Skip to content

Commit

Permalink
sweeps for age
Browse files Browse the repository at this point in the history
  • Loading branch information
tjiagoM committed May 17, 2020
1 parent eb25ca4 commit b18a0bc
Show file tree
Hide file tree
Showing 2 changed files with 150 additions and 0 deletions.
77 changes: 77 additions & 0 deletions wandb_sweeps/st_ukb_uni_age_1_fmri_none_diffpool_F_128.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
method: random
#metric:
# goal: minimize
# name: mean_val_loss
name: st_ukb_uni_age_1_fmri_none_diff_pool_F_128
program: main_loop.py
parameters:
dataset_type:
value: ukb
sweep_type:
value: diff_pool
temporal_embed_size:
value: 128
edge_weights:
value: false
fold_num:
value: 1
conn_type:
value: fmri
batch_size:
value: 500
analysis_type:
value: st_unimodal
num_epochs:
value: 100
num_nodes:
value: 68
activation:
distribution: categorical
values:
- relu
channels_conv:
value: 8
conv_strategy:
distribution: categorical
values:
- tcn_entire
dropout:
distribution: uniform
max: 0.9
min: 0
early_stop_steps:
value: 33
encoding_strategy:
distribution: categorical
values:
- none
num_gnn_layers:
value: 0
threshold:
distribution: categorical
values:
- 5
- 10
- 20
- 30
- 40
lr:
distribution: log_uniform
max: -4.605170185988091
min: -16.11809565095832
normalisation:
distribution: categorical
values:
- subject_norm
pooling:
distribution: categorical
values:
- diff_pool
target_var:
value: age
time_length:
value: 490
weight_decay:
distribution: log_uniform
max: 0
min: -16.11809565095832
73 changes: 73 additions & 0 deletions wandb_sweeps/st_ukb_uni_age_1_fmri_none_no_gnn_F_128.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
method: random
#metric:
# goal: minimize
# name: mean_val_loss
name: st_ukb_uni_age_1_fmri_none_no_gnn_F_128
program: main_loop.py
parameters:
dataset_type:
value: ukb
sweep_type:
value: no_gnn
temporal_embed_size:
value: 128
edge_weights:
value: false
fold_num:
value: 1
conn_type:
value: fmri
batch_size:
value: 500
analysis_type:
value: st_unimodal
num_epochs:
value: 100
num_nodes:
value: 68
activation:
distribution: categorical
values:
- relu
channels_conv:
value: 8
conv_strategy:
distribution: categorical
values:
- tcn_entire
dropout:
distribution: uniform
max: 0.9
min: 0
early_stop_steps:
value: 33
encoding_strategy:
distribution: categorical
values:
- none
num_gnn_layers:
value: 0
threshold:
distribution: categorical
values:
- 5
lr:
distribution: log_uniform
max: -4.605170185988091
min: -16.11809565095832
normalisation:
distribution: categorical
values:
- subject_norm
pooling:
distribution: categorical
values:
- mean
target_var:
value: age
time_length:
value: 490
weight_decay:
distribution: log_uniform
max: 0
min: -16.11809565095832

0 comments on commit b18a0bc

Please sign in to comment.