-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgen.py
217 lines (177 loc) · 7.96 KB
/
gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import numpy as np
import argparse
import tqdm
import torch
from pathlib import Path
from policies.policy import Policy
from utils.utils import fix_random_seeds, append_to_dataset
from utils.vec_env.subproc_vec_env import VecEnv, SubprocVecEnv
from datasets.dataset import MDPDataset
from typing import Optional, Tuple, List, Dict
from collections import defaultdict
from envs.core import create_env, get_baseline
from copy import deepcopy
def generate_dataset(policy: Policy, env: VecEnv, n_trajectories: int = 99) -> MDPDataset:
states = env.reset()
n_envs = len(states)
n_collected = 0
env_data: Dict[int, Dict[str, List]] = defaultdict(lambda: defaultdict(list))
dataset: Optional[MDPDataset] = None
# Progress bar
pbar = tqdm.tqdm(total=n_trajectories)
# Temporary data holders
all_observations = []
all_actions = []
all_rewards = []
all_terminals = []
while n_collected < n_trajectories:
actions = policy.predict_actions(states)
nstates, rewards, dones, infos = env.step(actions)
# Log
for env_ind in range(n_envs):
terminated = "terminal_observation" in infos[env_ind]
env_data[env_ind]["observations"].append(states[env_ind])
env_data[env_ind]["actions"].append(actions[env_ind])
env_data[env_ind]["rewards"].append(rewards[env_ind])
env_data[env_ind]["terminals"].append(dones[env_ind])
if terminated:
# Push the trajectory to the MDP dataset
all_observations.append(np.array(env_data[env_ind]["observations"]))
# todo: potential bug where environments have only one action (it must be reshaped somehow)
all_actions.append(np.array(env_data[env_ind]["actions"]))
all_rewards.append(np.array(env_data[env_ind]["rewards"]).reshape(-1, 1))
all_terminals.append(np.array(env_data[env_ind]["terminals"]).reshape(-1, 1))
# Clean the trajectory
env_data[env_ind] = defaultdict(list)
# +1 trajectory
n_collected += 1
pbar.update(n=1)
# Update states
states = nstates
# Obtain MDPDataset
dataset = append_to_dataset(
dataset=dataset,
observations=np.vstack(all_observations),
actions=np.vstack(all_actions),
rewards=np.vstack(all_rewards),
terminals=np.vstack(all_terminals),
)
# Close progress bard
pbar.close()
return dataset
def subsample_mdp_dataset(dataset: MDPDataset, n_episodes: int) -> MDPDataset:
if len(dataset.episodes) == 0:
raise Exception()
if len(dataset.episodes) < n_episodes:
raise Exception()
# Return the same dataset (no copy!)
if len(dataset.episodes) == n_episodes:
return dataset
indices = np.random.choice(a=range(len(dataset.episodes)), size=n_episodes, replace=False)
data = {
"obs": [],
"act": [],
"rew": [],
"ter": []
}
for ind in indices:
# Need to reconstruct terminals
terminals = np.zeros(len(dataset.episodes[ind]))
terminals[-1] = 1.0
terminals = terminals.reshape(-1, 1)
data["obs"].append(dataset.episodes[ind].observations)
data["act"].append(dataset.episodes[ind].actions)
data["rew"].append(dataset.episodes[ind].rewards.reshape(-1, 1))
data["ter"].append(terminals)
new_dataset = append_to_dataset(
dataset=None,
observations=np.vstack(data["obs"]),
actions=np.vstack(data["act"]),
rewards=np.vstack(data["rew"]),
terminals=np.vstack(data["ter"])
)
return new_dataset
def split_mdp_dataset(dataset: MDPDataset, val: float) -> Tuple[MDPDataset, MDPDataset]:
val_size = int(len(dataset.episodes) * val)
if val_size >= len(dataset.episodes) or val_size <= 0:
raise Exception()
val_indices = set(np.random.choice(a=range(len(dataset.episodes)), size=val_size, replace=False))
train_data = {
"obs": [],
"act": [],
"rew": [],
"ter": []
}
val_data = deepcopy(train_data)
for ind in range(len(dataset.episodes)):
# Need to reconstruct terminals
terminals = np.zeros(len(dataset.episodes[ind]))
terminals[-1] = 1.0
terminals = terminals.reshape(-1, 1)
if ind in val_indices:
val_data["obs"].append(dataset.episodes[ind].observations)
val_data["act"].append(dataset.episodes[ind].actions)
val_data["rew"].append(dataset.episodes[ind].rewards.reshape(-1, 1))
val_data["ter"].append(terminals)
else:
train_data["obs"].append(dataset.episodes[ind].observations)
train_data["act"].append(dataset.episodes[ind].actions)
train_data["rew"].append(dataset.episodes[ind].rewards.reshape(-1, 1))
train_data["ter"].append(terminals)
# Build datasets
train_dataset = append_to_dataset(
dataset=None,
observations=np.vstack(train_data["obs"]),
actions=np.vstack(train_data["act"]),
rewards=np.vstack(train_data["rew"]),
terminals=np.vstack(train_data["ter"])
)
val_dataset = append_to_dataset(
dataset=None,
observations=np.vstack(val_data["obs"]),
actions=np.vstack(val_data["act"]),
rewards=np.vstack(val_data["rew"]),
terminals=np.vstack(val_data["ter"])
)
return train_dataset, val_dataset
if __name__ == "__main__":
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("--datasets_folder",type=str)
parser.add_argument("--env_name", type=str, choices=["four-rooms", "finrl", "citylearn", "industrial"])
parser.add_argument("--n_trajectories", type=int, nargs="+", default=[99, 999, 9999])
parser.add_argument("--val", type=float, default=0.1, help="How many trajectoreis are used for evaluation.")
parser.add_argument("--policies", type=str, nargs="+", default=["medium"])
parser.add_argument("--n_workers", type=int, default=3)
parser.add_argument("--seed", type=int, default=1712)
parser.add_argument("--device", type=str, default="cpu")
args = parser.parse_args()
# Some fixes for MacOS
os.environ['KMP_DUPLICATE_LIB_OK'] = "True"
# Set the seed
fix_random_seeds(seed=args.seed)
# Create an environment
env = SubprocVecEnv(env_fns=[lambda: create_env(args.env_name) for _ in range(args.n_workers)])
env.seed(seed=args.seed)
# Start collecting dataset for each baseline policy
for level in args.policies:
# Retrieve policy and put it on the target device
policy = get_baseline(args.env_name, level = level)
policy.to(args.device)
# Collec the dataset!
dataset = generate_dataset(policy, env, n_trajectories=max(args.n_trajectories))
# Print some stats
stats = dataset.compute_stats()
print(f"Policy: {level}")
print(f"Return; Mean: {stats['return']['mean']}; Std: {stats['return']['std']}; Min: {stats['return']['min']}; Max: {stats['return']['max']};")
print(f"Reward; Mean: {stats['reward']['mean']}; Std: {stats['reward']['std']}; Min: {stats['reward']['min']}; Max: {stats['reward']['max']};")
# Split into smaller datasets
for n_trajs in args.n_trajectories:
dataset_n_trajs = subsample_mdp_dataset(dataset, n_episodes=n_trajs)
# Save
dataset_path = Path(os.path.join(args.datasets_folder, args.env_name))
dataset_path.mkdir(parents=True, exist_ok=True)
train, val = split_mdp_dataset(dataset_n_trajs, val=args.val)
train.dump(os.path.join(dataset_path, f"{level}-{n_trajs}-train.h5"))
val.dump(os.path.join(dataset_path, f"{level}-{n_trajs}-val.h5"))