This repository contains a project for classifying renal disease using machine learning techniques. The project leverages MLflow for tracking experiments and DVC (Data Version Control) for managing data and model versions.
- Project Overview
- Getting Started 2a. Prerequisites 2b. Installation
- Usage 3a. Running the Application 3b. MLflow Tracking
- Project Structure
- Contributing
The Renal Disease Classifier project aims to build a machine learning model to classify renal disease. The project uses a combination of Python, MLflow, and DVC to ensure reproducibility and effective data management.
- Python 3.8 or higher
- Docker
- Git
- DVC
- MLflow
- Clone the repository:
git clone https://github.com/titan-exasaur/RENAL-DISEASE-CLASSIFIER-MLFLOW-DVC.git
cd RENAL-DISEASE-CLASSIFIER-MLFLOW-DVC
- Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows use `venv\Scripts\activate`
- Install the required Python packages:
pip install -r requirements.txt
- To run the application, use the following command:
python main.py
To start the MLflow UI for tracking experiments, run:
mlflow repro
- Then, navigate to http://localhost:5000 to access the MLflow UI.
.
├── .dvc/ # DVC specific files
├── .github/ # GitHub workflows and configurations
├── build/ # Build related files
├── config/ # Configuration files
├── logs/ # Logs directory
├── model/ # Model related files
├── research/ # Research related files
├── src/ # Source code
│ ├── data/ # Data processing scripts
│ ├── models/ # Model definition scripts
│ ├── utils/ # Utility scripts
├── templates/ # Template files
├── .dvcignore # DVC ignore file
├── .gitattributes # Git attributes file
├── .gitignore # Git ignore file
├── Dockerfile # Dockerfile for containerization
├── app.py # Flask application
├── dvc.lock # DVC lock file
├── dvc.yaml # DVC pipeline file
├── main.py # Main script
├── params.yaml # Parameters file
├── requirements.txt # Python requirements
├── scores.json # Scores file
├── setup.py # Setup script for packaging
├── template.py # Template script
└── README.md # Readme file
Contributions are welcome! Please follow these steps to contribute:
- Fork the repository.
- Create a new branch (git checkout -b feature-branch).
- Make your changes.
- Commit your changes (git commit -m 'Add some feature').
- Push to the branch (git push origin feature-branch).
- Open a pull request.