-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathoptimize-rdock-qsub.py
150 lines (122 loc) · 4.72 KB
/
optimize-rdock-qsub.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from __future__ import print_function
import argparse
import copy
import nltk
import time
import numpy as np
from rdkit import Chem
from rdkit import rdBase
import cfg_util
import rdock_util
import zinc_grammar
rdBase.DisableLog('rdApp.error')
GCFG = zinc_grammar.GCFG
def CFGtoGene(prod_rules, max_len=-1):
gene = []
for r in prod_rules:
lhs = GCFG.productions()[r].lhs()
possible_rules = [idx for idx, rule in enumerate(GCFG.productions())
if rule.lhs() == lhs]
gene.append(possible_rules.index(r))
if max_len > 0:
if len(gene) > max_len:
gene = gene[:max_len]
else:
gene = gene + [np.random.randint(0, 256)
for _ in range(max_len-len(gene))]
return gene
def GenetoCFG(gene):
prod_rules = []
stack = [GCFG.productions()[0].lhs()]
for g in gene:
try:
lhs = stack.pop()
except Exception:
break
possible_rules = [idx for idx, rule in enumerate(GCFG.productions())
if rule.lhs() == lhs]
rule = possible_rules[g % len(possible_rules)]
prod_rules.append(rule)
rhs = filter(lambda a: (type(a) == nltk.grammar.Nonterminal)
and (str(a) != 'None'),
zinc_grammar.GCFG.productions()[rule].rhs())
stack.extend(list(rhs)[::-1])
return prod_rules
def mutation(gene):
idx = np.random.choice(len(gene))
gene_mutant = copy.deepcopy(gene)
gene_mutant[idx] = np.random.randint(0, 256)
return gene_mutant
def canonicalize(smiles):
mol = Chem.MolFromSmiles(smiles)
if smiles != '' and mol is not None and mol.GetNumAtoms() > 1:
return Chem.MolToSmiles(mol)
else:
return smiles
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--smifile', default='250k_rndm_zinc_drugs_clean.smi')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--mu', type=int, default=32)
parser.add_argument('--lam', type=int, default=64)
parser.add_argument('--generation', type=int, default=1000)
args = parser.parse_args()
np.random.seed(args.seed)
gene_length = 300
N_mu = args.mu
N_lambda = args.lam
# initialize population
seed_smiles = []
with open(args.smifile) as f:
for line in f:
smiles = line.rstrip()
seed_smiles.append(smiles)
start_time = time.time()
initial_smiles = np.random.choice(seed_smiles, N_mu+N_lambda)
initial_smiles = [s for s in initial_smiles]
initial_genes = [CFGtoGene(cfg_util.encode(s), max_len=gene_length)
for s in initial_smiles]
initial_scores = rdock_util.score_qsub(initial_smiles)
population = []
for score, gene, smiles in zip(initial_scores, initial_genes,
initial_smiles):
population.append((score, smiles, gene))
population = sorted(population, key=lambda x: x[0])[:N_mu]
all_smiles = [canonicalize(p[1]) for p in population]
all_result = [(p[0], s) for p, s in zip(population, all_smiles)]
scores = [p[0] for p in population]
max_score = np.max(scores)
elapsed_time = time.time() - start_time
print("%{},{},{}".format(0, max_score, elapsed_time))
for p in population:
print("{},{}".format(p[0], p[1]))
for generation in range(args.generation):
new_population_smiles = []
new_population_genes = []
for _ in range(N_lambda):
p = population[np.random.randint(len(population))]
p_gene = p[2]
c_gene = mutation(p_gene)
c_smiles = canonicalize(cfg_util.decode(GenetoCFG(c_gene)))
if c_smiles != '' and c_smiles not in all_smiles:
new_population_smiles.append(c_smiles)
new_population_genes.append(c_gene)
all_smiles.append(c_smiles)
new_population_scores = rdock_util.score_qsub(new_population_smiles)
for score, gene, smiles in zip(new_population_scores,
new_population_genes,
new_population_smiles):
population.append((score, smiles, gene))
all_result.append((score, smiles))
population = sorted(population, key=lambda x: x[0])[:N_mu]
scores = [i[0] for i in population]
max_score = np.max(scores)
elapsed_time = time.time() - start_time
print("%{},{},{}".format(generation+1, max_score, elapsed_time))
for p in population:
print("{},{}".format(p[0], p[1]))
print("list of generated smiles:")
for r in all_result:
print("{},{}".format(r[0], r[1]))
if __name__ == "__main__":
main()