-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrigidWink.py
446 lines (398 loc) · 13.9 KB
/
rigidWink.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# Calculation for the winkler rigid plate model
# Coded by tsunoppy on Sunday
import math
import openpyxl
from openpyxl.utils import get_column_letter # 列幅の指定 2020/05/27
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
# File Control
import os
class Winkler:
########################################################################
# Init
def __init__(self):
self.x = [] # Xdir. position (m)
self.y = [] # Ydir. position (m)
self.r = [] # Rotation, 1
self.kd = [] # Local stiffness vector
self.sd = [] # Local area vector
self.ag = 0. # area
self.xg = 0. # gravity center
self.yg = 0. # gravity center
self.gmax = 0. # graph area
self.gmin = 0. # graph area
self.error = "" # Error Message
########################################################################
# Make Model
def getModel(self,xx1,xx2,yy1,yy2,ndimx,ndimy,kb):
# data.xlsx からデータを読み込む
# 戻り値 0: 失敗, 1: 成功
try:
# xx1,xx2,yy1,yy2,kb,ndimx,ndimy
# m,m,m,m,kN/m2/m,-,-
for i in range(0,len(xx1)):
self.creatMatrix(xx1[i],xx2[i],yy1[i],yy2[i],kb[i],ndimx[i],ndimy[i])
return 1
except Exception as err:
print(err)
return 0
########################################################################
# View Model
def viewModel(self,r_model):
# Spring Position View
xmax = max(self.x)
xmin = min(self.x)
ymax = max(self.y)
ymin = min(self.y)
self.gmax = max(xmax,ymax)
self.gmin = min(xmin,ymin)
"""
plt.xlim(gmin-2,gmax+2)
plt.ylim(gmin-2,gmax+2)
"""
fig = plt.figure(figsize=(4,4))
plt.axes().spines['right'].set_visible(False)
plt.axes().spines['top'].set_visible(False)
#plt.axes().set_aspect('equal')
"""
plt.scatter(self.x,self.y,label="Spring Position", s=1,color="black")
plt.scatter(self.xg,self.yg, label="Gravity Center", color="red")
plt.legend()
"""
plt.tick_params(labelsize="9")
plt.scatter(self.x,self.y,s=r_model,color="black")
sg = r_model*3.0
plt.scatter(self.xg,self.yg, s=sg, color="red")
plt.axis('square')
plt.show()
plt.close(fig)
########################################################################
# Make Model Matrix
def creatMatrix(self,xx1,xx2,yy1,yy2,kb,ndimx,ndimy):
delx = (xx2-xx1)/float(ndimx)
dely = (yy2-yy1)/float(ndimy)
# print(delx,dely)
# Create spring position
for j in range(0,ndimy+1):
for i in range(0, ndimx+1):
self.x.append(float(xx1+float(i)*delx))
self.y.append(float(yy1+float(j)*dely))
self.r.append(float(1))
"""
# Check Data read
k=1
for j in range(0,ndimy+1):
for i in range(0, ndimx+1):
idx = i + (ndimx+1) * j
#print(i,j,"ID=",idx,"Position[m]=",x[idx],y[idx])
k = k+1
print("xsize=", len(x), "ysize=",len(y))
"""
# Create spring properties
# local area
sc = delx*dely/4
ss = delx*dely/2
st = delx*dely
# local stiffness
kc = kb*delx*dely/4
ks = kb*delx*dely/2
kt = kb*delx*dely
for j in range(0,ndimy+1):
for i in range(0,ndimx+1):
# For Corner
if i == 0 and j == 0 \
or i == ndimx and j == 0 \
or i == 0 and j == ndimy \
or i == ndimx and j == ndimy:
self.kd.append(kc)
self.sd.append(sc)
# For Side
elif i == 0 and 1 <= j and j < ndimy \
or ( i == ndimx and 1 <= j and j < ndimy ) \
or ( 1 <= i and i < ndimx and j == 0) \
or ( 1 <= i and i < ndimx and j == ndimy):
self.kd.append(ks)
self.sd.append(ss)
else:
self.kd.append(kt)
self.sd.append(st)
# print(i,j,kd[i+j*ndimx])
########################################################################
# Make Gravity center
def getG(self,xx1,xx2,yy1,yy2):
tmpag = 0.
tmpxg = 0.
tmpyg = 0.
suma = 0.
sumxg = 0.
sumyg = 0.
for i in range(0,len(xx1)):
tmpag = (xx2[i]-xx1[i])*(yy2[i]-yy1[i])
tmpxg = (xx2[i]+xx1[i])/2.0
tmpyg = (yy2[i]+yy1[i])/2.0
suma = suma + tmpag
sumxg = sumxg + tmpxg*tmpag
sumyg = sumyg + tmpyg*tmpag
self.xg = float(sumxg)/float(suma)
self.yg = float(sumyg)/float(suma)
self.ag = float(suma)
# Check Result
print("g = ", self.xg,self.yg, "a=",self.ag)
# Save Model Input
savefile = "./db/input.txt"
lines = "## Center of Gravity\n"
lines += " "
lines += "gx = {:.2f} m".format(self.xg)+", "
lines += "gy = {:.2f} m".format(self.yg)+", "
lines += "A = {:.2f} m2".format(self.yg)+"\n"
lines += "\n"
self.out_add(savefile,lines)
########################################################################
# write output text file
def out(self,outFile,lines):
fout = open(outFile, "w")
fout.writelines(lines)
fout.close()
# add output text file
def out_add(self,outFile,lines):
fout = open(outFile, "a")
fout.writelines(lines)
fout.close()
########################################################################
# Solve Matrix analysis
def solve(self,title,index,nn,mmx,mmy,r_model,r_uplift):
details = "### Analysis detail ----------- \n"
details += "# Start Solve------\n"
force = np.array([mmx,mmy,nn])
# 釣り合いマトリクス, A
#print(self.x)
vecXg = self.xg*np.array(self.r)
vecYg = self.yg*np.array(self.r)
a = np.array(self.x)-vecXg
a = np.vstack((a,np.array(self.y)-vecYg))
a = np.vstack((a,np.array(self.r)))
# 転置行列 AT
at = a.T
# 対角行列の作成, Local 剛性マトリクス
kdtmp = np.array(self.kd)
#kk = np.diag(self.kd)
#####
# 収歛計算
for ii in range(0,100):
details += "Cal_" + str(ii+1) + "\n"
# 縮合マトリックス
kk = np.diag(kdtmp)
kkk = a @ kk @ at
# 逆マト
#kkkinv = kkk**-1
kkkinv = np.linalg.inv(kkk)
# Solve disp.
disp = kkkinv @ force
disp2 = at @ disp
spforce = kk @ disp2
# itelation
ind = 0
for i in range(0,len(spforce)):
if spforce[i] < 0:
np.put(kdtmp,[i],0.0)
ind = 1
if ind == 0:
details += "break\n---"
break
# Cal for output
# Total Area
# 接地圧, kN/m2
sig = spforce // np.array(self.sd)
sigmax = 0.0
sigmin = 100000.0
for i in range(0,len(sig)):
if sigmax < sig[i]:
sigmax = sig[i]
sigmaxId = i
if sigmin > sig[i]:
sigmin = sig[i]
sigminId = i
# 接地率
sbar = 0.0
upliftx = []
uplifty = []
for i in range(0,len(spforce)):
if kdtmp[i] != 0.0:
sbar = sbar + self.sd[i]
else:
upliftx.append(self.x[i])
uplifty.append(self.y[i])
eta = sbar/self.ag*100.0
# Checkoutput
####################
"""
print("*** Analysis detail -----------")
print("K = A*K*AT = \n",kkk)
print("K^-1= \n",kkkinv)
print("f = [Mx, My, Nz] = \n",force)
print("d = [tx, ty, dz] = \n",disp)
print("d' = \n", disp2)
print("f' = \n", spforce)
print("sig = \n", sig)
print("sigMax = \n", sigmax)
print("sigMin = \n", sigmin)
print("eta = \n", eta)
"""
# Details
####################
details += "K = A*K*AT = \n"
details += str(kkk) + "\n"
details += "K^-1= \n"
details += str(kkkinv) + "\n"
details += "f = [Mx, My, Nz] = \n"
details += str(force) + "\n"
details += "d = [tx, ty, dz] = \n"
details += str(disp) + "\n"
details += "d' = \n"
details += str(disp2) + "\n"
details += "f' = \n"
details += str(spforce) + "\n"
details += "sig = \n"
details += str(sig) + "\n"
details += "sigMax = "
details += str(sigmax) + "\n"
details += "sigMin = "
details += str(sigmin) + "\n"
details += "eta ="
details += str(eta) + "\n"
lines = "\n"
lines += "# Case: " + str(title) + "\n"
lines += "\n"
lines += "# Load:\n"
lines += " N = "
lines += " {:.0f} kN\n".format(force[2])
lines += " Mx = "
lines += " {:.0f} kN.m\n".format(force[0])
lines += " My = "
lines += " {:.0f} kN.m\n".format(force[1])
lines += "\n"
lines += "# Disp.:\n"
lines += " dz = "
lines += "{:.0f} mm\n".format(disp[2]*1000)
lines += " tx = "
lines += "1/{:.0f} rad\n".format(1.0/disp[0])
lines += " ty = "
lines += "1/{:.0f} rad\n".format(1.0/disp[1])
lines += "\n"
lines += "# Max.:\n"
lines += " Vertial Disp. : "
lines += " {:.0f} mm\n".format(np.max(disp2)*1000)
lines += " Max. Pressure : "
lines += " {:.0f} kN/m2\n".format(sigmax)
lines += " Min. Pressure : "
lines += " {:.0f} kN/m2\n".format(sigmin)
lines += " Max. Angle : "
maxtheta = 1.0/(math.sqrt(disp[0]**2+disp[1]**2))
lines += " 1/{:.0f} rad\n".format(maxtheta)
lines += " Contact Ratio : "
lines += " {:.0f} %\n".format(eta)
xx = np.array(self.x)
yy = np.array(self.y).T
########################################################################
# Interactive Glaph
"""
plt.axes().set_aspect('equal')
plt.scatter(xx,yy,c=sig,cmap='Reds', vmin=0.0)
plt.colorbar()
plt.show()
"""
# Model Plot
fig = plt.figure(figsize=(4,4))
plt.axes().spines['right'].set_visible(False)
plt.axes().spines['top'].set_visible(False)
# plt.axes().set_aspect('equal')
plt.tick_params(labelsize="9")
sg = r_model*3.0
plt.scatter(self.x,self.y, s=r_model,color="black")
plt.scatter(self.xg,self.yg, s=sg, color="red")
plt.axis('square')
savefile = "./db/model.png"
fig.savefig(savefile, format="png", dpi=300)
plt.close(fig)
"""
# Uplift Spring plot
fig = plt.figure(figsize=(4,4))
plt.axes().spines['right'].set_visible(False)
plt.axes().spines['top'].set_visible(False)
plt.axes().set_aspect('equal')
plt.tick_params(labelsize="9")
plt.scatter(self.x,self.y, s=1,color="black")
plt.scatter(self.xg,self.yg, color="red")
if len(upliftx) != 0:
plt.scatter(upliftx,uplifty,s=1,color="blue")
savefile = "./db/uplift_"+str(index)+".png"
fig.savefig(savefile, format="png", dpi=300)
plt.close(fig)
"""
# Stress plot
fig = plt.figure(figsize=(4,4))
plt.axes().spines['right'].set_visible(False)
plt.axes().spines['top'].set_visible(False)
#plt.axes().set_aspect('equal')
plt.tick_params(labelsize="9")
plt.scatter(xx,yy,c=sig,cmap='Reds',vmin=0.0)
# uplift location
if len(upliftx) != 0:
for i in range(0,len(upliftx)):
c = patches.Circle(xy=(upliftx[i],uplifty[i]), radius=r_uplift, fc='b' )
plt.axes().add_patch(c)
plt.axis('square')
savefile = "./db/result_"+str(index)+".png"
fig.savefig( savefile, format="png", dpi=300)
plt.close(fig)
# save result text
savefile = "./db/result_"+str(index)+".txt"
self.out(savefile,lines)
savefile = "./db/detail_"+str(index)+".txt"
self.out(savefile,details)
########################################################################
# End Class
"""
obj = Winkler()
# Force
nn = 1400000.0 # Axial Force, kN
mmx = 0 # Over Turning Moment, kN.m
mmx = 15000000.0 # Over Turning Moment, kN.m
mmy = 15000000.0 # Over Turning Moment, kN.m
#mmy = 8000000.0 # Over Turning Moment, kN.m
xx1 = []
xx2 = []
yy1 = []
yy2 = []
ndimx = []
ndimy = []
kb = []
xx1.append(0.0)
xx2.append(100.0)
yy1.append(0.0)
yy2.append(30.0)
ndimx.append(100)
ndimy.append(30)
kb.append(50000.0)
xx1.append(0.0)
xx2.append(50.0)
yy1.append(30.0)
yy2.append(60.0)
ndimx.append(50)
ndimy.append(30)
kb.append(50000.0)
print("------------------------------")
if obj.getModel(xx1,xx2,yy1,yy2,ndimx,ndimy,kb):
obj.getG(xx1,xx2,yy1,yy2)
obj.viewModel()
print("Complete Model Making")
else:
del obj
obj = Winkler()
print("Fail Model Making")
obj.solve(nn,mmx,mmy)
print("------------------------------")
obj.solve(nn,0,0)
print("Complete")
"""