-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsampler_test.py
104 lines (86 loc) · 3.89 KB
/
sampler_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
import argparse
from torch.utils.data import DataLoader
from Core.VideoDataset import VideoDataset
def main(frames_path:str, sampled_train_split_path:str, sampled_val_split_path:str, sampled_test_split_path:str, args):
# Training
if os.path.exists(sampled_train_split_path):
# Dataset
train_dataset = VideoDataset(
frames_path=frames_path,
sampled_split_path=sampled_train_split_path,
frame_size=args.frame_size,
sequence_length=args.sequence_length,
random_pad_sample=args.random_pad_sample
)
# Loader
train_loader = DataLoader(
dataset=train_dataset,
batch_size=args.batch_size,
num_workers=0 if os.name == 'nt' else 4,
pin_memory=True,
shuffle=True,
)
print(f"Number of Training data: {len(train_dataset)}, Batch Size: {args.batch_size}")
for i, (datas, labels) in enumerate(train_loader):
print(f"{i}/{len(train_loader)} {datas.size()}")
# Validation
if os.path.exists(sampled_val_split_path):
# Dataset
val_dataset = VideoDataset(
frames_path=frames_path,
sampled_split_path=sampled_val_split_path,
frame_size=args.frame_size,
sequence_length=args.sequence_length,
random_pad_sample=args.random_pad_sample
)
# Loader
val_loader = DataLoader(
dataset=val_dataset,
batch_size=args.batch_size,
num_workers=0 if os.name == 'nt' else 4,
pin_memory=True,
shuffle=False,
)
print(f"Number of Validation data: {len(val_dataset)}, Batch Size: {args.batch_size}")
for i, (datas, labels) in enumerate(val_loader):
print(f"{i}/{len(val_loader)} {datas.size()}")
# Testing
if os.path.exists(sampled_test_split_path):
# Dataset
test_dataset = VideoDataset(
frames_path=frames_path,
sampled_split_path=sampled_test_split_path,
frame_size=args.frame_size,
sequence_length=args.sequence_length,
random_pad_sample=args.random_pad_sample
)
# Loader
test_loader = DataLoader(
dataset=test_dataset,
batch_size=args.batch_size,
num_workers=0 if os.name == 'nt' else 4,
pin_memory=True,
shuffle=False,
)
print(f"Number of Testing data: {len(test_dataset)}, Batch Size: {args.batch_size}")
for i, (datas, labels) in enumerate(test_loader):
print(f"{i}/{len(test_loader)} {datas.size()}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data-path", type=str, default="./Data/")
parser.add_argument("--dataset-name", type=str, default="UCF101")
parser.add_argument("--split-id", type=int, default=1)
parser.add_argument("--batch-size", type=int, default=32)
parser.add_argument("--frame-size", type=int, default=112)
parser.add_argument("--sequence-length", type=int, default=16)
parser.add_argument("--random-pad-sample", action="store_true")
args = parser.parse_args()
# Dataset check
assert args.dataset_name in ["UCF101", "HMDB51", "ActivityNet"], f"{args.dataset_name} is not supported dataset :("
# Path organize
frames_path = os.path.join(args.data_path, f"{args.dataset_name}/frames/")
sampled_train_split_path = os.path.join(args.data_path, f"{args.dataset_name}/sampled_split/train_{args.split_id}.json")
sampled_val_split_path = os.path.join(args.data_path, f"{args.dataset_name}/sampled_split/val_{args.split_id}.json")
sampled_test_split_path = os.path.join(args.data_path, f"{args.dataset_name}/sampled_split/test_{args.split_id}.json")
main(frames_path, sampled_train_split_path, sampled_val_split_path, sampled_test_split_path, args)