-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSup_train.py
335 lines (253 loc) · 11.7 KB
/
Sup_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# coding: utf-8
# # Package
# In[1]:
import argparse
import os
import sys
import time
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
# get_ipython().run_line_magic('matplotlib', 'inline')
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
import tensorflow as tf
from func.data_generator import get_label_path, DataGenerator
from func.unet_model import NeuralNetwork
from func.plot import plt_learning_curve
from func.callbacks import MyCallbacks
from func.data_generator import my_aug
from func.metrics import mean_iou_score
from func.tool import get_fname
# # Parser
# In[2]:
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', dest='gpu', default='0')
parser.add_argument('--test_mode', dest='test_mode', default= False , type=bool)
### data
parser.add_argument('--SAVEDIR', dest='SAVEDIR', default='model/Unet_rmbg') # 'Unet_5comps', #Unet_rmbg
parser.add_argument('--labeltype', dest='labeltype', default='.png') # '.npy' '.png'
parser.add_argument('--num_class', dest='num_class', default= 1, type=int)
parser.add_argument('--XX_DIR', dest='XX_DIR', default='data/ori/tesri/')
parser.add_argument('--YY_DIR', dest='YY_DIR', default='model/Unsup_rmbg/result_sample/predict_mask_postprocessd/')
parser.add_argument('--image-h', dest='im_h', default=256, type=int)
parser.add_argument('--image-w', dest='im_w', default=256, type=int)
parser.add_argument('--image-c', dest='im_c', default=3, type=int)
### model
parser.add_argument('--epoch', dest='epoch', type=int, default=300)
parser.add_argument('--bz', '--batch-size', dest='bz', type=int, default=16)
parser.add_argument('--lr', '--learning-rate', dest='lr', type=float, default=1e-4)
parser.add_argument('--current_best_val_loss', dest='current_best_val_loss', default=float("inf"), type=float)
parser.add_argument('--earlystop_patience', dest='earlystop_patience', default=25, type=float)
parser.add_argument('--min_delta', dest='min_delta', default=0, type=float)
parser.add_argument('--lr_patience', dest='lr_patience', default= 10, type=int)
parser.add_argument('--lr_reduce_factor', dest='lr_reduce_factor', default= 0.5, type=float)
parser.add_argument('--keep_prob', dest='keep_prob', default= 1, type=float)
parser.add_argument('--log_step', dest='log_step', default= 0.2, type=float)
parser.add_argument('--momentum', dest='momentum', default= 0.9, type=float)
### return parser
args = parser.parse_args()
### set GPU
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
# # Data & Generator
# In[3]:
### DATA PREPARING
XX_DIR = args.XX_DIR
YY_DIR = args.YY_DIR
Xname = os.listdir(YY_DIR)
Xname = [get_fname(name) for name in Xname]
name_train, name_test = train_test_split(Xname, test_size=2/10, random_state=55)
name_train, name_val = train_test_split(name_train, test_size=3/10, random_state=55)
Xtrain = [os.path.join(XX_DIR, name+'.jpg') for name in name_train]
Xval = [os.path.join(XX_DIR, name+'.jpg') for name in name_val]
Xtest = [os.path.join(XX_DIR, name+'.jpg') for name in name_test]
if args.labeltype =='.npy':
if args.num_class==1:
task_type = 'mothmask'
if args.num_class==5:
task_type = 'multilabel'
Ytrain = [get_label_path(i, YY_DIR, task_type = task_type) for i in Xtrain]
Yval = [get_label_path(i, YY_DIR, task_type = task_type) for i in Xval]
Ytest = [get_label_path(i, YY_DIR, task_type = task_type) for i in Xtest]
if args.labeltype =='.png':
Ytrain = [os.path.join(YY_DIR, name+'.png') for name in name_train]
Yval = [os.path.join(YY_DIR, name+'.png') for name in name_val]
Ytest = [os.path.join(YY_DIR, name+'.png') for name in name_test]
print('train: %s, %s' % (len(Xtrain), len(Ytrain)))
print('valid: %s, %s' % (len(Xval), len(Yval)))
print('test : %s, %s' % (len(Xtest), len(Ytest)))
# In[4]:
### Generator
datagen = DataGenerator(input_shape=(args.im_h, args.im_w, args.im_c))
train_gen = datagen.gen_train_data(Xtrain, Ytrain, bz=args.bz, img_augmenter=1)
val_gen = datagen.get_test_data(Xval, Yval, bz=args.bz, img_augmenter=1)
### Epoch & Iter
train_iter = int(np.ceil(len(Xtrain)/(args.bz)))
val_iter = int(np.ceil(len(Xval)/(args.bz)))
if args.test_mode == True:
train_iter, val_iter = 2, 2
# # Model
# In[5]:
md = NeuralNetwork(args = args)
md.build_graph()
md.attach_saver()
# # Train
# In[6]:
### Save DIR
save_dir = '%s/' %(args.SAVEDIR)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
### Model naming
train_logtime = time.strftime("%y%m%d%H%M%S")
if args.test_mode == True:
train_logtime = train_logtime+'_test'
model_dir = os.path.join(save_dir, train_logtime)
with tf.Session(graph=md.graph) as sess:
cb = MyCallbacks(args, model_dir, md, sess)
l_rate = cb.get_current_lr()
### Variable initialization.
sess.run(tf.global_variables_initializer())
### Parameters that should be stored.
params = {}
params['train_loss']=[]
params['valid_loss']=[]
params['train_score']=[]
params['valid_score']=[]
while(cb.get_current_earlystop_status() is not True):
### Train
train_loss_collector = []
stime = time.time()
for train_batch_i in range(train_iter):
print('\r[TRAINING]-----train-mini-Batch ({}/{})'.format(train_batch_i+1, train_iter), end='\r')
x_batch, y_batch= next(train_gen)
train_loss_batch, train_pred_batch, _, __ = sess.run([md.loss_tf,
md.y_pred_tf,
md.train_step_tf,
md.extra_update_ops_tf],
feed_dict={md.x_data_tf: x_batch,
md.y_data_tf: y_batch[:,:,:,0:args.num_class],
md.keep_prob_tf: args.keep_prob,
md.learn_rate_tf: l_rate,
md.training_tf: True})
train_loss_collector = np.append(train_loss_collector, train_loss_batch)
### Valid
valid_loss_collector = []
for valid_batch_i in range(val_iter):
print('\r[Validating]-----valid-mini-Batch ({}/{})'.format(valid_batch_i+1, val_iter), end='\r')
x_valid_batch, y_valid_batch= next(val_gen)
val_loss_batch, val_pred_batch = sess.run([md.loss_tf,
md.y_pred_tf],
feed_dict = {md.x_data_tf: x_valid_batch,
md.y_data_tf: y_valid_batch[:,:,:,0:args.num_class],
md.keep_prob_tf: 1.0})
valid_loss_collector = np.append(valid_loss_collector, val_loss_batch)
### training log
train_loss = np.mean(train_loss_collector)
valid_loss = np.mean(valid_loss_collector)
params['train_loss'].extend([train_loss])
params['valid_loss'].extend([valid_loss])
### callbacks
epoch_counter = cb.update_record(train_loss = train_loss,
valid_loss = valid_loss,
l_rate=l_rate,
save_ckpt = True,
earlystop = True,
reduce_lr = True,
print_out = True)
l_rate = cb.get_current_lr()
if epoch_counter >= cb.get_epoch():
break
print('Training Ended')
print('model_dir: ', model_dir)
# In[7]:
### learning curve
best_val_loss = min(params['valid_loss'])
best_epoch = np.argmin(params['valid_loss'])
sub = 'min val_loss %.4f at epoch %s' % (best_val_loss, best_epoch)
fig = plt_learning_curve(params['train_loss'], params['valid_loss'],
title = 'Loss', sub = '%s | %s' %(model_dir, sub))
if not os.path.exists(model_dir):
os.makedirs(model_dir)
fig.savefig(os.path.join(model_dir, 'loss.png'))
print('model_dir: ', model_dir)
fig
# # Test
# In[8]:
### Generator & training setting
datagen = DataGenerator(input_shape=(args.im_h, args.im_w, args.im_c))
test_gen = datagen.get_test_data(Xtest, Ytest, bz=args.bz)
test_iter = int(np.ceil(len(Xtest)/(args.bz)))
epoch = args.epoch
if args.test_mode == True:
test_iter = 2
epoch = 10
# In[9]:
# ### Test on previous model
# model_dir = 'model/Unet_rmbg/181121113804'
### Test on current model
checkpoint_path = os.path.join(model_dir, 'model_ckpt')
with tf.Session(graph=md.graph) as sess:
sess.run(tf.global_variables_initializer()) # Variable initialization.
meta_to_restore = checkpoint_path+'.meta'
saver = tf.train.import_meta_graph(meta_to_restore)
saver.restore(sess,checkpoint_path)
print('Model Restored')
test_loss_collector = []
overall_miou = 0
for test_batch_i in range(test_iter):
print('\r[Testing]-----test-mini-Batch ({}/{})'.format(test_batch_i+1, test_iter), end='\r')
#x_test_batch, y_test_batch, path = next(test_gen)
x_test_batch, y_test_batch = next(test_gen)
test_loss_batch, test_pred_batch = sess.run([md.loss_tf,md.y_pred_tf],
feed_dict = {md.x_data_tf: x_test_batch,
md.y_data_tf: y_test_batch[:,:,:,0:args.num_class],
md.keep_prob_tf: 1.0})
test_loss_collector = np.append(test_loss_collector, test_loss_batch)
### mIoU
for idx in range(args.bz):
### making background channel
plain = np.ones((256, 256))
for i in range(args.num_class):
true_y = y_test_batch[idx]
plain = plain-true_y[:,:,i]
plain = np.where(plain>0.5, 1, 0)
plain = np.expand_dims(plain, axis=2)
true_y = np.concatenate((true_y,plain), axis = 2)
### making background channel
plain = np.ones((256, 256))
for i in range(args.num_class):
pred_y = test_pred_batch[idx]
plain = plain-pred_y[:,:,i]
plain = np.where(plain>0.5, 1, 0)
plain = np.expand_dims(plain, axis=2)
pred_y = np.concatenate((pred_y,plain), axis = 2)
true_y = np.argmax(true_y, axis=2)
pred_y = np.argmax(pred_y, axis=2)
print(mean_iou_score(pred_y, true_y, n_labels = args.num_class+1))
overall_miou += mean_iou_score(pred_y, true_y, n_labels = args.num_class+1)
mIoU = overall_miou/(test_iter * args.bz)
print('overall_miou on BRCAS:', mIoU)
#########################################
test_loss = np.mean(test_loss_collector)
print('\ntest loss: %.4f' % test_loss)
# # SAVE_LOG
# In[10]:
### Save log
summary_save = '%s/training_summary.csv' %(args.SAVEDIR)
# save into dictionary
sav = vars(args)
sav['test_loss'] = test_loss
sav['mIoU'] = mIoU
sav['model_dir'] = model_dir
sav['best_val_loss'] = best_val_loss
sav['best_epoch'] = best_epoch
### Append into summary files
dnew = pd.DataFrame(sav, index=[0])
if os.path.exists(summary_save):
dori = pd.read_csv(summary_save)
dori = pd.concat([dori, dnew])
dori.to_csv(summary_save, index=False)
else:
dnew.to_csv(summary_save, index=False)
print(summary_save)