-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtfer_1C_pb.m
59 lines (47 loc) · 2.17 KB
/
tfer_1C_pb.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
% TFER_1C_PB Evaluates the transfer function for a PMA in Case B (w/ parabolic flow).
% Author: Timothy Sipkens, 2019-03-21
%
% Inputs:
% sp Structure defining various setpoint parameters
% (e.g. m_star, V). Use 'get_setpoint' method to generate
% this structure.
% m Particle mass
% d Particle mobility diameter
% z Integer charge state
% prop Device properties (e.g. classifier length)
%
% Outputs:
% Lambda Transfer function
% G0 Function mapping final to initial radial position
%=========================================================================%
function [Lambda, G0] = tfer_1C_pb(sp, m, d, z, prop)
[tau,C0,~,rs] = parse_inputs(sp,m,d,z,prop);
% parse inputs for common parameters
%-- Taylor series expansion constants ------------------------------------%
C3 = tau .* ([sp.alpha]' .^ 2 .* prop.rc + ...
2 .* [sp.alpha]' .* [sp.beta]' ./ prop.rc + ...
[sp.beta]' .^ 2 ./ (prop.rc .^ 3) - C0 ./ (m .* prop.rc));
C4 = tau .* ([sp.alpha]' .^ 2 - ...
2 .* [sp.alpha]' .* [sp.beta]' ./ (prop.rc .^ 2) - ...
3 .* [sp.beta]' .^ 2 ./ (prop.rc .^ 4) + ...
C0 ./ (m .* (prop.rc .^ 2)));
A1 = -3 * prop.v_bar ./ (4 .* C4 .^ 3 .* prop.del ^ 2);
A2 = 2 .* (C3 .^ 2 - C4 .^ 2 .* prop.del ^ 2);
% Loop over setpoints.
Lambda = zeros(size(A1));
for jj=1:size(Lambda,1)
A3 = @(r,ii) C4(jj,ii) .^ 2 .* (r-prop.rc) .^ 2 - 2 .* C3(jj,ii) .* C4(jj,ii) .* (r-prop.rc);
%-- Set up F function for minimization -------------------------------%
F = @(r,ii) A1(jj,ii) .* (A2(jj,ii) .* ...
log(abs(C4(jj,ii) .* (r - prop.rc) + C3(jj,ii))) + A3(r,ii));
min_fun = @(rL,r0,ii) F(rL,ii) - F(r0,ii) - prop.L;
%-- Evaluate G0 and transfer function --------------------------------%
G0 = @(r) G_fun(min_fun, r, rs(jj,:), ...
prop.r1, prop.r2, sp(jj).alpha, sp(jj).beta);
ra = min(prop.r2, max(prop.r1, G0(prop.r1)));
rb = min(prop.r2, max(prop.r1, G0(prop.r2)));
Lambda(jj,:) = 3/4 .* (rb - ra) ./ prop.del - ...
1/4 .* ((rb - prop.rc) ./ prop.del) .^ 3 + ...
1/4 .* ((ra - prop.rc) ./ prop.del) .^ 3;
end
end