-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppo.py
273 lines (241 loc) · 12.1 KB
/
ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import argparse, random, os
from typing import List, Tuple
import gymnasium as gym
from gymnasium.spaces import Space, Box, Discrete
import torch
import torch.nn as nn
from torch.optim import Adam
import numpy as np
import common.mpi_utils as mpi
from common.policy import CategoricalPolicy, DiagonalGaussianPolicy
from common.vf import StateValueFunction
from common.utils import set_seed, to_tensor, dim
from common.buffer import RolloutBuffer
from common.logger import Logger
class ActorCritic(nn.Module):
def __init__(self,
obs_space: Space,
action_space: Space,
hidden_sizes: List[int]=[64, 64],
activation: nn.Module=nn.Tanh,
device: str='cpu') -> None:
super().__init__()
obs_dim = dim(obs_space)
action_dim = dim(action_space)
# continous action space
if isinstance(action_space, Box):
self.actor = DiagonalGaussianPolicy(obs_dim, action_dim, hidden_sizes, activation).to(device)
# discrete action space
elif isinstance(action_space, Discrete):
self.actor = CategoricalPolicy(obs_dim, action_dim, hidden_sizes, activation).to(device)
self.critic = StateValueFunction(obs_dim, hidden_sizes, activation).to(device)
class PPO:
"""
PPO w/ Generalized Advantage Estimators &
using rewards-to-go as target for the value function
:param env: (str) Environment name
:param exp_name: (str) Experiment name
:param cpu: (int) Number of CPUs for parallel computing
:param seed: (int) Seed for RNG
:param hidden_sizes: (List[int]) Sizes of policy & Q networks' hidden layers
:param pi_lr: (float )Learning rate for policy opitimizer
:param v_lr: (float) Learning rate for value function optimizer
:param epochs: (int) Number of epochs
:param steps_per_epoch: (int) Maximum number of steps per epoch
:param train_pi_iters: (int) Number of GD-steps to take on policy loss per epoch
:param train_v_iters: (int) Number of GD-steps to take on value function per epoch
:param max_ep_len: (int) Maximum episode/trajectory length
:param gamma: (float) Discount factor
:param lamb: (float) Lambda for GAE
:param kl_target: (float) KL divergence threshold
:param clip: (bool) Whether to use clipping, enable penalty otherwise
:param clip_ratio: (float) Hyperparamter for clipping the policy objective
:param save: (bool) Whether to save the final model.
:param save_every: (int) Model saving frequency.
:param render: (bool) Whether to render the training result.
:param plot: (bool) Whether to plot the statistics.
"""
def __init__(self, args) -> None:
self.env = gym.make(args.env)
set_seed(args.seed + 10 * mpi.proc_rank())
observation_space = self.env.observation_space
action_space = self.env.action_space
self.device = 'cuda:0' if torch.cuda.is_available() and args.cpu == 1 else 'cpu'
self.ac = ActorCritic(observation_space, action_space, args.hidden_sizes, device=self.device)
mpi.sync_params(self.ac)
self.actor_opt = Adam(self.ac.actor.parameters(), lr=args.pi_lr)
self.critic_opt = Adam(self.ac.critic.parameters(), lr=args.v_lr)
self.epochs = args.epochs
self.proc_steps_per_epoch = int(args.steps_per_epoch / mpi.n_procs())
self.steps_per_epoch = args.steps_per_epoch
self.train_pi_iters = args.train_pi_iters
self.train_v_iters = args.train_v_iters
self.max_ep_len = args.max_ep_len
self.buffer = RolloutBuffer(self.proc_steps_per_epoch, args.gamma, args.lamb)
self.kl_target = args.kl_target
if args.clip:
self.clip_ratio = args.clip_ratio
else:
pass
self.save = args.save
self.save_every = args.save_every
self.render = args.render
self.plot = args.plot
if args.exp_name:
exp_name = args.exp_name
log_dir = os.path.join(os.getcwd(), 'data', exp_name, f'{exp_name}_s{args.seed}')
else:
log_dir = None
config_dict = vars(args)
config_dict['algo'] = 'ppo'
self.logger = Logger(log_dir=log_dir)
self.logger.save_config(config_dict)
self.logger.set_saver(self.ac)
def update_params(self) -> None:
"""Update policy & value networks' parameters"""
def compute_pi_loss(observations, actions, logps_old, advs):
pi, logps = self.ac.actor(observations, actions)
log_ratio = logps - logps_old
ratio = log_ratio.exp()
loss_cpi = ratio * advs
clip_advs = ((1 + self.clip_ratio) * (advs > 0) + (1 - self.clip_ratio) * (advs < 0)) * advs
pi_loss = -torch.min(loss_cpi, clip_advs).mean()
# approximated avg KL
# approx_kl = (-log_ratio).mean().item()
# http://joschu.net/blog/kl-approx.html
approx_kl = ((ratio - 1) - log_ratio).mean().item()
return pi_loss, approx_kl
def compute_v_loss(observations, rewards_to_go):
v_values = self.ac.critic(observations)
v_loss = ((v_values - rewards_to_go) ** 2).mean()
return v_loss, v_values
observations, actions, logps_prob, advs, rewards_to_go \
= map(lambda x: x.to(self.device), self.buffer.get())
for step in range(1, self.train_pi_iters + 1):
self.actor_opt.zero_grad()
pi_loss, approx_kl = compute_pi_loss(observations, actions, logps_prob, advs)
kl = mpi.mpi_avg(approx_kl)
if kl > 1.5 * self.kl_target:
self.logger.log(f'Early stopping at step {step} due to exceeding KL target')
break
pi_loss.backward()
mpi.mpi_avg_grads(self.ac.actor)
self.actor_opt.step()
for _ in range(self.train_v_iters):
self.critic_opt.zero_grad()
v_loss, v_values = compute_v_loss(observations, rewards_to_go)
v_loss.backward()
mpi.mpi_avg_grads(self.ac.critic)
self.critic_opt.step()
self.logger.add({
'pi-loss': pi_loss.item(),
'v-loss': v_loss.item(),
'v-values': v_values.detach().cpu().numpy(),
'kl': kl
})
def select_action(self, observation: np.ndarray, action_only: bool=True) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
observation = to_tensor(observation, device=self.device)
with torch.no_grad():
pi = self.ac.actor._distribution(observation)
action = pi.sample()
if action_only:
return action.cpu().numpy()
log_prob = self.ac.actor._log_prob(pi, action)
value = self.ac.critic(observation)
return action.cpu().numpy(), log_prob.cpu().numpy(), value.cpu().numpy()
def load(self, model_path: str) -> None:
"""Model loading"""
self.ac.load_state_dict(torch.load(model_path))
def train(self) -> None:
for epoch in range(1, self.epochs + 1):
step = 0
while step < self.proc_steps_per_epoch:
observation, _ = self.env.reset()
rewards = []
while True:
action, log_prob, value = self.select_action(observation, action_only=False)
next_observation, reward, terminated, truncated, _ = self.env.step(action)
self.buffer.add(observation, action, reward, value.item(), log_prob.item())
observation = next_observation
rewards.append(reward)
step += 1
if terminated or truncated or (len(rewards) == self.max_ep_len) \
or (step == self.proc_steps_per_epoch):
if terminated or truncated:
value = 0
self.logger.add({
'episode-return': sum(rewards),
'episode-length': len(rewards)
})
else:
_, _, value = self.select_action(observation, action_only=False)
self.buffer.finish_rollout(value)
break
self.update_params()
self.logger.log_epoch('epoch', epoch)
self.logger.log_epoch('pi-loss', average_only=True)
self.logger.log_epoch('v-loss', average_only=True)
self.logger.log_epoch('v-values', need_optima=True)
self.logger.log_epoch('kl', average_only=True)
self.logger.log_epoch('episode-return', need_optima=True)
self.logger.log_epoch('episode-length', average_only=True)
self.logger.log_epoch('total-env-interacts', epoch * self.steps_per_epoch)
self.logger.dump_epoch()
if self.save and epoch % self.save_every == 0:
self.logger.save_state()
self.env.close()
if self.render:
self.logger.render(self.select_action)
if self.plot:
self.logger.plot()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Proximal Policy Optimization')
parser.add_argument('--env', type=str, default='HalfCheetah-v4',
help='Environment ID')
parser.add_argument('--exp-name', type=str, default='ppo',
help='Experiment name')
parser.add_argument('--cpu', type=int, default=4,
help='Number of CPUs for parallel computing')
parser.add_argument('--seed', type=int, default=0,
help='Seed for RNG')
parser.add_argument('--hidden-sizes', nargs='+', type=int, default=[64, 32],
help="Sizes of policy & Q networks' hidden layers")
parser.add_argument('--pi-lr', type=float, default=3e-4,
help='Learning rate for policy optimizer')
parser.add_argument('--v-lr', type=float, default=1e-3,
help='Learning rate for value function optimizer')
parser.add_argument('--epochs', type=int, default=50,
help='Number of epochs')
parser.add_argument('--steps-per-epoch', type=int, default=4000,
help='Maximum number of steps for each epoch')
parser.add_argument('--train-pi-iters', type=int, default=80,
help='Number of gradient descent steps to take on policy loss per epoch')
parser.add_argument('--train-v-iters', type=int, default=80,
help='Number of gradient descent steps to take on value function per epoch')
parser.add_argument('--max-ep-len', type=int, default=1000,
help='Maximum episode/trajectory length')
parser.add_argument('--gamma', type=float, default=0.99,
help='Discount factor')
parser.add_argument('--lamb', type=float, default=0.97,
help='Lambda for Generalized Advantage Estimation')
parser.add_argument('--kl-target', type=float, default=0.01,
help='KL divergence threshold')
parser.add_argument('--clip', action='store_false',
help='Whether to use PPO-Clip, use PPO-Penalty otherwise')
parser.add_argument('--clip-ratio', type=float, default=0.2,
help='Hyperparameter for clipping in the policy objective')
parser.add_argument('--save', action='store_true',
help='Whether to save the final model')
parser.add_argument('--save-every', type=int, default=10,
help='Model saving frequency')
parser.add_argument('--render', action='store_true',
help='Whether to render the training result')
parser.add_argument('--plot', action='store_true',
help=' Whether to plot the statistics')
args = parser.parse_args()
if args.clip and not args.clip_ratio:
parser.error('Argument --clip-ratio is required when --clip is enabled.')
mpi.mpi_fork(args.cpu)
mpi.setup_pytorch_for_mpi()
agent = PPO(args)
agent.train()