-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtfer_1S_pb.m
51 lines (39 loc) · 1.82 KB
/
tfer_1S_pb.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
% TFER_1S_PB Evaluates the transfer function for a PMA in Case A (w/ parabolic flow).
% Author: Timothy Sipkens, 2018-12-27
%
% Inputs:
% sp Structure defining various setpoint parameters
% (e.g. m_star, V). Use 'get_setpoint' method to generate
% this structure.
% m Particle mass
% d Particle mobility diameter
% z Integer charge state
% prop Device properties (e.g. classifier length)
%
% Outputs:
% Lambda Transfer function
% G0 Function mapping final to initial radial position
%=========================================================================%
function [Lambda,G0] = tfer_1S_pb(sp,m,d,z,prop)
[tau,~,~,rs] = parse_inputs(sp, m, d, z, prop);
% parse inputs for common parameters
%-- Estimate device parameter --------------------------------------------%
lam = 2 .* tau .* ([sp.alpha]' .^ 2 - [sp.beta]' .^ 2 ./ (rs.^4)) .* prop.L ./ prop.v_bar;
A1 = -3 * prop.L ./ (2 .* lam .* prop.del^2);
A2 = rs.^2 + prop.rc^2 - 2*prop.rc.*rs - prop.del^2;
% Loop over setpoints.
Lambda = zeros(size(A1));
for jj=1:size(Lambda,1)
A3 = @(r,ii) (r.^2) ./2 + (rs(jj,ii) - 2 * prop.rc) .* r;
%-- Set up F function for minimization -------------------------------%
F = @(r,ii) A1(jj,ii) .* (A2(jj,ii) .* log(r - rs(jj,ii)) + A3(r,ii));
min_fun = @(rL,r0,ii) F(rL,ii) - F(r0,ii) - prop.L;
%-- Evaluate G0 and transfer function --------------------------------%
G0 = @(r) G_fun(min_fun, r, rs(jj,:), ...
prop.r1, prop.r2, sp(jj).alpha, sp(jj).beta);
ra = min(prop.r2, max(prop.r1, G0(prop.r1)));
rb = min(prop.r2, max(prop.r1, G0(prop.r2)));
Lambda(jj,:) = 3/4 .* (rb - ra) ./ prop.del - 1/4 .* ((rb - prop.rc) ./ prop.del).^3+...
1/4 .* ((ra - prop.rc) ./ prop.del).^3;
end
end