-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbibli.bib
271 lines (262 loc) · 10.1 KB
/
bibli.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
@article{mnistlecun,
author = {Lecun, Yann and Cortes, Corinna},
citeulike-article-id = {599493},
citeulike-linkout-0 = {http://yann.lecun.com/exdb/mnist/},
keywords = {ai, mnist, recognition},
posted-at = {2009-03-20 17:02:13},
priority = {2},
title = {{The MNIST database of handwritten digits}},
url = {http://yann.lecun.com/exdb/mnist/}
}
@article{DBLP:journals/corr/abs-1206-5538,
author = {Yoshua Bengio and
Aaron C. Courville and
Pascal Vincent},
title = {Unsupervised Feature Learning and Deep Learning: A Review
and New Perspectives},
journal = {CoRR},
volume = {abs/1206.5538},
year = {2012},
ee = {http://arxiv.org/abs/1206.5538},
bibsource = {DBLP, http://dblp.uni-trier.de}
}
@article{Hinton:2006:FLA:1161603.1161605,
author = {Hinton, Geoffrey E. and Osindero, Simon and Teh, Yee-Whye},
title = {A Fast Learning Algorithm for Deep Belief Nets},
journal = {Neural Comput.},
issue_date = {July 2006},
volume = {18},
number = {7},
month = jul,
year = {2006},
issn = {0899-7667},
pages = {1527--1554},
numpages = {28},
url = {http://dx.doi.org/10.1162/neco.2006.18.7.1527},
doi = {10.1162/neco.2006.18.7.1527},
acmid = {1161605},
publisher = {MIT Press},
address = {Cambridge, MA, USA},
} }
@incollection{Bengio2007,
added-at = {2010-02-27T01:05:18.000+0100},
address = {Cambridge, MA},
author = {Bengio, Y. and Lamblin, P. and Popovici, D. and Larochelle, H.},
biburl = {http://www.bibsonomy.org/bibtex/2629899884d8653b834814d9f8c4fa395/tb2332},
booktitle = {Advances in Neural Information Processing Systems 19},
editor = {Sch\"{o}lkopf, B. and Platt, J. and Hoffman, T.},
interhash = {85cb1f82cef93c41ce1ba302b965c798},
intrahash = {629899884d8653b834814d9f8c4fa395},
keywords = {imported},
owner = {thierry},
pages = {153--160},
publisher = {MIT Press},
timestamp = {2010-02-27T01:05:18.000+0100},
title = {Greedy layer-wise training of deep networks},
year = 2007
}
@article{HintonSalakhutdinov2006b,
abstract = {High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.},
added-at = {2008-07-15T10:05:18.000+0200},
author = {Hinton, G E and Salakhutdinov, R R},
biburl = {http://www.bibsonomy.org/bibtex/2135bbce97b449ddf5fca7be88102b53c/tmalsburg},
description = {Reducing the dimensionality of data with neural ne...[Science. 2006] - PubMed Result},
doi = {10.1126/science.1127647},
interhash = {019918b82518b74f443a22dc58a0117f},
intrahash = {135bbce97b449ddf5fca7be88102b53c},
journal = {Science},
keywords = {dimensionalityreduction neuralnetworks parameterestimation},
month = Jul,
number = 5786,
pages = {504-507},
pmid = {16873662},
timestamp = {2008-07-15T10:05:18.000+0200},
title = {Reducing the dimensionality of data with neural networks},
volume = 313,
year = 2006
}
@inproceedings{DBLP:conf/icml/NairH10,
author = {Vinod Nair and
Geoffrey E. Hinton},
title = {Rectified Linear Units Improve Restricted Boltzmann Machines},
booktitle = {ICML},
year = {2010},
pages = {807-814},
ee = {http://www.icml2010.org/papers/432.pdf},
bibsource = {DBLP, http://dblp.uni-trier.de}
}
@proceedings{DBLP:conf/icml/2010,
editor = {Johannes Furnkranz and
Thorsten Joachims},
title = {Proceedings of the 27th International Conference on Machine
Learning (ICML-10), June 21-24, 2010, Haifa, Israel},
booktitle = {ICML},
publisher = {Omnipress},
year = {2010},
isbn = {978-1-60558-907-7},
bibsource = {DBLP, http://dblp.uni-trier.de}
}
@article{DBLP:journals/corr/abs-1207-0580,
author = {Geoffrey E. Hinton and
Nitish Srivastava and
Alex Krizhevsky and
Ilya Sutskever and
Ruslan Salakhutdinov},
title = {Improving neural networks by preventing co-adaptation of
feature detectors},
journal = {CoRR},
volume = {abs/1207.0580},
year = {2012},
ee = {http://arxiv.org/abs/1207.0580},
bibsource = {DBLP, http://dblp.uni-trier.de}
}
@article{DBLP:journals/corr/abs-1206-5533,
author = {Yoshua Bengio},
title = {Practical recommendations for gradient-based training of
deep architectures},
journal = {CoRR},
volume = {abs/1206.5533},
year = {2012},
ee = {http://arxiv.org/abs/1206.5533},
}
@inproceedings{conf/icml/WanZZLF13,
added-at = {2013-12-08T17:48:24.000+0100},
author = {Wan, Li and Zeiler, Matthew D. and Zhang, Sixin and LeCun, Yann and Fergus, Rob},
biburl = {http://www.bibsonomy.org/bibtex/25e2a0d899d79d425fe876ec39cb08765/prlz77},
booktitle = {ICML (3)},
ee = {http://jmlr.org/proceedings/papers/v28/wan13.html},
interhash = {818d79b17f088fd88c0200625c7a43ea},
intrahash = {5e2a0d899d79d425fe876ec39cb08765},
keywords = {DropConnect Networks Neural Regularization of using},
pages = {1058-1066},
publisher = {JMLR.org},
series = {JMLR Proceedings},
timestamp = {2013-12-08T17:48:24.000+0100},
title = {Regularization of Neural Networks using DropConnect.},
url = {http://dblp.uni-trier.de/db/conf/icml/icml2013.htmlWanZZLF13},
volume = 28,
year = 2013
}
@article{DBLP:journals/corr/abs-1202-2745,
author = {Dan C. Ciresan and
Ueli Meier and
J{\"u}rgen Schmidhuber},
title = {Multi-column Deep Neural Networks for Image Classification},
journal = {CoRR},
volume = {abs/1202.2745},
year = {2012},
ee = {http://arxiv.org/abs/1202.2745},
bibsource = {DBLP, http://dblp.uni-trier.de}
}
@ARTICLE{2013arXiv1302.4389G,
author = {{Goodfellow}, I.~J. and {Warde-Farley}, D. and {Mirza}, M. and
{Courville}, A. and {Bengio}, Y.},
title = "{Maxout Networks}",
journal = {ArXiv e-prints},
archivePrefix = "arXiv",
eprint = {1302.4389},
primaryClass = "stat.ML",
keywords = {Statistics - Machine Learning, Computer Science - Learning},
year = 2013,
month = feb,
adsurl = {http://adsabs.harvard.edu/abs/2013arXiv1302.4389G},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{journals/corr/abs-1203-1513,
added-at = {2012-10-10T00:00:00.000+0200},
author = {Bruna, Joan and Mallat, Stéphane},
biburl = {http://www.bibsonomy.org/bibtex/24a4605c67f7cee3a3eb8086e0e313745/dblp},
ee = {http://arxiv.org/abs/1203.1513},
interhash = {6fdc274fb99f514ca1c527b849a30b06},
intrahash = {4a4605c67f7cee3a3eb8086e0e313745},
journal = {CoRR},
keywords = {dblp},
timestamp = {2012-10-10T00:00:00.000+0200},
title = {Invariant Scattering Convolution Networks},
url = {http://dblp.uni-trier.de/db/journals/corr/corr1203.htmlabs-1203-1513},
volume = {abs/1203.1513},
year = 2012
}
@book{Hassoun:1995:FAN:526717,
author = {Hassoun, Mohamad H.},
title = {Fundamentals of Artificial Neural Networks},
year = {1995},
isbn = {026208239X},
edition = {1st},
publisher = {MIT Press},
address = {Cambridge, MA, USA}
}
@article{Baldi:1989:NNP:70359.70362,
author = {Baldi, P. and Hornik, K.},
title = {Neural Networks and Principal Component Analysis: Learning from Examples Without Local Minima},
journal = {Neural Netw.},
issue_date = {1989},
volume = {2},
number = {1},
month = jan,
year = {1989},
issn = {0893-6080},
pages = {53--58},
numpages = {6},
url = {http://dx.doi.org/10.1016/0893-6080(89)90014-2},
doi = {10.1016/0893-6080(89)90014-2},
acmid = {70362},
publisher = {Elsevier Science Ltd.},
address = {Oxford, UK, UK}
}
@inproceedings{Socher-etal:2013,
Location = {Seattle, WA},
Author = {Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D. and Ng, Andrew Y. and Potts, Christopher},
Booktitle = {Proceedings of the 2013 Conference on {E}mpirical {M}ethods in {N}atural {L}anguage {P}rocessing},
Month = {October},
Publisher = {Association for Computational Linguistics},
Address = {Stroudsburg, PA},
Title = {Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank},
Pages = {1631--1642},
Year = {2013}}
@inproceedings{conf/icml/Martens10,
author = {Martens, James},
booktitle = {ICML},
editor = {Fürnkranz, Johannes and Joachims, Thorsten},
ee = {http://www.icml2010.org/papers/458.pdf},
interhash = {1d6577ca73270732c2cc1e3c2cce6cdb},
intrahash = {af0029f21446a26c04f2e4650ec1fbf1},
keywords = {machinelearning neural-networks optimisation recurrent-neural-networks},
pages = {735-742},
publisher = {Omnipress},
timestamp = {2011-07-08T14:11:15.000+0200},
title = {Deep learning via Hessian-free optimization.},
url = {http://dblp.uni-trier.de/db/conf/icml/icml2010.html#Martens10},
year = 2010
}
@INPROCEEDINGS{Riedmiller93adirect,
author = {Martin Riedmiller and Heinrich Braun},
title = {A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm},
booktitle = {IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS},
year = {1993},
pages = {586--591},
publisher = {}
}
@article{Duchi:2011:ASM:1953048.2021068,
author = {Duchi, John and Hazan, Elad and Singer, Yoram},
title = {Adaptive Subgradient Methods for Online Learning and Stochastic Optimization},
journal = {J. Mach. Learn. Res.},
issue_date = {2/1/2011},
volume = {12},
month = jul,
year = {2011},
issn = {1532-4435},
pages = {2121--2159},
numpages = {39},
url = {http://dl.acm.org/citation.cfm?id=1953048.2021068},
acmid = {2021068},
publisher = {JMLR.org}
}
@INPROCEEDINGS{Prechelt97earlystopping,
author = {Lutz Prechelt},
title = {Early Stopping - but when?},
booktitle = {Neural Networks: Tricks of the Trade, volume 1524 of LNCS, chapter 2},
year = {1997},
pages = {55--69},
publisher = {Springer-Verlag}
}