr::contains('.l'))
+ }
+
+ # estimate i-step ahead forecast
+ forecast = as.matrix(data.frame(1, X)) %*% as.matrix(t(coef[,-1]))
+ colnames(forecast) = regressors
+
+ # add in dates
+ forecast =
+ data.frame(
+ date = forecast_date(
+ forecast.date = data$date,
+ horizon = i,
+ freq = freq),
+ forecast
+ )
+
+ # store forecasts
+ forecasts[[paste0('H_',i)]] = forecast
+ forecast_prev = forecast
+ }
+
+ ### calculate residuals -----------------------
+ residuals = forecasts %>%
+ # error by forecast horizon
+ purrr::map(.f = function(forecast){
+
+ error = data.frame(forecast)
+ error[,c(regressors)] = forecast[,c(regressors)] - data.frame(data)[, c(regressors)]
+
+ return(error)
+
+ })
+
+
+ ### return output --------------
+ return(
+ list(
+ model = model,
+ data = data,
+ forecasts = forecasts,
+ residuals = residuals
+ )
+ )
+}
diff --git a/R/var_fevd.R b/R/var_fevd.R
new file mode 100644
index 0000000..676114a
--- /dev/null
+++ b/R/var_fevd.R
@@ -0,0 +1,142 @@
+#---------------------------------------------
+# Estimate forecast error variance
+# source code adapted from the MTS package
+#---------------------------------------------
+fevd = function(Phi, Sig, lag = 4)
+{
+ if (length(Phi) > 0) {
+ if (!is.matrix(Phi))
+ Phi = as.matrix(Phi)
+ }
+
+ if (!is.matrix(Sig))
+ Sig = as.matrix(Sig)
+ if (lag < 1)
+ lag = 1
+ p = 0
+ if (length(Phi) > 0) {
+ k = nrow(Phi)
+ m = ncol(Phi)
+ p = floor(m/k)
+ }
+ q = 0
+
+ Si = diag(rep(1, k))
+
+ m = (lag + 1) * k
+ m1 = (q + 1) * k
+ if (m > m1) {
+ Si = cbind(Si, matrix(0, k, (m - m1)))
+ }
+ if (p > 0) {
+ for (i in 1:lag) {
+ if (i <= p) {
+ idx = (i - 1) * k
+ tmp = Phi[, (idx + 1):(idx + k)]
+ }
+ else {
+ tmp = matrix(0, k, k)
+ }
+ jj = i - 1
+ jp = min(jj, p)
+ if (jp > 0) {
+ for (j in 1:jp) {
+ jdx = (j - 1) * k
+ idx = (i - j) * k
+ w1 = Phi[, (jdx + 1):(jdx + k)]
+ w2 = Si[, (idx + 1):(idx + k)]
+ tmp = tmp + w1 %*% w2
+ }
+ }
+ kdx = i * k
+ Si[, (kdx + 1):(kdx + k)] = tmp
+ }
+ }
+ orSi = NULL
+ m1 = chol(Sig)
+ P = t(m1)
+ orSi = P
+ for (i in 1:lag) {
+ idx = i * k
+ w1 = Si[, (idx + 1):(idx + k)]
+ w2 = w1 %*% P
+ orSi = cbind(orSi, w2)
+ }
+ orSi2 = orSi^2
+ Ome = orSi2[, 1:k]
+ wk = Ome
+ for (i in 1:lag) {
+ idx = i * k
+ wk = wk + orSi2[, (idx + 1):(idx + k)]
+ Ome = cbind(Ome, wk)
+ }
+ FeV = NULL
+ OmeRa = Ome[, 1:k]
+ FeV = cbind(FeV, apply(OmeRa, 1, sum))
+ OmeRa = OmeRa/FeV[, 1]
+ for (i in 1:lag) {
+ idx = i * k
+ wk = Ome[, (idx + 1):(idx + k)]
+ FeV = cbind(FeV, apply(wk, 1, sum))
+ OmeRa = cbind(OmeRa, wk/FeV[, (i + 1)])
+ }
+ for (i in 1:(lag + 1)) {
+ idx = (i - 1) * k
+ Ratio = OmeRa[, (idx + 1):(idx + k)]
+ }
+ FEVdec <- list(irf = Si, orthirf = orSi, Omega = Ome, OmegaR = OmeRa)
+
+ return(FEVdec)
+}
+
+#--------------------------------------------------------
+# Wrapper function to estimate forecast error variance
+#--------------------------------------------------------
+#' Estimate single-regime forecast error variance decomposition
+#'
+#' @param var VAR output
+#' @param horizon int: number of periods
+#'
+#' @return long-form data.frame
+#'
+#' @examples
+#' \dontrun{
+#' var_fevd(
+#' var,
+#' bootstraps.num = 10)
+#' }
+#'
+#' @export
+
+var_fevd = function(
+ var, # VAR output
+ horizon = 10 # int: number of periods
+){
+
+ # function warnings
+ if(!is.numeric(horizon) | horizon %% 1 != 0 | horizon <= 0){
+ errorCondition('horizon must be a positive integer')
+ }
+
+ # set data
+ coef = var$model$coef
+ residuals = var$residuals[[1]]
+ data = var$data
+ regressors = colnames(dplyr::select(data, -date))
+
+ # error covariance matrix
+ cov.matrix = var(na.omit(dplyr::select(residuals, -date)))
+
+ # forecast error variance decomposition
+ errors = fevd(Phi = coef[,-c(1,2)], Sig = cov.matrix, lag = horizon)
+
+ # reorganize results
+ response = data.frame(t(errors$OmegaR))
+ response$shock = rep(regressors, horizon + 1)
+ response$horizon = sort(rep(c(0:horizon), length(regressors)))
+ response = response %>% dplyr::arrange(shock, horizon)
+ rownames(response) = NULL
+
+ return(response)
+
+}
diff --git a/R/var_irf.R b/R/var_irf.R
new file mode 100644
index 0000000..2caf426
--- /dev/null
+++ b/R/var_irf.R
@@ -0,0 +1,340 @@
+#------------------------------------------
+# Function to estimate impulse responses
+#------------------------------------------
+#' Estimate single-regime impulse response functions
+#'
+#' @param var VAR output
+#' @param horizon int: number of periods
+#' @param bootstraps.num int: number of bootstraps
+#' @param CI numeric vector: c(lower ci bound, upper ci bound)
+#'
+#' @return list object with elements `irfs`, `ci.lower`, and `ci.upper`; all elements are long-form data.frames
+#'
+#' @examples
+#' \dontrun{
+#' var_irf(
+#' var,
+#' bootstraps.num = 10,
+#' CI = c(0.05,0.95))
+#' }
+#'
+#' @export
+
+var_irf = function(
+ var, # VAR output
+ horizon = 10, # int: number of periods
+ bootstraps.num = 100, # int: number of bootstraps
+ CI = c(0.1, 0.9) # numeric vector: c(lower ci bound, upper ci bound)
+){
+
+ # function warnings
+ if(!is.numeric(bootstraps.num) | bootstraps.num %% 1 != 0){
+ errorCondition('bootstraps.num must be an integer')
+ }
+ if(!is.numeric(CI) | length(CI) != 2 | min(CI) < 0 | max(CI) > 1 | is.na(sum(CI))){
+ errorCondition('CI must be a two element numeric vector bound [0,1]')
+ }
+ if(!is.numeric(horizon) | horizon %% 1 != 0 | horizon <= 0){
+ errorCondition('horizon must be a positive integer')
+ }
+
+ # set data
+ coef = var$model$coef
+ residuals = var$residuals
+ data = var$data
+
+ # set variables
+ p = var$model$p
+ freq = var$model$freq
+ horizon = length(residuals)
+ regressors = colnames(dplyr::select(data, -date))
+ p.lower = CI[1]
+ p.upper = CI[2]
+
+ ### calculate impulse responses --------------
+ # error covariance matrix
+ cov.matrix = var(na.omit(dplyr::select(residuals[[1]], -date)))
+ # cholesky decomposition
+ cholesky.matrix = t(chol(cov.matrix))
+
+ # extract responses
+ irfs = regressors %>%
+ purrr::map(.f = function(shock){
+
+ # loop overhead
+ irf = matrix(ncol = length(regressors), nrow = (horizon+1))
+ colnames(irf) = regressors
+ irf[1,] = cholesky.matrix[,shock]
+
+ # responses per horizon
+ for(j in 1:(horizon)){
+
+ # initial impact
+ if(j == 1){
+
+ AA = c(cholesky.matrix[,shock], rep(0, length(regressors)*(p)-length(regressors)))
+ response = AA %*% as.matrix(t(coef[,-c(1,2)]))
+
+ # recursively forecasted impact
+ }else{
+
+ require.length = length(AA)
+ current = as.vector(t(irf[j:j-p+1,]))
+ A = c(current, rep(0, require.length - length(current)))
+ response = A %*% as.matrix(t(coef[,-c(1,2)]))
+
+ }
+
+ # store
+ irf[j+1,] = response
+
+ }
+
+ irf = data.frame(shock = shock, horizon = c(0:horizon), irf)
+
+ # return irf
+ return(irf)
+
+ })
+
+ irfs = purrr::reduce(irfs, dplyr::bind_rows)
+
+ ### bootstrap irf standard errors --------------
+ # see Lutkepohl (2005)
+
+ # 1. create bootstrap time series
+ bagged.series = as.list(1:bootstraps.num) %>%
+ purrr::map(.f = function(count){
+
+ # draw bootstrapped residuals
+ U = residuals[[1]][sample(c(1:nrow(residuals[[1]])),
+ size = nrow(residuals[[1]]),
+ replace = TRUE),]
+ U = U %>%
+ dplyr::select(-date) %>%
+ dplyr::mutate_all(function(X){return(X-mean(X, na.rm = T))})
+
+ # create lags
+ X = data %>%
+ n.lag(lags = p) %>%
+ dplyr::select(dplyr::contains('.l'))
+
+ # estimate time series
+ Y = as.matrix(data.frame(1, X)) %*% as.matrix(t(coef[,-1]))
+ Y = Y + U
+ colnames(Y) = regressors
+ Y = data.frame(Y, date = data$date)
+
+ # return synthetic observations
+ return(Y)
+
+ })
+
+ # 2. create bootstrapped residuals
+ bagged.irf = bagged.series %>%
+ purrr::map(.f = function(synth){
+
+ # re-estimate VAR with bagged series
+ var.boot =
+ suppressMessages(
+ VAR(data = synth,
+ p = p,
+ horizon = 1,
+ freq = freq)
+ )
+
+ residuals = var.boot$residuals
+ coef = var.boot$model$coef
+
+ # error covariance matrix
+ cov.matrix = var(na.omit(dplyr::select(residuals[[1]], -date)))
+ # cholesky decomposition
+ cholesky.matrix = t(chol(cov.matrix))
+ colnames(cholesky.matrix) = regressors
+
+ # extract responses
+ irfs = regressors %>%
+ purrr::map(.f = function(shock){
+
+ # loop overhead
+ irf = matrix(ncol = length(regressors), nrow = (horizon+1))
+ colnames(irf) = regressors
+ irf[1,] = cholesky.matrix[,shock]
+
+ # responses per horizon
+ for(j in 1:(horizon)){
+
+ # initial impact
+ if(j == 1){
+
+ AA = c(cholesky.matrix[,shock], rep(0, length(regressors)*(p)-length(regressors)))
+ response = AA %*% as.matrix(t(coef[,-c(1,2)]))
+
+ # recursively forecasted impact
+ }else{
+
+ require.length = length(AA)
+ current = as.vector(t(irf[j:j-p+1,]))
+ A = c(current, rep(0, require.length - length(current)))
+ response = A %*% as.matrix(t(coef[,-c(1,2)]))
+
+ }
+
+ # store
+ irf[j+1,] = response
+
+ }
+
+ irf = data.frame(shock = shock, horizon = c(0:horizon), irf)
+
+ # return irf
+ return(irf)
+
+ })
+
+ irfs = purrr::reduce(irfs, dplyr::bind_rows)
+
+ return(irfs)
+
+ })
+
+ # 3. calculate confidence intervals
+ ci.lower = bagged.irf %>%
+ purrr::reduce(dplyr::bind_rows) %>%
+ dplyr::group_by(shock, horizon) %>%
+ dplyr::summarise_all(quantile, p.lower, na.rm = T) %>%
+ dplyr::arrange(shock, horizon)
+
+ ci.upper = bagged.irf %>%
+ purrr::reduce(dplyr::bind_rows) %>%
+ dplyr::group_by(shock, horizon) %>%
+ dplyr::summarise_all(quantile, p.upper, na.rm = T) %>%
+ dplyr::arrange(shock, horizon)
+
+ ci.med = bagged.irf %>%
+ purrr::reduce(dplyr::bind_rows) %>%
+ dplyr::group_by(shock, horizon) %>%
+ dplyr::summarise_all(quantile, 0.5, na.rm = T) %>%
+ dplyr::arrange(shock, horizon)
+
+ irfs = irfs %>%
+ dplyr::arrange(shock, horizon)
+
+ ci.adjust = irfs[,-c(1,2)] - ci.med[,-c(1,2)]
+ ci.lower[,-c(1,2)] = ci.lower[,-c(1,2)] + ci.adjust
+ ci.upper[,-c(1,2)] = ci.upper[,-c(1,2)] + ci.adjust
+
+ irfs = list(irfs = irfs, ci.upper = ci.upper, ci.lower = ci.lower)
+
+ ### return output --------------
+ return(irfs)
+}
+
+
+
+
+#------------------------------------------
+# Function to plot IRfs
+#------------------------------------------
+### Function to plot individual irf plot
+
+#' Plot an individual IRF
+#'
+#' @param irfs var_irf object
+#' @param shock.var string: name of variable to treat as the shock
+#' @param response.var string: name of variable to treat as the response
+#' @param title string: title of the chart
+#' @param ylab string: y-axis label
+#'
+#' @return ggplot2 graph
+#'
+#' @export
+individual_var_irf_plot = function(
+ irfs, # var_irf object
+ shock.var, # string: name of variable to treat as the shock
+ response.var, # string: name of variable to treat as the response
+ title, # string: title of the chart
+ ylab # string: y-axis label
+){
+
+ # set data
+ irf = irfs$irfs
+ irf.lower = irfs$ci.lower
+ irf.upper = irfs$ci.upper
+
+ # filter for one shock
+ irf = irf %>% filter(shock == shock.var)
+ irf.lower = irf.lower %>% filter(shock == shock.var)
+ irf.upper = irf.upper %>% filter(shock == shock.var)
+
+ # filter for one response
+ irf = irf %>% select(point = response.var, horizon)
+ irf.lower = irf.lower %>% ungroup() %>% select(lower = response.var)
+ irf.upper = irf.upper %>% ungroup() %>% select(upper = response.var)
+
+ plotdata = cbind(irf.lower, irf, irf.upper)
+
+ # plot GDP
+ response.gdp <- plotdata %>%
+ ggplot(aes(x=horizon, y=point, ymin=lower, ymax=upper)) +
+ geom_hline(yintercept = 0, color="red") +
+ geom_ribbon(fill="grey", alpha=0.2) +
+ geom_line() +
+ theme_light() +
+ ggtitle(title)+
+ ylab(ylab)+
+ xlab("") +
+ theme(plot.title = element_text(size = 11, hjust=0.5),
+ axis.title.y = element_text(size=11))
+
+ response.gdp
+
+}
+
+### function to plot all irfs
+#' Plot all IRFs
+#'
+#' @param irfs var_irf object
+#' @param shocks string vector: shocks to plot
+#' @param responses string vector: responses to plot
+#'
+#' @return grid of ggplot2 graphs
+#'
+#' @export
+
+var_irf_plot = function(
+ irfs, # var_irf object
+ shocks, # string vector: shocks to plot
+ responses # string vector: responses to plot
+){
+
+ # function variables
+ shock = repsonse = NA
+
+ # set shocks and responses
+ shocks = unique(irfs$irfs$shock)
+ responses = unique(irfs$irfs$shock)
+
+ # generate plots
+ plot.names = tidyr::expand_grid(shock = shocks, response = responses)
+ plots = split(plot.names, seq(nrow(plot.names))) %>%
+ purrr::map(.f = function(x){
+
+ chart =
+ individual_irf_plot(
+ irfs,
+ shock.var = x$shock,
+ response.var = x$response,
+ title = paste0(x$response, ' response to ', x$shock, ' shock'),
+ ylab = '')
+
+ return(chart)
+
+ })
+
+ # create plot
+ n <- length(plots)
+ nCol <- floor(sqrt(n))
+ do.call(gridExtra::grid.arrange, c(plots, ncol=nCol))
+
+}
diff --git a/README.md b/README.md
new file mode 100644
index 0000000..0e19e2f
--- /dev/null
+++ b/README.md
@@ -0,0 +1,162 @@
+# sovereign: State-Dependent Empirical Analysis
+
+
+[](http://www.gnu.org/licenses/gpl-3.0)
+[](https://www.tidyverse.org/lifecycle/#experimental)
+[](https://github.com/r-lib/usethis/actions)
+
+
+The `sovereign` package introduces a set of tools for state-dependant empirical analysis through both VAR- and local projection-based state-dependant forecasts, impulse response functions, and forecast error variance decomposition.
+
+The `sovereign` package remains under active development. As a result, **the API is not to be considered stable**, and future updates will most likely deprecate and break current functions.
+
+## Available Tools
+
+Unsupervised Regime Assignment
+1. random forest
+2. k-means clustering
+
+Local Projections
+1. impulse responses & charting
+
+Vector Auto-Regression (VAR)
+1. recursive forecasting
+2. forecast error variance decomposition
+3. impulse responses with bootstrapped confidence intervals and charting
+
+----
+
+## Basic Workflow
+ # load packages
+ library(sovereign) # analysis
+ library(tidyverse) # general cleaning
+ library(lubridate) # date functions
+
+ #-------------------------------------------
+ # create data
+ #-------------------------------------------
+ # pull and prepare data from FRED
+ quantmod::getSymbols.FRED(
+ c('UNRATE','INDPRO','GS10'),
+ env = globalenv())
+
+ Data = cbind(UNRATE, INDPRO, GS10)
+
+ Data = data.frame(Data, date = zoo::index(Data)) %>%
+ dplyr::filter(lubridate::year(date) >= 1990) %>%
+ na.omit()
+
+ # create a regime explicitly
+ Data.threshold = Data %>%
+ mutate(mp = if_else(GS10 > median(GS10), 1, 0))
+
+ #------------------------------------------
+ # learn regimes
+ #------------------------------------------
+ # assign regimes based on unsurpervised kmeans
+ # (will not be used further)
+ regimes =
+ learn_regimes(
+ data = Data,
+ regime.n = 3,
+ engine = 'kmeans')
+
+ #------------------------------------------
+ # single-regime var
+ #------------------------------------------
+ # estimate VAR
+ var =
+ VAR(
+ data = Data,
+ p = 1,
+ horizon = 10,
+ freq = 'month')
+
+ # estimate IRF
+ irf =
+ var_irf_plot(
+ var,
+ bootstraps.num = 10,
+ CI = c(0.05,0.95))
+
+ # plot IRF
+ irf_plot(irf)
+
+ # estimate forecast error variance decomposition
+ fevd =
+ var_fevd(
+ var,
+ horizon = 10)
+
+ #-------------------------------------------
+ # multi-regime var
+ #-------------------------------------------
+ # estimate multi-regime VAR
+ tvar =
+ threshold_VAR(
+ data = Data.threshold,
+ regime = 'mp',
+ p = 1,
+ horizon = 1,
+ freq = 'month')
+
+ # estimate IRF
+ tvar.irf =
+ threshold_var_irf(
+ tvar,
+ horizon = 10,
+ bootstraps.num = 10,
+ CI = c(0.05,0.95))
+
+ # plot IRF
+ # regime 1: low interest rates
+ irf_plot(tvar.irf[[1]])
+ # regime 2: high interest rates
+ irf_plot(tvar.irf[[2]])
+
+ # estimate forecast error variance decomposition
+ tvar.fevd =
+ threshold_var_fevd(
+ tvar,
+ horizon = 10)
+
+ #-------------------------------------------
+ # local projection IRFs
+ #-------------------------------------------
+ # estimate single-regime IRF
+ lp.irf =
+ lp_irf(
+ data = Data,
+ shock = 'INDPRO',
+ target = 'GS10',
+ horizons = 20,
+ lags = 2)
+
+ # estimate multi-regime IRF
+ tlp.irf =
+ threshold_lp_irf(
+ data = dplyr::select(Data.threshold, -reg),
+ thresholdVar = dplyr::select(Data, reg, date),
+ shock = 'AA',
+ target = 'BB',
+ horizons = 20,
+ lags = 2)
+
+
+
+---
+## Known problems / wishlist
+Code
+1. local projection forecasting
+2. tvar forecasting is restricted to one period ahead
+3. add confidence intervals to forecast error variance decomposition
+4. clean local projection functions
+5. plot tests
+
+Package
+1. ~~documentation~~
+2. ~~tests~~
+3. ~~simple vignette~~
+4. ~~badges~~
+4. ~~github~~
+5. add plotting to example
diff --git a/codecov.yml b/codecov.yml
new file mode 100644
index 0000000..2ae0ff7
--- /dev/null
+++ b/codecov.yml
@@ -0,0 +1,19 @@
+comment: false
+language: R
+sudo: false
+cache: packages
+after_success:
+- Rscript -e 'covr::codecov()'
+
+coverage:
+ status:
+ project:
+ default:
+ target: auto
+ threshold: 1%
+ informational: true
+ patch:
+ default:
+ target: auto
+ threshold: 1%
+ informational: true
diff --git a/development_tests.R b/development_tests.R
new file mode 100644
index 0000000..bba23e3
--- /dev/null
+++ b/development_tests.R
@@ -0,0 +1,108 @@
+
+###############################################################################################################
+# Function test
+###############################################################################################################
+setwd('/scratch/m1tjp01/Tyler/sovereign/')
+
+# ThresholdVAR files
+source('./R/helper.R')
+source('./R/var_fevd.R')
+source('./R/var_irf.R')
+source('./R/var.R')
+source('./R/threshold_var_fevd.R')
+source('./R/threshold_var_irf.R')
+source('./R/threshold_var.R')
+
+# libraries
+library(tis)
+library(stfm.helper, lib.loc="/stfm/shared1/R")
+library(tidyverse) # general cleaning
+library(lubridate) # date functions
+
+#-------------------------------------------
+# create data
+#------------------------------------------
+# load in unemployment and gdp
+usTickers = c('gdp_xcw_09.q','ruc.q')
+econActivity = getfame_dt(usTickers,"us") %>%
+ rename(rgdp = gdp_xcw_09.q, unemp = ruc.q) %>%
+ mutate(unemp = unemp - lag(unemp))
+day(econActivity$date) <- 1
+
+# load effective fed funds data
+ff = as.data.frame(getfame_dt("rifspff_n.b","us")) %>%
+ group_by(year = year(date), quarter = quarter(date)) %>%
+ summarise(fedfunds = mean(rifspff_n.b, na.rm = T)) %>%
+ mutate(date = lubridate::ymd(paste0(year,'-',(quarter*3),'-01'))) %>%
+ ungroup() %>% select(date,fedfunds)
+
+Data = full_join(econActivity, ff, by = 'date') %>% na.omit()
+
+#-------------------------------------------
+# test single-regime var
+#------------------------------------------
+# estimate VAR
+test.var =
+ VAR(
+ data = Data,
+ p = 1,
+ horizon = 10,
+ freq = 'quarter')
+
+# estimate IRF
+test.irf =
+ var_irf(test.var,
+ bootstraps.num = 10,
+ CI = c(0.05,0.95))
+
+# plot IRF
+irf_plot(test.irf)
+
+# forecast error variance decomposition
+test.fevd =
+ var_fevd(
+ var = test.var,
+ horizon = 10)
+
+#-------------------------------------------
+# baseline testing against vars package
+#------------------------------------------
+# test.var coefficients align with the baseline.var coef!
+baseline.var =
+ vars::VAR(y = select(Data, -date), p = 1, type = 'const')
+
+# test.irf coefficients align with the baseline.irf coef!
+baseline.irf =
+ vars::irf(baseline.var)
+
+# exact match
+baseline.fevd =
+ vars::fevd(baseline.var)
+
+#-------------------------------------------
+# test multi-regime var
+#------------------------------------------
+
+Data.threshold = Data %>%
+ mutate(mp = if_else(fedfunds > median(fedfunds), 1, 0))
+
+test.tvar =
+ threshold_VAR(
+ data = Data.threshold,
+ regime = 'mp',
+ p = 1,
+ horizon = 1,
+ freq = 'quarter'
+ )
+
+test.tvar.irf =
+ threshold_var_irf(
+ test.tvar,
+ horizon = 10,
+ bootstraps.num = 10,
+ CI = c(0.05,0.95))
+
+test.tvar.fevd =
+ threshold_var_fevd(
+ test.tvar,
+ horizon = 10)
diff --git a/man/VAR.Rd b/man/VAR.Rd
new file mode 100644
index 0000000..2a84252
--- /dev/null
+++ b/man/VAR.Rd
@@ -0,0 +1,33 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/var.R
+\name{VAR}
+\alias{VAR}
+\title{Estimate single-regime VAR}
+\usage{
+VAR(data, p = 1, horizon = 10, freq = "month")
+}
+\arguments{
+\item{data}{data.frame, matrix, ts, xts, zoo: Endogenous regressors}
+
+\item{p}{int: lags}
+
+\item{horizon}{int: forecast horizons}
+
+\item{freq}{string: frequency of data (day, week, month, quarter, year)}
+}
+\value{
+list object with elements \code{data}, \code{model}, \code{forecasts}, \code{residuals}
+}
+\description{
+Estimate single-regime VAR
+}
+\examples{
+\dontrun{
+VAR(
+ data = Data,
+ p = 1,
+ horizon = 10,
+ freq = 'month')
+}
+
+}
diff --git a/man/individual_var_irf_plot.Rd b/man/individual_var_irf_plot.Rd
new file mode 100644
index 0000000..1e971d3
--- /dev/null
+++ b/man/individual_var_irf_plot.Rd
@@ -0,0 +1,25 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/var_irf.R
+\name{individual_var_irf_plot}
+\alias{individual_var_irf_plot}
+\title{Plot an individual IRF}
+\usage{
+individual_var_irf_plot(irfs, shock.var, response.var, title, ylab)
+}
+\arguments{
+\item{irfs}{var_irf object}
+
+\item{shock.var}{string: name of variable to treat as the shock}
+
+\item{response.var}{string: name of variable to treat as the response}
+
+\item{title}{string: title of the chart}
+
+\item{ylab}{string: y-axis label}
+}
+\value{
+ggplot2 graph
+}
+\description{
+Plot an individual IRF
+}
diff --git a/man/learn_regimes.Rd b/man/learn_regimes.Rd
new file mode 100644
index 0000000..3aa883e
--- /dev/null
+++ b/man/learn_regimes.Rd
@@ -0,0 +1,31 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/regimes.R
+\name{learn_regimes}
+\alias{learn_regimes}
+\title{Assign regimes via unsupervised machine learning methods}
+\usage{
+learn_regimes(data, regime.n = 2, engine = "rf")
+}
+\arguments{
+\item{data}{data.frame, matrix, ts, xts, zoo: Endogenous regressors}
+
+\item{regime.n}{int: number of regimes to estimate (only applies to kmeans)}
+
+\item{engine}{string: regime assignment technique ('rf' or 'kmeans')}
+}
+\value{
+\code{data} as a data.frame with a regime column assigning rows to mutually exclusive regimes. If engine = 'rf' is used then regime probabilities will be returned as well.
+}
+\description{
+Assign regimes via unsupervised machine learning methods
+}
+\examples{
+\dontrun{
+
+ learn_regimes(
+ data = Data,
+ regime.n = 3,
+ engine = 'kmeans')
+}
+
+}
diff --git a/man/lp_irf.Rd b/man/lp_irf.Rd
new file mode 100644
index 0000000..44b65c2
--- /dev/null
+++ b/man/lp_irf.Rd
@@ -0,0 +1,36 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/local_projections.R
+\name{lp_irf}
+\alias{lp_irf}
+\title{Estimate single-regime local projection IRFs}
+\usage{
+lp_irf(data, shock, target, horizons, lags)
+}
+\arguments{
+\item{data}{data.frame, matrix, ts, xts, zoo: Endogenous regressors}
+
+\item{shock}{string: variable to shock}
+
+\item{target}{string: variable betas to collect}
+
+\item{horizons}{int: horizons to forecast out to}
+
+\item{lags}{int: lags to include in regressions}
+}
+\value{
+data.frame
+}
+\description{
+Estimate single-regime local projection IRFs
+}
+\examples{
+\dontrun{
+lp_irf(
+ data = Data,
+ shock = 'x',
+ target = 'y',
+ horizons = 20,
+ lags = 2)
+}
+
+}
diff --git a/man/lp_irf_chart.Rd b/man/lp_irf_chart.Rd
new file mode 100644
index 0000000..51b53f8
--- /dev/null
+++ b/man/lp_irf_chart.Rd
@@ -0,0 +1,25 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/lp_irf_chart.R
+\name{lp_irf_chart}
+\alias{lp_irf_chart}
+\title{Chart local projection IRFs}
+\usage{
+lp_irf_chart(plotData, title, ylim, ystep, ylab)
+}
+\arguments{
+\item{plotData}{lp_irf output}
+
+\item{title}{string: chart title}
+
+\item{ylim}{int: y-axis limits, c(lower limit, upper limit)}
+
+\item{ystep}{int: step size inbetween y-axis tick marks}
+
+\item{ylab}{string: y-axis label}
+}
+\value{
+plot
+}
+\description{
+Chart local projection IRFs
+}
diff --git a/man/pipe.Rd b/man/pipe.Rd
new file mode 100644
index 0000000..62311aa
--- /dev/null
+++ b/man/pipe.Rd
@@ -0,0 +1,12 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/external_imports.R
+\name{\%>\%}
+\alias{\%>\%}
+\title{Pipe operator}
+\usage{
+lhs \%>\% rhs
+}
+\description{
+See \code{magrittr::\link[magrittr:pipe]{\%>\%}} for details.
+}
+\keyword{internal}
diff --git a/man/threshold_VAR.Rd b/man/threshold_VAR.Rd
new file mode 100644
index 0000000..847924f
--- /dev/null
+++ b/man/threshold_VAR.Rd
@@ -0,0 +1,36 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/threshold_var.R
+\name{threshold_VAR}
+\alias{threshold_VAR}
+\title{Estimate multi-regime VAR}
+\usage{
+threshold_VAR(data, regime, p = 1, horizon = 10, freq = "month")
+}
+\arguments{
+\item{data}{data.frame, matrix, ts, xts, zoo: Endogenous regressors}
+
+\item{regime}{string: name or regime assignment vector in the design matrix (data)}
+
+\item{p}{int: lags}
+
+\item{horizon}{int: forecast horizons}
+
+\item{freq}{string: frequency of data (day, week, month, quarter, year)}
+}
+\value{
+list of lists, each regime returns its own list with elements \code{data}, \code{model}, \code{forecasts}, \code{residuals}
+}
+\description{
+Estimate multi-regime VAR
+}
+\examples{
+\dontrun{
+threshold_VAR(
+ data = Data,
+ regime = 'regime',
+ p = 1,
+ horizon = 10,
+ freq = 'month')
+}
+
+}
diff --git a/man/threshold_lp_irf.Rd b/man/threshold_lp_irf.Rd
new file mode 100644
index 0000000..08d78ff
--- /dev/null
+++ b/man/threshold_lp_irf.Rd
@@ -0,0 +1,39 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/local_projections.R
+\name{threshold_lp_irf}
+\alias{threshold_lp_irf}
+\title{Estimate multi-regime local projection IRFs}
+\usage{
+threshold_lp_irf(data, shock, target, thresholdVar = NULL, horizons, lags)
+}
+\arguments{
+\item{data}{data.frame, matrix, ts, xts, zoo: Endogenous regressors}
+
+\item{shock}{string: variable to shock}
+
+\item{target}{string: variable betas to collect}
+
+\item{thresholdVar}{data.frame of regime binaries}
+
+\item{horizons}{int: horizons to forecast out to}
+
+\item{lags}{int: lags to include in regressions}
+}
+\value{
+data.frame
+}
+\description{
+Estimate multi-regime local projection IRFs
+}
+\examples{
+\dontrun{
+threshold_lp_irf(
+ data = Data,
+ shock = 'x',
+ target = 'y',
+ thresholdVar = Data.regime,
+ horizons = 20,
+ lags = 2)
+}
+
+}
diff --git a/man/threshold_var_fevd.Rd b/man/threshold_var_fevd.Rd
new file mode 100644
index 0000000..b21057c
--- /dev/null
+++ b/man/threshold_var_fevd.Rd
@@ -0,0 +1,27 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/threshold_var_fevd.R
+\name{threshold_var_fevd}
+\alias{threshold_var_fevd}
+\title{Estimate multi-regime forecast error variance decomposition}
+\usage{
+threshold_var_fevd(threshold_var, horizon = 10)
+}
+\arguments{
+\item{threshold_var}{threshold_var output}
+
+\item{horizon}{int: number of periods}
+}
+\value{
+list, each regime returns its own long-form data.frame
+}
+\description{
+Estimate multi-regime forecast error variance decomposition
+}
+\examples{
+\dontrun{
+threshold_var_fevd(
+ threshold_var,
+ bootstraps.num = 10)
+}
+
+}
diff --git a/man/threshold_var_irf.Rd b/man/threshold_var_irf.Rd
new file mode 100644
index 0000000..8fab27e
--- /dev/null
+++ b/man/threshold_var_irf.Rd
@@ -0,0 +1,37 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/threshold_var_irf.R
+\name{threshold_var_irf}
+\alias{threshold_var_irf}
+\title{Estimate multi-regime impulse response functions}
+\usage{
+threshold_var_irf(
+ threshold_var,
+ horizon = 10,
+ bootstraps.num = 100,
+ CI = c(0.1, 0.9)
+)
+}
+\arguments{
+\item{threshold_var}{threshold_VAR output}
+
+\item{horizon}{int: number of periods}
+
+\item{bootstraps.num}{int: number of bootstraps}
+
+\item{CI}{numeric vector: c(lower ci bound, upper ci bound)}
+}
+\value{
+list of lists, each regime returns its own list with elements \code{irfs}, \code{ci.lower}, and \code{ci.upper}; all elements are long-form data.frames
+}
+\description{
+Estimate multi-regime impulse response functions
+}
+\examples{
+\dontrun{
+threshold_var_irf(
+ threshold_var,
+ bootstraps.num = 10,
+ CI = c(0.05,0.95))
+}
+
+}
diff --git a/man/var_fevd.Rd b/man/var_fevd.Rd
new file mode 100644
index 0000000..e88c33e
--- /dev/null
+++ b/man/var_fevd.Rd
@@ -0,0 +1,27 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/var_fevd.R
+\name{var_fevd}
+\alias{var_fevd}
+\title{Estimate single-regime forecast error variance decomposition}
+\usage{
+var_fevd(var, horizon = 10)
+}
+\arguments{
+\item{var}{VAR output}
+
+\item{horizon}{int: number of periods}
+}
+\value{
+long-form data.frame
+}
+\description{
+Estimate single-regime forecast error variance decomposition
+}
+\examples{
+\dontrun{
+var_fevd(
+ var,
+ bootstraps.num = 10)
+}
+
+}
diff --git a/man/var_irf.Rd b/man/var_irf.Rd
new file mode 100644
index 0000000..3d4e9c6
--- /dev/null
+++ b/man/var_irf.Rd
@@ -0,0 +1,32 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/var_irf.R
+\name{var_irf}
+\alias{var_irf}
+\title{Estimate single-regime impulse response functions}
+\usage{
+var_irf(var, horizon = 10, bootstraps.num = 100, CI = c(0.1, 0.9))
+}
+\arguments{
+\item{var}{VAR output}
+
+\item{horizon}{int: number of periods}
+
+\item{bootstraps.num}{int: number of bootstraps}
+
+\item{CI}{numeric vector: c(lower ci bound, upper ci bound)}
+}
+\value{
+list object with elements \code{irfs}, \code{ci.lower}, and \code{ci.upper}; all elements are long-form data.frames
+}
+\description{
+Estimate single-regime impulse response functions
+}
+\examples{
+\dontrun{
+var_irf(
+ var,
+ bootstraps.num = 10,
+ CI = c(0.05,0.95))
+}
+
+}
diff --git a/man/var_irf_plot.Rd b/man/var_irf_plot.Rd
new file mode 100644
index 0000000..72e5d0f
--- /dev/null
+++ b/man/var_irf_plot.Rd
@@ -0,0 +1,21 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/var_irf.R
+\name{var_irf_plot}
+\alias{var_irf_plot}
+\title{Plot all IRFs}
+\usage{
+var_irf_plot(irfs, shocks, responses)
+}
+\arguments{
+\item{irfs}{var_irf object}
+
+\item{shocks}{string vector: shocks to plot}
+
+\item{responses}{string vector: responses to plot}
+}
+\value{
+grid of ggplot2 graphs
+}
+\description{
+Plot all IRFs
+}
diff --git a/sovereign.Rproj b/sovereign.Rproj
new file mode 100644
index 0000000..69fafd4
--- /dev/null
+++ b/sovereign.Rproj
@@ -0,0 +1,22 @@
+Version: 1.0
+
+RestoreWorkspace: No
+SaveWorkspace: No
+AlwaysSaveHistory: Default
+
+EnableCodeIndexing: Yes
+UseSpacesForTab: Yes
+NumSpacesForTab: 2
+Encoding: UTF-8
+
+RnwWeave: Sweave
+LaTeX: pdfLaTeX
+
+AutoAppendNewline: Yes
+StripTrailingWhitespace: Yes
+LineEndingConversion: Posix
+
+BuildType: Package
+PackageUseDevtools: Yes
+PackageInstallArgs: --no-multiarch --with-keep.source
+PackageRoxygenize: rd,collate,namespace
diff --git a/tests/testthat.R b/tests/testthat.R
new file mode 100644
index 0000000..9d56026
--- /dev/null
+++ b/tests/testthat.R
@@ -0,0 +1,4 @@
+library(testthat)
+library(sovereign)
+
+test_check("sovereign")
diff --git a/tests/testthat/test-lp.R b/tests/testthat/test-lp.R
new file mode 100644
index 0000000..63ac611
--- /dev/null
+++ b/tests/testthat/test-lp.R
@@ -0,0 +1,33 @@
+test_that("Local projection workflow", {
+
+ # simple time series
+ AA = c(1:100) + rnorm(100)
+ BB = c(1:100) + rnorm(100)
+ CC = AA + BB + rnorm(100)
+ date = seq.Date(from = as.Date('2000-01-01'), by = 'month', length.out = 100)
+ Data = data.frame(date = date, AA, BB, CC)
+ Data = dplyr::mutate(Data, reg = dplyr::if_else(AA > median(AA), 1, 0))
+
+ # local proejctions
+ irfs =
+ lp_irf(
+ data = Data,
+ shock = 'AA',
+ target = 'BB',
+ horizons = 20,
+ lags = 2)
+
+ t.irfs =
+ threshold_lp_irf(
+ data = dplyr::select(Data, -reg),
+ thresholdVar = dplyr::select(Data, reg, date),
+ shock = 'AA',
+ target = 'BB',
+ horizons = 20,
+ lags = 2)
+
+ expect_true(is.data.frame(irfs))
+ expect_true(is.list(t.irfs))
+
+
+})
diff --git a/tests/testthat/test-regimes.R b/tests/testthat/test-regimes.R
new file mode 100644
index 0000000..75f9430
--- /dev/null
+++ b/tests/testthat/test-regimes.R
@@ -0,0 +1,28 @@
+test_that("Regime learning functions", {
+
+ # simple time series
+ AA = c(1:100) + rnorm(100)
+ BB = c(1:100) + rnorm(100)
+ CC = AA + BB + rnorm(100)
+ date = seq.Date(from = as.Date('2000-01-01'), by = 'month', length.out = 100)
+ Data = data.frame(date = date, AA, BB, CC)
+ Data = dplyr::mutate(Data, reg = dplyr::if_else(AA > median(AA), 1, 0))
+
+ # run ml
+ regimes.rf =
+ learn_regimes(
+ data = Data,
+ engine = 'rf'
+ )
+
+ regime.kmeans =
+ learn_regimes(
+ data = Data,
+ engine = 'kmeans',
+ regime.n = 2
+ )
+
+ expect_true(is.data.frame(regimes.rf))
+ expect_true(is.data.frame(regime.kmeans))
+
+})
diff --git a/tests/testthat/test-threvhold_var.R b/tests/testthat/test-threvhold_var.R
new file mode 100644
index 0000000..5beb7bf
--- /dev/null
+++ b/tests/testthat/test-threvhold_var.R
@@ -0,0 +1,44 @@
+test_that("threshold VAR workflow", {
+
+ # simple time series
+ AA = c(1:100) + rnorm(100)
+ BB = c(1:100) + rnorm(100)
+ CC = AA + BB + rnorm(100)
+ date = seq.Date(from = as.Date('2000-01-01'), by = 'month', length.out = 100)
+ Data = data.frame(date = date, AA, BB, CC)
+ Data = dplyr::mutate(Data, reg = dplyr::if_else(AA > median(AA), 1, 0))
+
+ # estimate VAR
+ tvar =
+ threshold_VAR(
+ data = Data,
+ regime = 'reg',
+ p = 1,
+ horizon = 10,
+ freq = 'month')
+
+ expect_true(is.list(tvar))
+ expect_true(is.list(tvar$model))
+ expect_true(is.list(tvar$forecasts))
+ expect_true(is.list(tvar$residuals))
+
+ # estimate IRF
+ irf =
+ threshold_var_irf(
+ tvar,
+ bootstraps.num = 10,
+ CI = c(0.05,0.95))
+
+ expect_true(is.list(irf))
+ expect_true(is.data.frame(irf[[1]]$ci.lower))
+ expect_true(is.data.frame(irf[[1]]$ci.upper))
+
+ # estimate forecast error variance decomposition
+ fevd =
+ threshold_var_fevd(
+ tvar,
+ horizon = 10)
+
+ expect_true(is.list(fevd))
+
+})
diff --git a/tests/testthat/test-var.R b/tests/testthat/test-var.R
new file mode 100644
index 0000000..9533558
--- /dev/null
+++ b/tests/testthat/test-var.R
@@ -0,0 +1,42 @@
+test_that("VAR workflow", {
+
+ # simple time series
+ AA = c(1:100) + rnorm(100)
+ BB = c(1:100) + rnorm(100)
+ CC = AA + BB + rnorm(100)
+ date = seq.Date(from = as.Date('2000-01-01'), by = 'month', length.out = 100)
+ Data = data.frame(date = date, AA, BB, CC)
+
+ # estimate VAR
+ var =
+ VAR(
+ data = Data,
+ p = 1,
+ horizon = 10,
+ freq = 'month')
+
+ expect_true(is.list(var))
+ expect_true(is.list(var$model))
+ expect_true(is.list(var$forecasts))
+ expect_true(is.list(var$residuals))
+
+ # estimate IRF
+ irf =
+ var_irf(
+ var,
+ bootstraps.num = 10,
+ CI = c(0.05,0.95))
+
+ expect_true(is.list(irf))
+ expect_true(is.data.frame(irf$ci.lower))
+ expect_true(is.data.frame(irf$ci.upper))
+
+ # estimate forecast error variance decomposition
+ fevd =
+ var_fevd(
+ var,
+ horizon = 10)
+
+ expect_true(is.data.frame(fevd))
+
+})
diff --git a/vignettes/getting_started.Rmd b/vignettes/getting_started.Rmd
new file mode 100644
index 0000000..5a51fa3
--- /dev/null
+++ b/vignettes/getting_started.Rmd
@@ -0,0 +1,152 @@
+---
+title: "Sovereign, getting started"
+output: rmarkdown::html_vignette
+vignette: >
+ %\VignetteIndexEntry{getting_started}
+ %\VignetteEngine{knitr::rmarkdown}
+ %\VignetteEncoding{UTF-8}
+---
+
+```{r, include = FALSE}
+knitr::opts_chunk$set(
+ collapse = TRUE,
+ comment = "#>"
+)
+
+options(rmarkdown.html_vignette.check_title = FALSE)
+```
+
+
+As the sovereign package is under active development, its **API is not guaranteed to be stable**. As a result, this introductory vignette will remain fairly barebones for the time being, and is meant to simply and succinctly demonstrate the most up-to-date workflow supported by the sovereign package.
+
+## 0. Environment
+
+```{r setup}
+# load packages
+suppressPackageStartupMessages(library(sovereign)) # analysis
+suppressPackageStartupMessages(library(quantmod)) # FRED api
+suppressPackageStartupMessages(library(dplyr)) # general cleaning
+suppressPackageStartupMessages(library(lubridate)) # date functions
+```
+
+## 1. Create Data
+
+```{r}
+# pull and prepare data from FRED
+quantmod::getSymbols.FRED(
+ c('UNRATE','INDPRO','GS10'),
+ env = globalenv())
+
+Data = cbind(UNRATE, INDPRO, GS10)
+
+Data = data.frame(Data, date = zoo::index(Data)) %>%
+ dplyr::filter(lubridate::year(date) >= 1990) %>%
+ na.omit()
+
+```
+
+## 2. Assign Regimes
+
+```{r}
+
+# create a regime explicitly
+Data.threshold = Data %>%
+ mutate(mp = if_else(GS10 > median(GS10), 1, 0))
+
+# assign regimes based on unsurpervised kmeans
+# (will not be used further)
+regimes =
+ learn_regimes(
+ data = Data,
+ regime.n = 3,
+ engine = 'kmeans')
+
+```
+
+## 3. Single-Regime Analaysis
+
+```{r}
+
+#------------------------------------------
+# single-regime var
+#------------------------------------------
+# estimate VAR
+var =
+ VAR(
+ data = Data,
+ p = 1,
+ horizon = 10,
+ freq = 'month')
+
+# estimate IRF
+irf =
+ var_irf(
+ var,
+ bootstraps.num = 10,
+ CI = c(0.05,0.95))
+
+# estimate forecast error variance decomposition
+fevd =
+ var_fevd(
+ var,
+ horizon = 10)
+
+#------------------------------------------
+# single-regime local projection
+#------------------------------------------
+# estimate IRF
+ lp.irfs =
+ lp_irf(
+ data = Data,
+ shock = 'INDPRO',
+ target = 'GS10',
+ horizons = 20,
+ lags = 2)
+
+```
+
+## 4. Multi-Regime Analysis
+
+```{r}
+
+#-------------------------------------------
+# multi-regime var
+#------------------------------------------
+# estimate multi-regime VAR
+tvar =
+ threshold_VAR(
+ data = Data.threshold,
+ regime = 'mp',
+ p = 1,
+ horizon = 1,
+ freq = 'month')
+
+# estimate IRF
+tvar.irf =
+ threshold_var_irf(
+ tvar,
+ horizon = 10,
+ bootstraps.num = 10,
+ CI = c(0.05,0.95))
+
+# estimate forecast error variance decomposition
+tvar.fevd =
+ threshold_var_fevd(
+ tvar,
+ horizon = 10)
+
+#-------------------------------------------
+# multi-regime local projection
+#------------------------------------------
+# estimate IRF
+tlp.irfs =
+ threshold_lp_irf(
+ data = dplyr::select(Data.threshold, -mp),
+ thresholdVar = dplyr::select(Data.threshold, mp, date),
+ shock = 'INDPRO',
+ target = 'GS10',
+ horizons = 20,
+ lags = 2)
+
+
+```