-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2 Clustering
1 lines (1 loc) · 439 KB
/
2 Clustering
1
{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"name":"2 Clustering","provenance":[],"collapsed_sections":[],"toc_visible":true,"authorship_tag":"ABX9TyOknx4boe6qlyvTEiZyVl6o"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"markdown","source":["# Решение задачи кластеризации торговых точек нейросетевыми методами"],"metadata":{"id":"AwBEqZm2_hFS"}},{"cell_type":"code","execution_count":null,"metadata":{"id":"NIpwELoVb0wc","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1654448708471,"user_tz":-180,"elapsed":29774,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}},"outputId":"84eb2b64-06fa-4eab-ef9f-f218a86bcf5b"},"outputs":[{"output_type":"stream","name":"stdout","text":["Mounted at /content/drive\n"]}],"source":["from google.colab import drive\n","drive.mount('/content/drive', force_remount=True)"]},{"cell_type":"code","source":["from warnings import filterwarnings\n","\n","import matplotlib.pyplot as plt\n","import numpy as np\n","import seaborn as sns\n","import pandas as pd\n","from collections import defaultdict\n","from tqdm import tqdm\n","from scipy.sparse import load_npz\n","from sklearn.model_selection import train_test_split\n","\n","\n","sns.set(style='darkgrid')\n","filterwarnings('ignore')"],"metadata":{"id":"mMxRstUKdSiO"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## Загрузка"],"metadata":{"id":"YnZfLubbxtmz"}},{"cell_type":"code","source":["main_stores = list(pd.read_csv('/content/drive/MyDrive/CourseWorkSAS/df_140stores_500items.csv', sep=';', index_col='Unnamed: 0').columns.astype(int))\n","popular_products = list(pd.read_csv('/content/drive/MyDrive/CourseWorkSAS/df_140stores_500items.csv', sep=';', index_col='Unnamed: 0').index.astype(int))"],"metadata":{"id":"lO_oEWUmI__h"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["df_store_info = pd.read_csv('/content/drive/MyDrive/CourseWorkSAS/StoresDirectory.csv', index_col='StoreID').loc[main_stores]\n","df_store_info"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":455},"id":"ocLJsIMkszts","executionInfo":{"status":"ok","timestamp":1654448717704,"user_tz":-180,"elapsed":320,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}},"outputId":"23c70e85-8c7b-4089-f49a-6dabc4a7b461"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" StoreName StoreType StoreArea\n","StoreID \n","21 БМ Тмн, 50 Лет Октября, 109 БИГ 676.80\n","22 БМ Тмн, Панфиловцев 86/1 БИГ 689.44\n","23 БМ Тмн, Пермякова, 2 к1 БИГ 417.89\n","24 БМ Тмн, Щербакова, 99 БИГ 421.84\n","25 БМ Тмн, Домостроителей, 32 БИГ 662.63\n","... ... ... ...\n","5501 БМ Тмн Ставропольская 120 к2 БИГ 808.43\n","6501 МОК Екб мкр Светлый 3 МОК 76.20\n","6701 МОК Тмн Олимпийская 31 МОК 96.00\n","8401 МОКс Тмн Заводоуковская 12а МОК 110.00\n","8403 БМ Верхняя Пышма Бажова 28 БИГ 354.10\n","\n","[140 rows x 3 columns]"],"text/html":["\n"," <div id=\"df-fd19ce51-5661-4446-94f2-64596aaee1dd\">\n"," <div class=\"colab-df-container\">\n"," <div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>StoreName</th>\n"," <th>StoreType</th>\n"," <th>StoreArea</th>\n"," </tr>\n"," <tr>\n"," <th>StoreID</th>\n"," <th></th>\n"," <th></th>\n"," <th></th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>21</th>\n"," <td>БМ Тмн, 50 Лет Октября, 109</td>\n"," <td>БИГ</td>\n"," <td>676.80</td>\n"," </tr>\n"," <tr>\n"," <th>22</th>\n"," <td>БМ Тмн, Панфиловцев 86/1</td>\n"," <td>БИГ</td>\n"," <td>689.44</td>\n"," </tr>\n"," <tr>\n"," <th>23</th>\n"," <td>БМ Тмн, Пермякова, 2 к1</td>\n"," <td>БИГ</td>\n"," <td>417.89</td>\n"," </tr>\n"," <tr>\n"," <th>24</th>\n"," <td>БМ Тмн, Щербакова, 99</td>\n"," <td>БИГ</td>\n"," <td>421.84</td>\n"," </tr>\n"," <tr>\n"," <th>25</th>\n"," <td>БМ Тмн, Домостроителей, 32</td>\n"," <td>БИГ</td>\n"," <td>662.63</td>\n"," </tr>\n"," <tr>\n"," <th>...</th>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," </tr>\n"," <tr>\n"," <th>5501</th>\n"," <td>БМ Тмн Ставропольская 120 к2</td>\n"," <td>БИГ</td>\n"," <td>808.43</td>\n"," </tr>\n"," <tr>\n"," <th>6501</th>\n"," <td>МОК Екб мкр Светлый 3</td>\n"," <td>МОК</td>\n"," <td>76.20</td>\n"," </tr>\n"," <tr>\n"," <th>6701</th>\n"," <td>МОК Тмн Олимпийская 31</td>\n"," <td>МОК</td>\n"," <td>96.00</td>\n"," </tr>\n"," <tr>\n"," <th>8401</th>\n"," <td>МОКс Тмн Заводоуковская 12а</td>\n"," <td>МОК</td>\n"," <td>110.00</td>\n"," </tr>\n"," <tr>\n"," <th>8403</th>\n"," <td>БМ Верхняя Пышма Бажова 28</td>\n"," <td>БИГ</td>\n"," <td>354.10</td>\n"," </tr>\n"," </tbody>\n","</table>\n","<p>140 rows × 3 columns</p>\n","</div>\n"," <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-fd19ce51-5661-4446-94f2-64596aaee1dd')\"\n"," title=\"Convert this dataframe to an interactive table.\"\n"," style=\"display:none;\">\n"," \n"," <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n"," width=\"24px\">\n"," <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n"," <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n"," </svg>\n"," </button>\n"," \n"," <style>\n"," .colab-df-container {\n"," display:flex;\n"," flex-wrap:wrap;\n"," gap: 12px;\n"," }\n","\n"," .colab-df-convert {\n"," background-color: #E8F0FE;\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: #1967D2;\n"," height: 32px;\n"," padding: 0 0 0 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-convert:hover {\n"," background-color: #E2EBFA;\n"," box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: #174EA6;\n"," }\n","\n"," [theme=dark] .colab-df-convert {\n"," background-color: #3B4455;\n"," fill: #D2E3FC;\n"," }\n","\n"," [theme=dark] .colab-df-convert:hover {\n"," background-color: #434B5C;\n"," box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n"," filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n"," fill: #FFFFFF;\n"," }\n"," </style>\n","\n"," <script>\n"," const buttonEl =\n"," document.querySelector('#df-fd19ce51-5661-4446-94f2-64596aaee1dd button.colab-df-convert');\n"," buttonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n"," async function convertToInteractive(key) {\n"," const element = document.querySelector('#df-fd19ce51-5661-4446-94f2-64596aaee1dd');\n"," const dataTable =\n"," await google.colab.kernel.invokeFunction('convertToInteractive',\n"," [key], {});\n"," if (!dataTable) return;\n","\n"," const docLinkHtml = 'Like what you see? Visit the ' +\n"," '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n"," + ' to learn more about interactive tables.';\n"," element.innerHTML = '';\n"," dataTable['output_type'] = 'display_data';\n"," await google.colab.output.renderOutput(dataTable, element);\n"," const docLink = document.createElement('div');\n"," docLink.innerHTML = docLinkHtml;\n"," element.appendChild(docLink);\n"," }\n"," </script>\n"," </div>\n"," </div>\n"," "]},"metadata":{},"execution_count":4}]},{"cell_type":"code","source":["df_product = pd.read_csv('/content/drive/MyDrive/CourseWorkSAS/product_dict_df_sorted.csv', sep=';').loc[popular_products]\n","df_product.fillna('Неизвестный класс', inplace=True)\n","df_product.loc[df_product['PRODUCT_LVL_NM1'] == '04-10', 'PRODUCT_LVL_NM1'] = 'Неизвестный класс'\n","df_product[100:105]"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":206},"id":"vYfPMelDCnEE","executionInfo":{"status":"ok","timestamp":1654448725686,"user_tz":-180,"elapsed":2433,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}},"outputId":"29bc5b56-4bb9-4c60-dc55-4e3aa6b846eb"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" PRODUCT_ID PRODUCT_NM \\\n","41440 73040 Лезвия д/ножей 18 мм, 10 шт/уп, MATRIX \n","41660 221941 Ведро для строител. работ 20л пластмасса \n","41764 26839 Лента малярная 48ммх40м \n","41768 269664 Шпатель резиновый 40мм белый \n","41772 269665 Шпатель резиновый 80мм белый \n","\n"," PRODUCT_LVL_NM1 PRODUCT_LVL_NM2 \\\n","41440 Сопутствующие товары Инструмент ручной \n","41660 Сопутствующие товары Инструмент ручной \n","41764 Сопутствующие товары Инструмент ручной \n","41768 Сопутствующие товары Инструмент ручной \n","41772 Сопутствующие товары Инструмент ручной \n","\n"," PRODUCT_LVL_NM3 PRODUCT_LVL_NM4 FAKE_ID \n","41440 Столярный и плотничный инструмент Ножи и лезвия 41440 \n","41660 Штукатурно-отделочный инструмент Строительные емкости 41660 \n","41764 Малярный инструмент Ленты малярные 41764 \n","41768 Штукатурно-отделочный инструмент Шпатели 41768 \n","41772 Штукатурно-отделочный инструмент Шпатели 41772 "],"text/html":["\n"," <div id=\"df-16e92beb-0c1a-4032-9f90-da220ca189b2\">\n"," <div class=\"colab-df-container\">\n"," <div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>PRODUCT_ID</th>\n"," <th>PRODUCT_NM</th>\n"," <th>PRODUCT_LVL_NM1</th>\n"," <th>PRODUCT_LVL_NM2</th>\n"," <th>PRODUCT_LVL_NM3</th>\n"," <th>PRODUCT_LVL_NM4</th>\n"," <th>FAKE_ID</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>41440</th>\n"," <td>73040</td>\n"," <td>Лезвия д/ножей 18 мм, 10 шт/уп, MATRIX</td>\n"," <td>Сопутствующие товары</td>\n"," <td>Инструмент ручной</td>\n"," <td>Столярный и плотничный инструмент</td>\n"," <td>Ножи и лезвия</td>\n"," <td>41440</td>\n"," </tr>\n"," <tr>\n"," <th>41660</th>\n"," <td>221941</td>\n"," <td>Ведро для строител. работ 20л пластмасса</td>\n"," <td>Сопутствующие товары</td>\n"," <td>Инструмент ручной</td>\n"," <td>Штукатурно-отделочный инструмент</td>\n"," <td>Строительные емкости</td>\n"," <td>41660</td>\n"," </tr>\n"," <tr>\n"," <th>41764</th>\n"," <td>26839</td>\n"," <td>Лента малярная 48ммх40м</td>\n"," <td>Сопутствующие товары</td>\n"," <td>Инструмент ручной</td>\n"," <td>Малярный инструмент</td>\n"," <td>Ленты малярные</td>\n"," <td>41764</td>\n"," </tr>\n"," <tr>\n"," <th>41768</th>\n"," <td>269664</td>\n"," <td>Шпатель резиновый 40мм белый</td>\n"," <td>Сопутствующие товары</td>\n"," <td>Инструмент ручной</td>\n"," <td>Штукатурно-отделочный инструмент</td>\n"," <td>Шпатели</td>\n"," <td>41768</td>\n"," </tr>\n"," <tr>\n"," <th>41772</th>\n"," <td>269665</td>\n"," <td>Шпатель резиновый 80мм белый</td>\n"," <td>Сопутствующие товары</td>\n"," <td>Инструмент ручной</td>\n"," <td>Штукатурно-отделочный инструмент</td>\n"," <td>Шпатели</td>\n"," <td>41772</td>\n"," </tr>\n"," </tbody>\n","</table>\n","</div>\n"," <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-16e92beb-0c1a-4032-9f90-da220ca189b2')\"\n"," title=\"Convert this dataframe to an interactive table.\"\n"," style=\"display:none;\">\n"," \n"," <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n"," width=\"24px\">\n"," <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n"," <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n"," </svg>\n"," </button>\n"," \n"," <style>\n"," .colab-df-container {\n"," display:flex;\n"," flex-wrap:wrap;\n"," gap: 12px;\n"," }\n","\n"," .colab-df-convert {\n"," background-color: #E8F0FE;\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: #1967D2;\n"," height: 32px;\n"," padding: 0 0 0 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-convert:hover {\n"," background-color: #E2EBFA;\n"," box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: #174EA6;\n"," }\n","\n"," [theme=dark] .colab-df-convert {\n"," background-color: #3B4455;\n"," fill: #D2E3FC;\n"," }\n","\n"," [theme=dark] .colab-df-convert:hover {\n"," background-color: #434B5C;\n"," box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n"," filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n"," fill: #FFFFFF;\n"," }\n"," </style>\n","\n"," <script>\n"," const buttonEl =\n"," document.querySelector('#df-16e92beb-0c1a-4032-9f90-da220ca189b2 button.colab-df-convert');\n"," buttonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n"," async function convertToInteractive(key) {\n"," const element = document.querySelector('#df-16e92beb-0c1a-4032-9f90-da220ca189b2');\n"," const dataTable =\n"," await google.colab.kernel.invokeFunction('convertToInteractive',\n"," [key], {});\n"," if (!dataTable) return;\n","\n"," const docLinkHtml = 'Like what you see? Visit the ' +\n"," '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n"," + ' to learn more about interactive tables.';\n"," element.innerHTML = '';\n"," dataTable['output_type'] = 'display_data';\n"," await google.colab.output.renderOutput(dataTable, element);\n"," const docLink = document.createElement('div');\n"," docLink.innerHTML = docLinkHtml;\n"," element.appendChild(docLink);\n"," }\n"," </script>\n"," </div>\n"," </div>\n"," "]},"metadata":{},"execution_count":5}]},{"cell_type":"markdown","source":["__Расшифровка чека__\n","\n","Ниже введена функция, переводящая список чисел - номеров sku_id в dataframe с названиями и исходными категориями соотвествующих товаров. Первая функция сопоставляет id с product_id продукта, вторая - с fake_id."],"metadata":{"id":"6N5ifnQf6Ng3"}},{"cell_type":"code","source":["# Индексы sku_id соотвествуют fake_id:\n","def read_receipt(ids, df_descr):\n"," descr_table = pd.DataFrame()\n"," for id in ids:\n"," id_descr = df_descr.loc[id]\n"," if id_descr.shape[0] == 0:\n"," print('Товар не найден, id = ', id)\n"," else:\n"," descr_table = descr_table.append(id_descr)\n"," return descr_table"],"metadata":{"id":"XJ8Q9z94-wiJ"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["### **Обзор классификации товаров**"],"metadata":{"id":"GOwW-oiMFtXw"}},{"cell_type":"code","source":["lvl_1_count = df_product.groupby(['PRODUCT_LVL_NM1'])['FAKE_ID'].agg('count')\n","\n","fig, ax = plt.subplots(figsize=(15, 5))\n","ax.barh(lvl_1_count.index, lvl_1_count.values)\n","for i, v in enumerate(lvl_1_count):\n"," ax.text(v + 3, i - .2, str(v))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":322},"id":"g_iiHVpuY7WU","executionInfo":{"status":"ok","timestamp":1654448729792,"user_tz":-180,"elapsed":793,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}},"outputId":"fdf2b4e5-a163-49ec-e00a-0c2ad627a21c"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["<Figure size 1080x360 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA+gAAAExCAYAAADvDYgqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deVRV9f7/8dcBRFJQEdGrZZqWqJla15zSVNSkEg6CEwoNcrEsp8wUDYeUa2BqXjVvYQ59UzQHFMerkkOtLMpr3eKaac7khIoJIuM5vz/4eW6kIipyNvB8rNVanf3Zn73fe/Npr15nf/Y+JqvVahUAAAAAALArB3sXAAAAAAAACOgAAAAAABgCAR0AAAAAAAMgoAMAAAAAYAAEdAAAAAAADICADgAAAACAARDQAQAAAAAwACd7F4DyJzX1iiwWq73LAO6Yh4erLlxIt3cZwF1hHKMsYByjLGAcly8ODia5u1e+aTsBHSXOYrES0FHqMYZRFjCOURYwjlEWMI5xDVPcAQAAAAAwAAI6AAAAAAAGQEAHAAAAAMAACOgAAAAAABgAAR0AAAAAAAMgoAMAAAAAYAAEdAAAAAAADICADgAAAACAARDQAQAAAAAwACd7F4Dyx8PD9Y76ZWblKu3y1WKuBgAAAACMgYCOEhcauU3nUm8/aG+YaVbaPagHAAAAAIyAKe4AAAAAABgAAR0AAAAAAAMgoAMAAAAAYAAEdAAAAAAADICADgAAAACAARDQAQAAAAAwAAI6AAAAAAAGQEAHAAAAAMAACOgAAAAAABgAAR0AAAAAAAMgoAMAAAAAYAAEdAAAAAAADICADgAAAACAARDQAQAAAAAwAAI6AAAAAAAGQEAvZSZMmKDIyEjbZ4vFou7du2vHjh12rAoAAAAAcLcI6KVMcHCw1q5dqytXrkiSvvjiC1mtVnXu3Nm+hQEAAAAA7goBvZTx8vJSkyZNtG7dOknSp59+qoEDB8rBwUGrV6+Wn5+f/Pz8FBgYqPPnz0uSkpOT1bRpU5nNZvn6+srLy0uS9M477+jjjz+2bXv//v3q0aOHrFarwsPD9fTTT8tsNstsNis6OlqSFBISop07d0qSfvrpJzVu3FhLly4tyVMAAAAAAGWSk70LwO0LDg7W3Llz1a5dO+3bt0/vv/++EhMT9dFHHyk2Nlaenp66cuWKnJzy/7wWi0VVq1ZVfHy8rly5oieeeMK2nVdffVWhoaEymUxaunSpBgwYIJPJJEkaPHiwgoODb1iD1WrVu+++awv7JcXT061E9wfcDGMRZQHjGGUB4xhlAeMY1xDQS6Fu3brp3Xff1ZgxY+Tr66sqVapo165dMpvN8vT0lCRVrlzZtv7Vq1fl4uJy3XYaNmyounXr6osvvlDLli21Y8cOjRs3rkg1rF+/Xg0aNFBubm7xHFQRpaSklej+gBvx9HRjLKLUYxyjLGAcoyxgHJcvDg4meXi43ry9BGtBMXFyclL//v31008/KSQk5JbrnzlzRrVq1bphW0hIiJYvX641a9bomWeekZvbrb+9y8jIUExMjEaNGnXbtdvDyZMn5O3dXlOmTLB3KQAAAABwUwT0UsrFxUVt27bVI488Iknq3Lmz4uPjbc+dX7lyRVlZWbJYLFq/fr3atm17w+106tRJR48e1eLFizVgwIAi7XvBggXq06ePqlevXjwHc4/NmhWtxo2b2rsMAAAAACgUU9xLIR8fH5lMJtuL2ySpTZs2Gjx4sF5++WWZTCY5Ozvrww8/1NSpU+Xs7KywsLAbbsvBwUH+/v764osv1Lhx4yLtPzs7+6bPphtNQsJWubq6qVmz5vrtt2R7lwMAAAAAN2WyWq1WexcB+3r55ZfVt29fPfvssyWyv9DIbTqXevW2+22Yab6t53OuXElXaOgLmjPnn9qwYZ1++y1ZEydOve39An/Gs2IoCxjHKAsYxygLGMflC8+g46Z++ukndevWTW5uburRo4e9yyl2CxZ8qJ49/VSz5o2fvwcAAAAAI2GKezn22GOPKSEhwd5l3BOHDv2ivXu/1eLFy+xdCgAAAAAUCQEdZdL33/9bZ86cUmBgT0nS1asZysuz6NixI1q0iNAOAAAAwHgI6CiT/PwC1LXrM7bPy5cv1Zkzp/Tmm0X7nXcAAAAAKGkEdJRJLi4ucnFxsX2+77775OxcUe7u7nasCgAAAABujoCOciE09BV7lwAAAAAAheIt7gAAAAAAGAABHQAAAAAAAyCgAwAAAABgAAR0AAAAAAAMgIAOAAAAAIABENABAAAAADAAAjoAAAAAAAZAQAcAAAAAwAAI6AAAAAAAGICTvQtA+bMw4pk76peZlVvMlQAAAACAcRDQUeIuXEiXxWK1dxkAAAAAYChMcQcAAAAAwAAI6AAAAAAAGAABHQAAAAAAAyCgAwAAAABgAAR0AAAAAAAMgIAOAAAAAIABENABAAAAADAAAjoAAAAAAAZgslqtVnsXAQAAAABAccjMylXa5av2LuOGHBxM8vBwvWm7UwnWAkiSQiO36VyqMf+DAQAAAFC6bZhpVpq9i7hDTHEHAAAAAMAACOgAAAAAABgAAR0AAAAAAAMgoAMAAAAAYAAEdAAAAAAADICADgAAAACAARDQAQAAAAAwAAI6AAAAAAAGQEAHAAAAAMAACOgAAAAAABgAAR0AAAAAAAMgoAMAAAAAYAAEdAAAAAAADICADgAAAACAARDQAQAAAAAwAAI6AAAAAAAG4HSrFXJycjR//nxt3rxZzs7OcnR0VNu2bfXmm2+qQoUKJVEjAAAAAABl3i0D+rhx45SVlaU1a9bI1dVVubm5WrNmjbKzswnoAAAAAAAUk0ID+rFjx5SQkKDdu3fL1dU1v4OTk/r16ydJysvL04wZM/Tll19Kkjp27KjRo0fL0dFR4eHh2rNnj9zd3SVJqampat++vaKiotSzZ09NmzZNzZs3lyQtXrxYR44cUePGjbVy5Url5OTo2LFjeuSRRyTlf0nQtm1bffTRR9q4caNMJpMqVaqk2NhYhYWF6fz58zp//rwsFotq1qypypUrKzY2ViEhITp16pQqVaqkrKwsDR06VH5+fho8eLB69eqlZ599VpK0bds2rVixQosWLVJISIgGDRqkp59+WtHR0dq1a5cqVqyoZs2aKSIiQpUrV9bcuXOVkZGhsWPHSpK8vLy0b98+Va5cWUuXLlVSUpKioqKUnJyswMBAJSYmSpIiIyP16aef2tb9z3/+oxkzZujKlSuSpOHDh6tz584F/gb/+c9/NHHiREnS4cOH9cADD6hixYry9fXV3/72N61bt04LFy6UJD344IOaMmWKPDw8FBcXp2nTpun+++9XWlqaHn/8cUVHR8vJyUnR0dH69ttvlZOTI3d3d9t61+rt1auXvvrqK0nSpEmT1KpVq+uO5Zo/Hi8AAAAA4M4VGtD379+vevXqqWrVqjds/+yzz/Tzzz8rLi5OkhQWFqbPPvtMAwYMkCQNHjxYwcHBkv4X5CRp4MCBWr58uZo3by6r1arly5drzpw5aty4sQYOHGgLg/Hx8bZ9rV27Vjt27NDy5cvl6uqq1NRUOTg42MLpn0PzNREREerSpYtWrVql+Ph4+fn5KTg4WAsWLLAF9GXLlikkJKRAvxUrVmjPnj2Ki4tT5cqVNXr0aM2fP19vvfVW0c7snxw6dEg//PCD7fPly5c1adIkxcTEqGbNmjp37px69+6tjRs3qkqVKrb1WrRoYTsP3t7emjNnjho1aiRJOnjwoGbMmKG4uDjVrFlTs2fP1tSpUzV79mxJUvv27TVnzhxdvnxZnTt31oULF1SrVi2FhYXZztOqVas0Y8YMvf/++5KkS5cuqXHjxgoPD1diYqJGjRqlhISEOzpmAAAAALAHT083e5dwR245xb0wX3/9tXr16iVnZ2dJUkBAgBISEmwB/WbMZrM++OADXbp0ST/++KM8PDzUuHHjQvvs3LlTQUFBtjv51+7M30pkZKSmT5+us2fPat68eZLy7/RPmzZNhw8fliSdPHlSXbp0KdAnPT1dL774om1/QUFBmjZtWpH2eSPTpk3TuHHjbOfm+++/V3JyssLCwmzrmEwmHT9+XI899liRtpmYmKhOnTqpZs2akqT+/fvLbDbb2vfs2SOz2ayTJ0+qZ8+eqlWrliTpiy++UGxsrDIyMpSbm1tgmxUqVJCfn58kqU2bNnJxcdGRI0fk6uqqtLQ0mc1mWa1W1atXz3ZnHwAAAACMJCUlzd4l3JCDg0keHq43bS80oDdt2lTHjx/X77//ftO76HeiUqVK8vX1VVxcnL799lsNHDiw2Lb9Z9fuoP/4448aPny4du3aJZPJpODgYMXGxkqS+vXrJ0dHxwJ9vv3222KrYfv27apevbr++te/2pZZrVZ5eXlp2bJlxbafP7t2Bz0rK0tBQUH6+uuv9eCDD+rdd9/V6tWrVbduXe3bt0+jR48u0vbc3Nxsd/OnTJmimJgY1atX757VDwAAAAD3WnZ2tmbOjNLevd/q8uXLuv/+B/TKK6+rXbunlJT0kz7++J/65ZcDcnR0UMuWf9XIkW+pRo0aBbaRk5Ojl14KUkZGhtau3XzHtRT6M2v169eXt7e3Jk6cqPT0dEn5z52vWrVKV65cUbt27bRu3Trl5OQoJydH69atU/v27Yu04wEDBuiTTz5RUlKSnnnmmVuu36VLFy1fvtxWR2pqapH2c02VKlV06dIlWSwWSZK/v78SEhK0efNm9enT57r1O3bsqC1btig9PV1Wq1UrV65Uhw4dbmufkpSbm6s5c+ZozJgxBZY//vjjOn78uL755hvbsh9//FFWq7XI227Tpo12796tlJQUSdLKlStveP4rVKggFxcXXbx4Uenp6apQoYI8PT1lsVi0YsWKAuvm5ORow4YNkqS9e/cqMzNTDRo0uG6b7u7uysnJKXKtAAAAAGBEeXl5qlmzlubNi9HWrbsUFjZEEyeO0+nTp5SWdll+fgFavXq9Vq/eqEqVKmnatHeu20Zs7P+pWrWizfIuzC2nuEdFRemDDz5QYGCgKlSoIIvFok6dOsnZ2Vn9+vXTiRMn1KtXL0lShw4d1Ldv3yLtuG7dumrQoIGaN29umyJfGH9/f509e1b9+vWTk5OTKlWqpGXLlsnBofCfco+MjNTs2bOVk5OjyZMn29Z3dXVVx44dlZmZqerVq1/Xr3379vLz81P//v1lMpn02GOPaciQIbb2TZs2FXimPDQ0VCaTSSkpKcrIyNDu3bvVsGFDpaen6/nnn7dNL7+matWqmj9/vt577z1NmzZNOTk5qlu3rj788EOZTKZbng9JatSokUaPHq1BgwZJyj+nU6ZMsbVfm+KenZ2tpk2bqnv37nJ2dpaPj4+ee+45ubu7q1OnTtq7d6+tT7Vq1XTgwAF9/PHHkqRZs2bZ/j7p6ekKCgqS1WqVo6Oj7SV6AAAAAFBa3XfffQoNfcX2+amnOqpOnTr65Zef1blz1wLrBgb209ChgwssO3XqN23btkVDh76h6dP/fle1mKy3c8u2GKWnp8vHx0dr1qy5LryWhNzcXPn5+SkqKsr2Nvnicu2leQEBAcW63XvtZm9qL26hkdt0LvXqPd0HAAAAgPJpw0zzXT2DfvHiBfXu7avFi2NVr179Am0rV8YqIWGbYmKW2JaNGTNSzz9vlpubm6ZOnVjoFPdbPYNe+O3ne2T58uV67rnnNGjQILuE888//1zdu3fXU089VezhXMp/dr9p06bFvl0AAAAAwL2Tm5urd96ZIB+f568L57/+ekiLF3+s118fYVu2e/dO5eVZ1KlTFxWHu3qL+50KCgpSUFCQPXYtSeratau6du166xXv0K3eSG9UDzzwwD2/ew4AAAAARmSxWDR16gRVqOCkUaMK/nx3cvJJjR49XCNGvKkWLR6XJF29elX//OccvffeP4qtBrsEdAAAAAAAjMJqtSoqaqouXryoGTP+ISen/0XlM2dOa+TI1/TSS6Hy8Xnetjw5+YROnz6l11/P/+nsnJwcXbmSLj+/Hvroo8WqXbvObddBQAcAAAAAlGszZryrY8eOavbs+apY0cW2PCXlnIYPf1UBAX3l79+7QJ+HHmqouLhNts9JST9q1qzpWrRo6R2/0Z2ADgAAAAAot86cOa34+Dg5OzvLbO5hW/7WW+OVnHxSp079psWLY7R4cYytbfv2L+Xk5CQPj//9HrqbWxU5ODgUWHa77PYWd5RfvMUdAAAAwL1yt29xv5cM+RZ3AAAAAABQEAEdAAAAAAADIKADAAAAAGAABHQAAAAAAAyAgA4AAAAAgAEQ0AEAAAAAMAACOgAAAAAABkBABwAAAADAAAjoAAAAAAAYgMlqtVrtXQQAAAAAAMUhMytXaZev2ruMG3JwMMnDw/Wm7U4lWAsgSbpwIV0WC98LofTy9HRTSkqavcsA7grjGGUB4xhlAeMYf8QUdwAAAAAADICADgAAAACAARDQAQAAAAAwAAI6AAAAAAAGQEAHAAAAAMAACOgAAAAAABgAAR0AAAAAAAMgoAMAAAAAYABO9i4A5Y+Hh6u9S4BBZWblKu3yVXuXAQAAANgFAR0lLjRym86lEsJwvQ0zzUqzdxEAAACAnTDFHQAAAAAAAyCgAwAAAABgAAR0AAAAAAAMgIAOAAAAAIABENABAAAAADAAAjoAAAAAAAZAQAcAAAAAwAAI6AAAAAAAGAABHQAAAAAAAyCgAwAAAABgAAR0AAAAAAAMgIAOAAAAAIABENABAAAAADAAAjoAAAAAAAZAQAcAAAAAwACc7F1AWZGdna1Zs2YpISFBTk5OcnFx0dChQ9WtWzdJ0jfffKMlS5YoNTVVV65c0cyZM+Xl5WXnqu/MuHHj9Msvv6hKlSqaOXOmPDw87F0SAAAAAJR6BPRiMnnyZGVkZGjTpk2qWLGiDh48qL/97W+qWrWqHB0d9f777ys6Olr169e3d6l37d1337V3CQAAAABQ5hDQi8Fvv/2mLVu2aOfOnapYsaIkqVGjRnr11Vc1b948Va9eXffdd5+GDBkiR0dHtW3bVmPHjlWFChUUHh6uZs2aKTg4WMnJyQoMDFRiYqIkKTo6WpUqVdKwYcMkSWvXrlVsbKzy8vLk6uqqyZMnq0GDBpKkjz76SBs3bpTJZFKlSpUUGxursLAwnT9/XufPn5fFYlHNmjVVuXJlxcbGKiQkRI0bN9b333+v33//Xc8++6xGjRolSTp+/LgmTpyoixcvysnJSW+88YaefvppSZKXl5f27dunypUra/HixYqKitKGDRvUqFGjkj7tAAAAAFCmENCLwcGDB/Xggw+qWrVqBZa3bNlS//jHP9SoUSM5ODgoPj5eDg4OGjJkiD799FMNGjSoyPvYu3evtmzZomXLlsnZ2Vm7d+/W+PHjtWLFCq1du1Y7duzQ8uXL5erqqtTUVDk4OGjhwoWSpLlz5yojI0Njx44tsM3Dhw9rxYoVysrKUv/+/fX444+rS5cuGj16tPr27as+ffro119/1cCBA7VlyxZVr17d1vfChQtavXo109tR7Dw93exdQpGUljqBwjCOURYwjlEWMI5xDQG9GFit1luuExAQIGdnZ0lS3759tWLFitsK6Dt27NCBAwfUp08f2z4vX74sSdq5c6eCgoLk6uoqSXJ3dy/SNv39/eXk5CQnJyc999xz+uabb/Tkk0/q559/VmBgoCTp4YcfVpMmTfTDDz/I29vb1nfWrFl65ZVXNHv27CIfA1AUKSlp9i7hljw93UpFnUBhGMcoCxjHKAsYx+WLg4NJHh6uN20noBeDRo0a6cSJE7p06VKBu+g//PCDvLy8VLly5QLrm0ym296H1WpVYGCgRowYcdf13q3//ve/OnbsmP7+978T0GFXU6ZM0L///a2uXs1U9eoeGjjwBfn6+kuSPv98uxYt+kjnzp1TrVq1NHjw63r66c72LRgAAAAoBD+zVgweeOAB+fj4aPLkycrKypKUP+39ww8/1NChQ9W6dWutW7dO2dnZys3N1apVq9ShQ4fb2oe3t7fi4+N15swZSVJeXp6SkpIkSV26dNHy5cuVnp4uSUpNTS3SNtevX6/c3FxlZGRoy5Ytatu2rVxdXdWkSROtXbtWUv40+AMHDqhly5a2flFRURo/fvxt1Q/cC8HBL2nVqg3atm23oqNnacGCf+rAgZ+VknJOU6dO0NChb2jbtt167bUReuedt5WaetHeJQMAAAA3xR30YjJp0iTNmjVLzz33nCpUqKCKFSvq7bffVuvWrdWyZUsdP35cZrNZTk5OatOmjYKDg219lyxZok2bNik7O1vp6ekKCgqSlP/yOQcHB3Xt2lVPPvmkRo4cqSFDhigvL085OTny8fFRs2bN5O/vr7Nnz6pfv35ycnJSpUqVtGzZMjk4FP79S4MGDdS/f3/bS+K6dOkiSZoxY4YmTpyoJUuWyMnJSdOnTy/w/Pmjjz6qRx999B6cReD2NGjQ0PbvJlP+P7/9lvz/X6TopnbtnpIktW/fQffdd59++y1Z7u7Vb7Y5AAAAwK5M1qI8QA27mTt3rlq3bq02bdoU63ZDQkI0aNAgWygvSaGR23Qu9WqJ7xfGt2Gm+bafwZoxI0pbtmxQVlaWGjXy0rx5C1SxYkWNGDFE/fsPVLt2HfTVV1/q/fenKzZ2je677767rpNnxVAWMI5RFjCOURYwjssXnkEv5dq2bas6derYuwzAsEaPDtcbb7ylpKSf9P33e+Xs7CxHR0f5+Dynd96JUHZ2tpycnDR1anSxhHMAAADgXiGgG9yTTz55T7b76aef3pPtAvbg6OioFi1aatu2zVq7drXq139I8+fP1dy5H6lRo8b65ZefFR4+SjNmzNEjj3jZu1wAAADghnhJHIAyIy8vT7/9lqxDhw6qRYvH1bhxUzk4OKhJk0fVtGkzfffdt/YuEQAAALgpAjqAUik19aISErYqIyNDeXl5Skz8WgkJW9Wq1ZNq0qSpfvzxex069Isk6eDBA/rPf37Qww8/YueqAQAAgJtjijuAUsqkdevWaMaMd2WxWPWXv/xFw4e/qQ4dOkmSBg0arIiIsbp48aKqVXNXSMjLat26rZ1rBgAAAG6OgA6gVHJ3d9e8eTE3bQ8M7KfAwH4lWBEAAABwd5jiDgAAAACAARDQAQAAAAAwAAI6AAAAAAAGQEAHAAAAAMAACOgAAAAAABgAAR0AAAAAAAMgoAMAAAAAYAAEdAAAAAAADICADgAAAACAATjZuwCUPwsjnrF3CTCozKxce5cAAAAA2A0BHSXuwoV0WSxWe5cBAAAAAIbCFHcAAAAAAAyAgA4AAAAAgAEQ0AEAAAAAMAACOgAAAAAABkBABwAAAADAAAjoAAAAAAAYAAEdAAAAAAADIKADAAAAAGAATvYuAOWPh4ervUsA7pqnp5u9SwDuGuP4fzKzcpV2+aq9ywAAlHMEdJS40MhtOpfK/wQBAIxjw0yz0uxdBACg3GOKOwAAAAAABkBABwAAAADAAAjoAAAAAAAYAAEdAAAAAAADIKADAAAAAGAABHQAAAAAAAyAgA4AAAAAgAEQ0AEAAAAAMAACOgAAAAAABkBABwAAAADAAAjoAAAAAAAYAAEdAAAAAAADIKADAAAAAGAABHQAAAAAAAyAgA4AAAAAgAEQ0AEAAAAAMIBiC+je3t46ePCg7XN0dLS8vLwKLAMAAAAAADd2T+6gnzlzRvHx8apWrdq92DwAAAAAAGXOPQnoc+fO1YABA1S5cmXbspCQEO3cudP2OTo6WnPnzpUkbd26Vf3799eVK1ckSV5eXrpy5YoyMzMVEhKiDRs2SJKys7MVHR2t3r17y8/PT2+99ZatT3h4uJYuXWrb/tKlSxUeHm77HBMTo969e6tXr1569dVXlZKSYqt1xIgReuGFF+Tj46Nhw4YpLS3N1hYdHW3bxs6dOxUSEiJJSkxMVEBAwHXH/sfjKqzeP9u5c6cCAgLk5+cnf39/HThwoMC5kKTFixcXmJVw+PBhDRo0SL6+vvL19dXatWu1fft2mc1mmc1meXl5ydfXV2azWevXr5ckrV27Vn369FFAQIBeeOEFHTlyRJIUFxcnLy8vbd++3VZTcHCw2rRpI0lKTk62/fsf/fk8AwAAAADujFNxb/DIkSPavXu3tm7dqri4uCL16dGjh9LT0/X6668rJiZGkpSbm6tRo0bJx8dHvr6+kqSPP/5Ybm5uWr16tSTpvffeU0xMjN54441Ctx8fH6+TJ09q5cqVcnBwUGxsrKKiojRz5kxJ0r///W+tW7dONWrU0Lhx4zR//nyNHTv2Tk+BTVHrPXr0qCIiIrRs2TLVr19f2dnZys7OLrDOhQsXtHr1anl4eNjOz2uvvaaRI0fq2WeflSSlpqbK3d1d3bt3l5Qf7lesWGH7omTv3r3asmWLli1bJmdnZ+3evVvjx4/XihUrJEktWrTQZ599pu7du+vgwYOyWCx3fQ4AACgtPD3d7F0C7gB/N5QFjGNcU+wBffbs2QoLCytw9/yayMhIzZ49W5J07tw5DRgwwNYWGBioTz/9VCNHjpSUf0f82LFj+uc//2lbZ8eOHUpPT9fWrVsl5d+hbty4sa09JiZGq1atkpQfVtu3b2/rl5SUpF69ekmS8vLy5OrqauvXuXNn1ahRQ5LUu3dvRUZG2trWrVunPXv2SJLS09NVp04dW9vhw4dlNptltVrVtGlTTZw4scDx3qrea/bs2aOnn35a9evXlyQ5OzvL2dm5wDqzZs3SK6+8Yjt/R48eVW5uri2cS5K7u/t12/5zPQcOHFCfPn0kSVarVZcvX7a1/+Uvf7Fte9myZRowYICmTp1qa09LS7Mdb7169a47XgAASrOUlDR7l4Db5Onpxt8NpR7juHxxcDDJw8P1pu3FGtCTkpKUlJSkGTNm3LA9IiJCXbp0kaQCU8clafny5Xr44YdVt25dff7556pXr548PT21ZMkSDRo0SFJ+oJw0aZLatWt3w+0PHjxYwcHBkvKnXiclJdn6DRkyRL17977tY/L397fdTd+5c6cWLVpka2vYsKHi4uKUl5enoUOHauXKlQX63qreovrvf/+rY8FXX94AABO7SURBVMeO6e9//7stoN8Jq9WqwMBAjRgx4qbrBAUFKSYmRidPnlRYWFiBNjc3N8XHx0uSpkyZopiYGNWrV++O6wEAoLRas+Yzbd68UUeO/Kpu3Xro7bcnS5JycnL0zjtv68CBn3XmzGnNmfOhnniila1fWlqa/vGPGfrmm/wv/3v16q3Q0FfscQgAAAMq1mfQ582bp2HDhl139/dWkpOTtWTJEkVERNjC47BhwzRmzBitWrXK9py0t7e3lixZoszMTEn5d7QPHz58y+17e3srNjZWv//+u6T8O9nXnvGWpF27dunixYuS8p/Fbtu27W3V7+joqKpVqyonJ+e6/Ral3qeeekpffPGFjh07ZqsvPT3d1h4VFaXx48cX6PPQQw/JyclJW7ZssS1LTU0ttE5vb2/Fx8frzJkzkvJnElz7EuOadu3a6fTp0+rbt2+h23J3d7/ueAEAKC9q1PDUiy+G6vnn/a5ra968pSZMmGp7LO2P5s6dpczMTK1evUELFnyirVs3a9Om9SVRMgCgFCjWO+iVKlWS2Wy+rT5Wq1UREREaO3bsdW99d3V11cSJEzV+/HjFxsZq8ODBmjdvnnr37i2TySSTyaShQ4eqYcOGhe7D399fly5dst1dt1qtCgoKsk03b9Wqld544w2dPXtWDz/8cJFfenb06FEFBQUpLy9PVatW1fjx4wtMyS9qvfXr19fUqVP1xhtvKC8vT46OjoqKipKXl5ck6dFHH9Wjjz5aoI+Tk5Pmz5+vKVOmaP78+TKZTBo0aJD8/f1vWu+TTz6pkSNHasiQIcrLy1NOTo58fHzUrFmzAustWbJEUv4XJ3+Unp6uoKAgWa1WOTo6Kjo6Wrt27SrSuQIAoCzp1MlbknTgwH6lpJyzLa9QoYL69s1/hM/BwfG6fl999YVmzJgjFxcX1a5dRz17mrVp0/obBn0AQPljslqtVnsXYU9z585VRkZGsbwUDkUTGrlN51Kv2rsMAABsNsw039EzoDEx85WScs42xf2PevV6ThMmTCkwxf3557vqvff+oaZN878c/+SThVq+fKn+9a+d1/XHrfHsLsoCxnH5cqtn0O/Jz6wBAADgem3atNfSpZ8oI+OKkpNPatOm9crKyrR3WQAAgyj2t7iXNsOGDbN3CQAAoJwYOXK03n//PfXvH6AqVaqqW7ceSkjYau+yAAAGUe4DOgAAQEmpUqWqJk3638+5fvTRB2rS5NFCegAAyhOmuAMAANym3NxcZWVlyWKxyGLJU1ZWlnJzcyXl/xpLVlZWgfWuvfLnt9+S9fvvl5SXl6evv/5K69fH6cUXQ+12HAAAY+EOOgAAwG365JOFWrx4ge3z1q1b9PLLYQoNfUUDBgTqzJnTkqRRo4ZKklatWq/atevowIGfNWfOTKWnp6lu3XqaODFSDRoU/ms0AIDyo9y/xR0lj7e4AwCM5k7f4g774u3XKAsYx+ULb3EHAAAAAKAUIKADAAAAAGAABHQAAAAAAAyAgA4AAAAAgAEQ0AEAAAAAMAACOgAAAAAABkBABwAAAADAAAjoAAAAAAAYgJO9C0D5szDiGXuXAABAAZlZufYuAQAAAjpK3oUL6bJYrPYuA7hjnp5uSklJs3cZwF1hHAMAYDxMcQcAAAAAwAAI6AAAAAAAGAABHQAAAAAAAyCgAwAAAABgAAR0AAAAAAAMgIAOAAAAAIABENABAAAAADAAAjoAAAAAAAZAQAcAAAAAwACc7F0Ayh8PD1d7lwDcNU9PN3uXANy1sjiOM7NylXb5qr3LAADgjhDQUeJCI7fpXCr/8wQAKH4bZpqVZu8iAAC4Q0xxBwAAAADAAAjoAAAAAAAYAAEdAAAAAAADIKADAAAAAGAABHQAAAAAAAyAgA4AAAAAgAEQ0AEAAAAAMAACOgAAAAAABkBABwAAAADAAAjoAAAAAAAYAAEdAAAAAAADIKADAAAAAGAABHQAAAAAAAyAgA4AAAAAgAEQ0AEAAAAAMACnktyZt7e3nJ2dVbFiRWVlZalVq1aaNGmSKlSoUJJlAAAAAABgOCV+B33OnDmKj4/Xpk2b9Ouvv2r79u0lXQIAAAAAAIZjtynuWVlZysrKUpUqVSRJc+fOVXR0tK19586dCgkJkSQNHjxYW7ZssbVt27ZNgwYN0vbt22U2m2U2m+Xl5SVfX1+ZzWatX79eiYmJ8vPz05gxY/T888+rd+/e+vXXX23bWLt2rfr06aOAgAC98MILOnLkiCQpLi5Ow4cPt6138OBBeXt7S5KSk5PVpk2bAsfRpk0bJScnS5K++uor9ezZU2azWd27d1dAQIBtvaioKPXo0UNms1mtW7fW0qVLb3he1q1bJ19fX/n6+ur111/XhQsXlJeXZzvO1q1b6+mnn5bZbNbIkSNt/YYPH67OnTvfcPu7d+9W//79FRAQoH79+umHH36wtSUmJqpFixYym83y8fGxHWtiYqKt/osXL8rf39/2ZcrXX3+tfv36yd/fX76+vtq0adMNjwUAAAAAUHQlOsVdyg+SFStW1IkTJ9ShQwd16NDhln2Cg4O1YMECPfvss5KkZcuWKSQkRN26dVP37t0lSV5eXlqxYoUqV64sKT9g/vLLL4qIiND06dO1du1ajRkzRnFxcdq7d6+2bNmiZcuWydnZWbt379b48eO1YsWKuzq2WbNmaeTIkerWrZsSExNtXzgcOnRIGzduVEJCglxcXBQeHn7D/gcPHtSMGTMUFxenmjVravbs2Zo6dapmz56t+Ph4SVJ4eLiaNWum4ODgAn3z8vI0cuRI+fv7F9j+iRMnNH/+fC1cuFCurq46dOiQwsLCtGvXLkmSxWLRI488otWrV+vgwYN69dVXC2z34sWLCg0N1WuvvWY7102bNlVsbKwcHR11/vx5BQQEqEOHDqpatepdnT8AAIqDp6ebvUtACeLvjbKAcYxrSjygz5kzR40aNVJWVpaGDRumJUuW6KWXXpKUf/d4z549kqT09HTVqVNHktSxY0dNmzZNhw8fliSdPHlSXbp0ueW+6tWrp9atW0uSzGazJkyYoPT0dO3YsUMHDhxQnz59JElWq1WXL1+29duzZ4/MZrOk/Dv9f5SWlmZru/b5GkdHR6Wnp19Xh4ODg3Jzc3X16lW5uLjctN7ExER16tRJNWvWlCT179+/wL4Kk56ermrVql23/Msvv9SJEyc0cOBA27Lc3FydP39eNWrUKLSm9PR0vfTSS6pVq5aeeeYZ2/KLFy9q/PjxOn78uBwdHfX777/r6NGjatmyZZFqBQDgXkpJSbv1SigTPD3d+Huj1GMcly8ODiZ5eLjetL3EA/o1FStWVOfOnbVr1y5bQPf399fYsWMl5U9xX7RokSTJZDIpODhYsbGxkqR+/frJ0dHxjvdttVoVGBioESNG3LC9ffv2mjNnjiRdd1fZzc3NdjdbUoEp7xERERo3bpzmzJkjR0dHubnlfxPWsGFDhYWFqXv37qpdu7bOnj2rZs2a3XH9N3L8+HHbFxp/1rFjR02fPv2GbWfOnFGtWrVu2JacnKyoqCh99tln+te//iUfHx9J0uTJk+Xt7a158+bJZDKpR48e132RAQBAabBmzWfavHmjjhz5Vd269dDbb0+WJOXk5Oidd97WgQM/68yZ05oz50M98UQrW7+FCz/S//3fIjk7O9uWLVmyXPff/0BJHwIAoAyx2zPoFotF3333nerXr1+k9f39/ZWQkKDNmzfb7nzfyokTJ7R3715J0oYNG9SoUSO5urrK29tb8fHxOnPmjKT86eFJSUl3dBx/VKtWLTk5OWnJkiWKjIws0Obh4aG2bdtq/fr1tue8/6xNmzbavXu3UlJSJEkrV65U+/btb7nfffv2ydnZWY0aNbqu7amnntKXX36pQ4cO2Zb9+OOPkqTs7Gxt3rxZbdu2veF2GzduLD8/P0VHR2v69Ok6e/aspPxZA/fff79MJpO++uorHT9+/JY1AgBgRDVqeOrFF0P1/PN+17U1b95SEyZMlYeHxw37du36jLZv/9L2D+EcAHC37PYMek5Ojh555BG9/vrrRern6uqqjh07KjMzU9WrVy9Sn0aNGmnVqlWaPHmyXFxcbHeRn3zySY0cOVJDhgxRXl6ecnJy5OPjc1d3ta9evarhw4dr/PjxevDBB3X69Glb2969exUbG6slS5bIZDIVWu/o0aM1aNAgSVLdunU1ZcqUQvf7008/KTQ0VM7Ozrbp8KdPn9aePXvUokULPfbYY3rvvff09ttvKzMzUzk5OXriiSfUvHlzvfjii2rWrFmBl9ndyAMPPKDhw4crPDxcixYt0ptvvql33nlHc+fO1WOPPSYvL6+iniYAAAylU6f8L80PHNivlJRztuUVKlRQ374DJEkODnc+aw8AgNthslqtVnsXURS5ubny8/NTVFSUmjdvfsv1r72kLS4urgSqs5/ExER9++23GjZsWIHlc+fOVevWra9767wRhEZu07nUq/YuAwBQBm2Yab6jZzljYuYrJeWcbYr7H/Xq9ZwmTJhy3RT3lStj5eDgKA+PGgoM7KtevXrfTem4Azy7i7KAcVy+GPYZ9Nvx+eefKzIyUt26dStSOC9PHn74Ybm7u1+3vEePHjedkgcAAO6Ot3d3mc0Bcnevrv37kxQRMUaurq7q3t3H3qUBAEqxUhHQu3btqq5du95WnzZt2pT5u+dS/rPtNwriN3oeHQAAFI+HHmpg+/fHHmuh3r2DtGvX5wR0AMBdsdtL4gAAAMoKk0kqHQ8NAgCMjIAOAADKrdzcXGVlZclischiyVNWVpZyc3Ml5f/aybWfEb223rVX93z55S5dvnxZVqtV+/cnafXqz9SxYye7HQcAoGwoFVPcAQAA7oVPPlmoxYsX2D5v3bpFL78cptDQVzRgQKDOnMn/VZZRo4ZKklatWq/atesoIWGb3n13qnJysuXpWVMDB76oZ5/taZdjAACUHaXmLe4oO3iLOwDgXrnTt7ijdOLt1ygLGMfly63e4s4UdwAAAAAADICADgAAAACAARDQAQAAAAAwAAI6AAAAAAAGQEAHAAAAAMAACOgAAAAAABgAAR0AAAAAAAMgoAMAAAAAYAAEdAAAAAAADMDJ3gWg/FkY8Yy9SwAAlFGZWbn2LgEAgDtGQEeJu3AhXRaL1d5lAHfM09NNKSlp9i4DuCuMYwAAjIcp7gAAAAAAGAABHQAAAAAAAyCgAwAAAABgAAR0AAAAAAAMgIAOAAAAAIABENABAAAAADAAAjoAAAAAAAZAQAcAAAAAwAAI6AAAAAAAGICTvQtA+ePgYLJ3CcBdYxyjLGAcoyxgHKMsYByXH7f6W5usVqu1hGoBAAAAAAA3wRR3AAAAAAAMgIAOAAAAAIABENABAAAAADAAAjoAAAAAAAZAQAcAAAAAwAAI6AAAAAAAGAABHQAAAAAAAyCgAwAAAABgAAR0AAAAAAAMgIAOAAAAAIABENBRYo4ePap+/fqpR48e6tevn44dO2bvkoBb8vb2lo+Pj8xms8xms7788ktJ0g8//CA/Pz/16NFDgwYN0oULF+xcKfA/0dHR8vb2lpeXlw4ePGhbXth1mGs0jOZm4/hm12WJazOMJTU1VWFhYerRo4d8fX01dOhQXbx4UVLhY5VxXM5ZgRISEhJiXbdundVqtVrXrVtnDQkJsXNFwK116dLF+ssvvxRYlpeXZ+3WrZv1u+++s1qtVusHH3xgDQ8Pt0d5wA1999131lOnTl03fgu7DnONhtHcbBzf6LpstXJthvGkpqZav/nmG9vnqKgo67hx4wodq4xjcAcdJeLChQvav3+/evbsKUnq2bOn9u/fb/sWEShNkpKSVLFiRbVq1UqS1L9/f/3rX/+yc1XA/7Rq1Uq1a9cusKyw6zDXaBjRjcZxYbg2w2iqVaumNm3a2D63bNlSp06dKnSsMo7hZO8CUD6cPn1atWrVkqOjoyTJ0dFRNWvW1OnTp1W9enU7VwcUbvTo0bJarfrrX/+qUaNG6fTp06pTp46tvXr16rJYLLp06ZKqVatmx0qBmyvsOmy1WrlGo1T583W5SpUqXJthaBaLRcuXL5e3t3ehY5VxDO6gA0Ahli1bpvXr12vNmjWyWq2aMmWKvUsCgHKN6zJKo6lTp6pSpUoKDg62dykwOAI6SkTt2rV19uxZ5eXlSZLy8vJ07ty525q6BtjDtTHq7OysAQMGaN++fapdu7ZOnTplW+fixYtycHDgm20YWmHXYa7RKE1udF2+tpxrM4woOjpax48f1+zZs+Xg4FDoWGUcg4COEuHh4aEmTZpo48aNkqSNGzeqSZMmTJ2EoWVkZCgtLU2SZLVatXnzZjVp0kTNmjVTZmam9u7dK0lasWKFfHx87FkqcEuFXYe5RqO0uNl1WRLXZhjSrFmzlJSUpA8++EDOzs6SCh+rjGOYrFar1d5FoHw4fPiwwsPDdfnyZVWpUkXR0dFq0KCBvcsCburkyZMaNmyY8vLyZLFY1LBhQ0VERKhmzZrat2+fJk2apKysLN1///167733VKNGDXuXDEiSIiMjtW3bNp0/f17u7u6qVq2aNm3aVOh1mGs0jOZG4/jDDz+86XVZEtdmGMqhQ4fUs2dP1a9fXy4uLpKkBx54QB988EGhY5VxXL4R0AEAAAAAMACmuAMAAAAAYAAEdAAAAAAADICADgAAAACAARDQAQAAAAAwAAI6AAAAAAAGQEAHAAAAAMAACOgAAAAAABjA/wOf7Qvu+KO6pQAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"markdown","source":["## Кластеры"],"metadata":{"id":"UX7KsLGOiHVF"}},{"cell_type":"code","source":["from sklearn.decomposition import PCA\n","from sklearn.manifold import TSNE\n","\n","from sklearn.cluster import DBSCAN\n","from sklearn.cluster import KMeans\n","\n","from sklearn.metrics import silhouette_score, adjusted_rand_score, davies_bouldin_score"],"metadata":{"id":"2eZ5GRzfo5jh"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["from sklearn.preprocessing import StandardScaler\n","from sklearn.preprocessing import normalize"],"metadata":{"id":"2GR_FuScrihJ"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["pd.read_csv('/content/drive/MyDrive/CourseWorkSAS/revenues/df_revenue_yearhalf_5.csv', sep=';', index_col='Unnamed: 0')"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":488},"id":"bKHMq77xvp_i","executionInfo":{"status":"ok","timestamp":1654448769752,"user_tz":-180,"elapsed":712,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}},"outputId":"052106b2-768b-4f24-8fbf-ccf1ad88d832"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" 21 22 23 24 25 26 \\\n","221 28863.32 43229.90 46237.76 57855.16 25971.52 0.00 \n","405 30659.00 30697.46 36575.58 58763.40 34401.18 12897.06 \n","410 38745.46 51510.80 42958.14 60453.18 30533.10 11674.94 \n","506 15701.44 21638.94 22810.72 36322.22 14859.48 12574.52 \n","507 36100.38 55809.58 74595.02 70530.22 29912.64 12369.86 \n","... ... ... ... ... ... ... \n","259313 209876.14 35858.78 93913.02 125539.26 51875.62 60185.70 \n","259718 198435.32 48749.94 93620.64 89846.74 27589.42 21916.14 \n","260634 21890.36 29148.02 22847.86 35915.26 24696.28 19647.28 \n","262752 14015.80 24361.84 28144.88 33148.72 20231.02 21424.04 \n","263059 25555.66 43656.08 54124.18 56031.56 24895.22 14498.94 \n","\n"," 27 28 29 32 ... 3106 3301 4401 \\\n","221 1888.32 29261.56 2937.26 1417.82 ... 0.0 3388.66 0.00 \n","405 6139.74 59103.56 17186.34 4877.88 ... 0.0 485.00 429.34 \n","410 4813.46 22642.08 8537.74 1409.42 ... 0.0 3288.20 1484.80 \n","506 2634.48 33475.48 17639.10 1966.04 ... 0.0 230.30 0.00 \n","507 2670.76 71719.66 17873.20 4653.52 ... 0.0 3681.02 0.00 \n","... ... ... ... ... ... ... ... ... \n","259313 30354.12 112181.72 57836.48 9961.00 ... 0.0 3622.28 490.00 \n","259718 19983.32 69514.08 20952.32 6299.08 ... 0.0 3706.50 550.00 \n","260634 6005.66 230.00 10757.20 4363.56 ... 0.0 968.86 236.68 \n","262752 15554.76 20091.56 19194.48 5814.32 ... 0.0 379.50 0.00 \n","263059 7766.28 41697.18 25853.84 3595.90 ... 0.0 1093.36 0.00 \n","\n"," 4502 4601 5501 6501 6701 8401 8403 \n","221 0.00 0.00 0.0 0.00 0.0 0.0 0.0 \n","405 900.00 0.00 0.0 0.00 0.0 0.0 0.0 \n","410 853.34 726.66 0.0 0.00 0.0 0.0 0.0 \n","506 455.00 0.00 0.0 0.00 0.0 0.0 0.0 \n","507 0.00 0.00 0.0 0.00 0.0 0.0 0.0 \n","... ... ... ... ... ... ... ... \n","259313 386.66 158.34 0.0 106.66 0.0 0.0 0.0 \n","259718 1246.66 141.66 0.0 70.00 0.0 0.0 0.0 \n","260634 758.34 0.84 0.0 0.00 0.0 0.0 0.0 \n","262752 0.00 146.68 0.0 0.00 0.0 0.0 0.0 \n","263059 0.00 0.00 0.0 0.00 0.0 0.0 0.0 \n","\n","[500 rows x 140 columns]"],"text/html":["\n"," <div id=\"df-6104e0c3-3886-429b-9519-48bd97334fd0\">\n"," <div class=\"colab-df-container\">\n"," <div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>21</th>\n"," <th>22</th>\n"," <th>23</th>\n"," <th>24</th>\n"," <th>25</th>\n"," <th>26</th>\n"," <th>27</th>\n"," <th>28</th>\n"," <th>29</th>\n"," <th>32</th>\n"," <th>...</th>\n"," <th>3106</th>\n"," <th>3301</th>\n"," <th>4401</th>\n"," <th>4502</th>\n"," <th>4601</th>\n"," <th>5501</th>\n"," <th>6501</th>\n"," <th>6701</th>\n"," <th>8401</th>\n"," <th>8403</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>221</th>\n"," <td>28863.32</td>\n"," <td>43229.90</td>\n"," <td>46237.76</td>\n"," <td>57855.16</td>\n"," <td>25971.52</td>\n"," <td>0.00</td>\n"," <td>1888.32</td>\n"," <td>29261.56</td>\n"," <td>2937.26</td>\n"," <td>1417.82</td>\n"," <td>...</td>\n"," <td>0.0</td>\n"," <td>3388.66</td>\n"," <td>0.00</td>\n"," <td>0.00</td>\n"," <td>0.00</td>\n"," <td>0.0</td>\n"," <td>0.00</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," </tr>\n"," <tr>\n"," <th>405</th>\n"," <td>30659.00</td>\n"," <td>30697.46</td>\n"," <td>36575.58</td>\n"," <td>58763.40</td>\n"," <td>34401.18</td>\n"," <td>12897.06</td>\n"," <td>6139.74</td>\n"," <td>59103.56</td>\n"," <td>17186.34</td>\n"," <td>4877.88</td>\n"," <td>...</td>\n"," <td>0.0</td>\n"," <td>485.00</td>\n"," <td>429.34</td>\n"," <td>900.00</td>\n"," <td>0.00</td>\n"," <td>0.0</td>\n"," <td>0.00</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," </tr>\n"," <tr>\n"," <th>410</th>\n"," <td>38745.46</td>\n"," <td>51510.80</td>\n"," <td>42958.14</td>\n"," <td>60453.18</td>\n"," <td>30533.10</td>\n"," <td>11674.94</td>\n"," <td>4813.46</td>\n"," <td>22642.08</td>\n"," <td>8537.74</td>\n"," <td>1409.42</td>\n"," <td>...</td>\n"," <td>0.0</td>\n"," <td>3288.20</td>\n"," <td>1484.80</td>\n"," <td>853.34</td>\n"," <td>726.66</td>\n"," <td>0.0</td>\n"," <td>0.00</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," </tr>\n"," <tr>\n"," <th>506</th>\n"," <td>15701.44</td>\n"," <td>21638.94</td>\n"," <td>22810.72</td>\n"," <td>36322.22</td>\n"," <td>14859.48</td>\n"," <td>12574.52</td>\n"," <td>2634.48</td>\n"," <td>33475.48</td>\n"," <td>17639.10</td>\n"," <td>1966.04</td>\n"," <td>...</td>\n"," <td>0.0</td>\n"," <td>230.30</td>\n"," <td>0.00</td>\n"," <td>455.00</td>\n"," <td>0.00</td>\n"," <td>0.0</td>\n"," <td>0.00</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," </tr>\n"," <tr>\n"," <th>507</th>\n"," <td>36100.38</td>\n"," <td>55809.58</td>\n"," <td>74595.02</td>\n"," <td>70530.22</td>\n"," <td>29912.64</td>\n"," <td>12369.86</td>\n"," <td>2670.76</td>\n"," <td>71719.66</td>\n"," <td>17873.20</td>\n"," <td>4653.52</td>\n"," <td>...</td>\n"," <td>0.0</td>\n"," <td>3681.02</td>\n"," <td>0.00</td>\n"," <td>0.00</td>\n"," <td>0.00</td>\n"," <td>0.0</td>\n"," <td>0.00</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," </tr>\n"," <tr>\n"," <th>...</th>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," </tr>\n"," <tr>\n"," <th>259313</th>\n"," <td>209876.14</td>\n"," <td>35858.78</td>\n"," <td>93913.02</td>\n"," <td>125539.26</td>\n"," <td>51875.62</td>\n"," <td>60185.70</td>\n"," <td>30354.12</td>\n"," <td>112181.72</td>\n"," <td>57836.48</td>\n"," <td>9961.00</td>\n"," <td>...</td>\n"," <td>0.0</td>\n"," <td>3622.28</td>\n"," <td>490.00</td>\n"," <td>386.66</td>\n"," <td>158.34</td>\n"," <td>0.0</td>\n"," <td>106.66</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," </tr>\n"," <tr>\n"," <th>259718</th>\n"," <td>198435.32</td>\n"," <td>48749.94</td>\n"," <td>93620.64</td>\n"," <td>89846.74</td>\n"," <td>27589.42</td>\n"," <td>21916.14</td>\n"," <td>19983.32</td>\n"," <td>69514.08</td>\n"," <td>20952.32</td>\n"," <td>6299.08</td>\n"," <td>...</td>\n"," <td>0.0</td>\n"," <td>3706.50</td>\n"," <td>550.00</td>\n"," <td>1246.66</td>\n"," <td>141.66</td>\n"," <td>0.0</td>\n"," <td>70.00</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," </tr>\n"," <tr>\n"," <th>260634</th>\n"," <td>21890.36</td>\n"," <td>29148.02</td>\n"," <td>22847.86</td>\n"," <td>35915.26</td>\n"," <td>24696.28</td>\n"," <td>19647.28</td>\n"," <td>6005.66</td>\n"," <td>230.00</td>\n"," <td>10757.20</td>\n"," <td>4363.56</td>\n"," <td>...</td>\n"," <td>0.0</td>\n"," <td>968.86</td>\n"," <td>236.68</td>\n"," <td>758.34</td>\n"," <td>0.84</td>\n"," <td>0.0</td>\n"," <td>0.00</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," </tr>\n"," <tr>\n"," <th>262752</th>\n"," <td>14015.80</td>\n"," <td>24361.84</td>\n"," <td>28144.88</td>\n"," <td>33148.72</td>\n"," <td>20231.02</td>\n"," <td>21424.04</td>\n"," <td>15554.76</td>\n"," <td>20091.56</td>\n"," <td>19194.48</td>\n"," <td>5814.32</td>\n"," <td>...</td>\n"," <td>0.0</td>\n"," <td>379.50</td>\n"," <td>0.00</td>\n"," <td>0.00</td>\n"," <td>146.68</td>\n"," <td>0.0</td>\n"," <td>0.00</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," </tr>\n"," <tr>\n"," <th>263059</th>\n"," <td>25555.66</td>\n"," <td>43656.08</td>\n"," <td>54124.18</td>\n"," <td>56031.56</td>\n"," <td>24895.22</td>\n"," <td>14498.94</td>\n"," <td>7766.28</td>\n"," <td>41697.18</td>\n"," <td>25853.84</td>\n"," <td>3595.90</td>\n"," <td>...</td>\n"," <td>0.0</td>\n"," <td>1093.36</td>\n"," <td>0.00</td>\n"," <td>0.00</td>\n"," <td>0.00</td>\n"," <td>0.0</td>\n"," <td>0.00</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," <td>0.0</td>\n"," </tr>\n"," </tbody>\n","</table>\n","<p>500 rows × 140 columns</p>\n","</div>\n"," <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-6104e0c3-3886-429b-9519-48bd97334fd0')\"\n"," title=\"Convert this dataframe to an interactive table.\"\n"," style=\"display:none;\">\n"," \n"," <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n"," width=\"24px\">\n"," <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n"," <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n"," </svg>\n"," </button>\n"," \n"," <style>\n"," .colab-df-container {\n"," display:flex;\n"," flex-wrap:wrap;\n"," gap: 12px;\n"," }\n","\n"," .colab-df-convert {\n"," background-color: #E8F0FE;\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: #1967D2;\n"," height: 32px;\n"," padding: 0 0 0 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-convert:hover {\n"," background-color: #E2EBFA;\n"," box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: #174EA6;\n"," }\n","\n"," [theme=dark] .colab-df-convert {\n"," background-color: #3B4455;\n"," fill: #D2E3FC;\n"," }\n","\n"," [theme=dark] .colab-df-convert:hover {\n"," background-color: #434B5C;\n"," box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n"," filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n"," fill: #FFFFFF;\n"," }\n"," </style>\n","\n"," <script>\n"," const buttonEl =\n"," document.querySelector('#df-6104e0c3-3886-429b-9519-48bd97334fd0 button.colab-df-convert');\n"," buttonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n"," async function convertToInteractive(key) {\n"," const element = document.querySelector('#df-6104e0c3-3886-429b-9519-48bd97334fd0');\n"," const dataTable =\n"," await google.colab.kernel.invokeFunction('convertToInteractive',\n"," [key], {});\n"," if (!dataTable) return;\n","\n"," const docLinkHtml = 'Like what you see? Visit the ' +\n"," '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n"," + ' to learn more about interactive tables.';\n"," element.innerHTML = '';\n"," dataTable['output_type'] = 'display_data';\n"," await google.colab.output.renderOutput(dataTable, element);\n"," const docLink = document.createElement('div');\n"," docLink.innerHTML = docLinkHtml;\n"," element.appendChild(docLink);\n"," }\n"," </script>\n"," </div>\n"," </div>\n"," "]},"metadata":{},"execution_count":10}]},{"cell_type":"code","source":["df_sem_0 = pd.read_csv('/content/drive/MyDrive/CourseWorkSAS/revenues/df_revenue_yearhalf_0.csv', sep=';', index_col='Unnamed: 0')\n","df_sem_1 = pd.read_csv('/content/drive/MyDrive/CourseWorkSAS/revenues/df_revenue_yearhalf_1.csv', sep=';', index_col='Unnamed: 0')\n","df_sem_2 = pd.read_csv('/content/drive/MyDrive/CourseWorkSAS/revenues/df_revenue_yearhalf_2.csv', sep=';', index_col='Unnamed: 0')\n","df_sem_3 = pd.read_csv('/content/drive/MyDrive/CourseWorkSAS/revenues/df_revenue_yearhalf_3.csv', sep=';', index_col='Unnamed: 0')\n","df_sem_4 = pd.read_csv('/content/drive/MyDrive/CourseWorkSAS/revenues/df_revenue_yearhalf_4.csv', sep=';', index_col='Unnamed: 0')\n","df_sem_5 = pd.read_csv('/content/drive/MyDrive/CourseWorkSAS/revenues/df_revenue_yearhalf_5.csv', sep=';', index_col='Unnamed: 0')"],"metadata":{"id":"Ju9nP_62Q3dk"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["df_clust_0 = df_sem_0.transpose().apply(np.log1p)\n","df_clust_1 = df_sem_1.transpose().apply(np.log1p)\n","df_clust_2 = df_sem_2.transpose().apply(np.log1p)\n","df_clust_3 = df_sem_3.transpose().apply(np.log1p)\n","df_clust_4 = df_sem_4.transpose().apply(np.log1p)\n","df_clust_5 = df_sem_5.transpose().apply(np.log1p)"],"metadata":{"id":"kj4TYkvuoyWD"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["df_aim = pd.DataFrame()\n","# cluster_metrics5 = pd.DataFrame(columns=['Silhouette', 'Dunn Index'])\n","\n","df_aim['0_kmeans'] = KMeans(n_clusters=6).fit(df_clust_0).labels_\n","df_aim['1_kmeans'] = KMeans(n_clusters=6).fit(df_clust_1).labels_\n","df_aim['2_kmeans'] = KMeans(n_clusters=6).fit(df_clust_2).labels_\n","df_aim['3_kmeans'] = KMeans(n_clusters=6).fit(df_clust_3).labels_\n","df_aim['4_kmeans'] = KMeans(n_clusters=6).fit(df_clust_4).labels_\n","df_aim['5_kmeans'] = KMeans(n_clusters=6).fit(df_clust_5).labels_"],"metadata":{"id":"ufzfZqD24obW","executionInfo":{"status":"ok","timestamp":1654455920635,"user_tz":-180,"elapsed":1644,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}}},"execution_count":62,"outputs":[]},{"cell_type":"code","source":["df_ari = pd.DataFrame(columns=['1-2', '2-3', '3-4', '4-5', '5-6', '1-6'])"],"metadata":{"id":"bgMfadiNPDyS"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["df_ari.loc['6 clusters'] = [adjusted_rand_score(df_aim['0_kmeans'], df_aim['1_kmeans']),\n"," adjusted_rand_score(df_aim['1_kmeans'], df_aim['2_kmeans']),\n"," adjusted_rand_score(df_aim['2_kmeans'], df_aim['3_kmeans']),\n"," adjusted_rand_score(df_aim['3_kmeans'], df_aim['4_kmeans']),\n"," adjusted_rand_score(df_aim['4_kmeans'], df_aim['5_kmeans']),\n"," adjusted_rand_score(df_aim['0_kmeans'], df_aim['5_kmeans'])]"],"metadata":{"id":"p_4uyk8dPv2G","executionInfo":{"status":"ok","timestamp":1654455926511,"user_tz":-180,"elapsed":389,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}}},"execution_count":63,"outputs":[]},{"cell_type":"code","source":["df_ari"],"metadata":{"id":"dBE_CD2IQgJ8","executionInfo":{"status":"ok","timestamp":1654455938080,"user_tz":-180,"elapsed":1389,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}},"outputId":"5ab17ccf-cc26-42d3-cdae-d298e200fa5d","colab":{"base_uri":"https://localhost:8080/","height":143}},"execution_count":64,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" 1-2 2-3 3-4 4-5 5-6 1-6\n","4 clusters 0.887851 0.777276 0.828571 0.561548 0.249676 0.091284\n","5 clusters 1.000000 0.843703 0.770932 0.617521 0.421842 0.123208\n","6 clusters 0.976040 0.825490 0.812901 0.622597 0.306128 0.163470"],"text/html":["\n"," <div id=\"df-4eab00de-7878-4abd-8c12-a97deb61da49\">\n"," <div class=\"colab-df-container\">\n"," <div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>1-2</th>\n"," <th>2-3</th>\n"," <th>3-4</th>\n"," <th>4-5</th>\n"," <th>5-6</th>\n"," <th>1-6</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>4 clusters</th>\n"," <td>0.887851</td>\n"," <td>0.777276</td>\n"," <td>0.828571</td>\n"," <td>0.561548</td>\n"," <td>0.249676</td>\n"," <td>0.091284</td>\n"," </tr>\n"," <tr>\n"," <th>5 clusters</th>\n"," <td>1.000000</td>\n"," <td>0.843703</td>\n"," <td>0.770932</td>\n"," <td>0.617521</td>\n"," <td>0.421842</td>\n"," <td>0.123208</td>\n"," </tr>\n"," <tr>\n"," <th>6 clusters</th>\n"," <td>0.976040</td>\n"," <td>0.825490</td>\n"," <td>0.812901</td>\n"," <td>0.622597</td>\n"," <td>0.306128</td>\n"," <td>0.163470</td>\n"," </tr>\n"," </tbody>\n","</table>\n","</div>\n"," <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-4eab00de-7878-4abd-8c12-a97deb61da49')\"\n"," title=\"Convert this dataframe to an interactive table.\"\n"," style=\"display:none;\">\n"," \n"," <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n"," width=\"24px\">\n"," <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n"," <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n"," </svg>\n"," </button>\n"," \n"," <style>\n"," .colab-df-container {\n"," display:flex;\n"," flex-wrap:wrap;\n"," gap: 12px;\n"," }\n","\n"," .colab-df-convert {\n"," background-color: #E8F0FE;\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: #1967D2;\n"," height: 32px;\n"," padding: 0 0 0 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-convert:hover {\n"," background-color: #E2EBFA;\n"," box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: #174EA6;\n"," }\n","\n"," [theme=dark] .colab-df-convert {\n"," background-color: #3B4455;\n"," fill: #D2E3FC;\n"," }\n","\n"," [theme=dark] .colab-df-convert:hover {\n"," background-color: #434B5C;\n"," box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n"," filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n"," fill: #FFFFFF;\n"," }\n"," </style>\n","\n"," <script>\n"," const buttonEl =\n"," document.querySelector('#df-4eab00de-7878-4abd-8c12-a97deb61da49 button.colab-df-convert');\n"," buttonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n"," async function convertToInteractive(key) {\n"," const element = document.querySelector('#df-4eab00de-7878-4abd-8c12-a97deb61da49');\n"," const dataTable =\n"," await google.colab.kernel.invokeFunction('convertToInteractive',\n"," [key], {});\n"," if (!dataTable) return;\n","\n"," const docLinkHtml = 'Like what you see? Visit the ' +\n"," '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n"," + ' to learn more about interactive tables.';\n"," element.innerHTML = '';\n"," dataTable['output_type'] = 'display_data';\n"," await google.colab.output.renderOutput(dataTable, element);\n"," const docLink = document.createElement('div');\n"," docLink.innerHTML = docLinkHtml;\n"," element.appendChild(docLink);\n"," }\n"," </script>\n"," </div>\n"," </div>\n"," "]},"metadata":{},"execution_count":64}]},{"cell_type":"code","source":["cluster_metrics5.loc[0] = [silhouette_score(df_clust_0, df_aim['0_kmeans']), davies_bouldin_score(df_clust_0, df_aim['0_kmeans'])]\n","cluster_metrics5.loc[1] = [silhouette_score(df_clust_1, df_aim['1_kmeans']), davies_bouldin_score(df_clust_1, df_aim['1_kmeans'])]\n","cluster_metrics5.loc[2] = [silhouette_score(df_clust_2, df_aim['2_kmeans']), davies_bouldin_score(df_clust_2, df_aim['2_kmeans'])]\n","cluster_metrics5.loc[3] = [silhouette_score(df_clust_3, df_aim['3_kmeans']), davies_bouldin_score(df_clust_3, df_aim['3_kmeans'])]\n","cluster_metrics5.loc[4] = [silhouette_score(df_clust_4, df_aim['4_kmeans']), davies_bouldin_score(df_clust_4, df_aim['4_kmeans'])]\n","cluster_metrics5.loc[5] = [silhouette_score(df_clust_5, df_aim['5_kmeans']), davies_bouldin_score(df_clust_5, df_aim['5_kmeans'])]"],"metadata":{"id":"CZWGhkMVAAiv"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["df_aim4 = pd.DataFrame()\n","cluster_metrics4 = pd.DataFrame(columns=['Silhouette', 'Dunn Index'])\n","\n","df_aim4['0_kmeans'] = KMeans(n_clusters=4).fit(df_clust_0).labels_\n","df_aim4['1_kmeans'] = KMeans(n_clusters=4).fit(df_clust_1).labels_\n","df_aim4['2_kmeans'] = KMeans(n_clusters=4).fit(df_clust_2).labels_\n","df_aim4['3_kmeans'] = KMeans(n_clusters=4).fit(df_clust_3).labels_\n","df_aim4['4_kmeans'] = KMeans(n_clusters=4).fit(df_clust_4).labels_\n","df_aim4['5_kmeans'] = KMeans(n_clusters=4).fit(df_clust_5).labels_"],"metadata":{"id":"yhcSitCRBU1J"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["df_ari.loc['4 clusters'] = [adjusted_rand_score(df_aim4['0_kmeans'], df_aim4['1_kmeans']),\n"," adjusted_rand_score(df_aim4['1_kmeans'], df_aim4['2_kmeans']),\n"," adjusted_rand_score(df_aim4['2_kmeans'], df_aim4['3_kmeans']),\n"," adjusted_rand_score(df_aim4['3_kmeans'], df_aim4['4_kmeans']),\n"," adjusted_rand_score(df_aim4['4_kmeans'], df_aim4['5_kmeans']),\n"," adjusted_rand_score(df_aim4['0_kmeans'], df_aim4['5_kmeans'])]"],"metadata":{"id":"hxotD0KgEafU"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["cluster_metrics4.loc[0] = [silhouette_score(df_clust_0, df_aim4['0_kmeans']), davies_bouldin_score(df_clust_0, df_aim4['0_kmeans'])]\n","cluster_metrics4.loc[1] = [silhouette_score(df_clust_1, df_aim4['1_kmeans']), davies_bouldin_score(df_clust_1, df_aim4['1_kmeans'])]\n","cluster_metrics4.loc[2] = [silhouette_score(df_clust_2, df_aim4['2_kmeans']), davies_bouldin_score(df_clust_2, df_aim4['2_kmeans'])]\n","cluster_metrics4.loc[3] = [silhouette_score(df_clust_3, df_aim4['3_kmeans']), davies_bouldin_score(df_clust_3, df_aim4['3_kmeans'])]\n","cluster_metrics4.loc[4] = [silhouette_score(df_clust_4, df_aim4['4_kmeans']), davies_bouldin_score(df_clust_4, df_aim4['4_kmeans'])]\n","cluster_metrics4.loc[5] = [silhouette_score(df_clust_5, df_aim4['5_kmeans']), davies_bouldin_score(df_clust_5, df_aim4['5_kmeans'])]"],"metadata":{"id":"RxEVe2CJBU41"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["cluster_metrics4"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":237},"id":"DgWr8YDnCE8B","executionInfo":{"status":"ok","timestamp":1654452155138,"user_tz":-180,"elapsed":640,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}},"outputId":"c7d50bf1-0a6d-4c6a-cd3f-94444bd5a396"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" Silhouette Dunn Index\n","0 0.698700 1.226800\n","1 0.734321 0.894895\n","2 0.668245 1.285007\n","3 0.626493 1.360862\n","4 0.464270 1.384593\n","5 0.214825 1.462238"],"text/html":["\n"," <div id=\"df-0f7574d8-af7a-48db-89ee-8320363c5c40\">\n"," <div class=\"colab-df-container\">\n"," <div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>Silhouette</th>\n"," <th>Dunn Index</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>0</th>\n"," <td>0.698700</td>\n"," <td>1.226800</td>\n"," </tr>\n"," <tr>\n"," <th>1</th>\n"," <td>0.734321</td>\n"," <td>0.894895</td>\n"," </tr>\n"," <tr>\n"," <th>2</th>\n"," <td>0.668245</td>\n"," <td>1.285007</td>\n"," </tr>\n"," <tr>\n"," <th>3</th>\n"," <td>0.626493</td>\n"," <td>1.360862</td>\n"," </tr>\n"," <tr>\n"," <th>4</th>\n"," <td>0.464270</td>\n"," <td>1.384593</td>\n"," </tr>\n"," <tr>\n"," <th>5</th>\n"," <td>0.214825</td>\n"," <td>1.462238</td>\n"," </tr>\n"," </tbody>\n","</table>\n","</div>\n"," <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-0f7574d8-af7a-48db-89ee-8320363c5c40')\"\n"," title=\"Convert this dataframe to an interactive table.\"\n"," style=\"display:none;\">\n"," \n"," <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n"," width=\"24px\">\n"," <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n"," <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n"," </svg>\n"," </button>\n"," \n"," <style>\n"," .colab-df-container {\n"," display:flex;\n"," flex-wrap:wrap;\n"," gap: 12px;\n"," }\n","\n"," .colab-df-convert {\n"," background-color: #E8F0FE;\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: #1967D2;\n"," height: 32px;\n"," padding: 0 0 0 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-convert:hover {\n"," background-color: #E2EBFA;\n"," box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: #174EA6;\n"," }\n","\n"," [theme=dark] .colab-df-convert {\n"," background-color: #3B4455;\n"," fill: #D2E3FC;\n"," }\n","\n"," [theme=dark] .colab-df-convert:hover {\n"," background-color: #434B5C;\n"," box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n"," filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n"," fill: #FFFFFF;\n"," }\n"," </style>\n","\n"," <script>\n"," const buttonEl =\n"," document.querySelector('#df-0f7574d8-af7a-48db-89ee-8320363c5c40 button.colab-df-convert');\n"," buttonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n"," async function convertToInteractive(key) {\n"," const element = document.querySelector('#df-0f7574d8-af7a-48db-89ee-8320363c5c40');\n"," const dataTable =\n"," await google.colab.kernel.invokeFunction('convertToInteractive',\n"," [key], {});\n"," if (!dataTable) return;\n","\n"," const docLinkHtml = 'Like what you see? Visit the ' +\n"," '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n"," + ' to learn more about interactive tables.';\n"," element.innerHTML = '';\n"," dataTable['output_type'] = 'display_data';\n"," await google.colab.output.renderOutput(dataTable, element);\n"," const docLink = document.createElement('div');\n"," docLink.innerHTML = docLinkHtml;\n"," element.appendChild(docLink);\n"," }\n"," </script>\n"," </div>\n"," </div>\n"," "]},"metadata":{},"execution_count":30}]},{"cell_type":"code","source":["cluster_metrics5"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":237},"id":"fwIJ_XuLBBNJ","executionInfo":{"status":"ok","timestamp":1654452144233,"user_tz":-180,"elapsed":335,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}},"outputId":"af50a860-2560-4b81-ab8d-741b00c37208"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" Silhouette Dunn Index\n","0 0.716619 1.087920\n","1 0.700709 1.194554\n","2 0.674554 1.158794\n","3 0.618482 1.328455\n","4 0.473032 1.353194\n","5 0.205228 1.516997"],"text/html":["\n"," <div id=\"df-1ca128ad-d19a-4067-8ee6-0f9ec6264087\">\n"," <div class=\"colab-df-container\">\n"," <div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>Silhouette</th>\n"," <th>Dunn Index</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>0</th>\n"," <td>0.716619</td>\n"," <td>1.087920</td>\n"," </tr>\n"," <tr>\n"," <th>1</th>\n"," <td>0.700709</td>\n"," <td>1.194554</td>\n"," </tr>\n"," <tr>\n"," <th>2</th>\n"," <td>0.674554</td>\n"," <td>1.158794</td>\n"," </tr>\n"," <tr>\n"," <th>3</th>\n"," <td>0.618482</td>\n"," <td>1.328455</td>\n"," </tr>\n"," <tr>\n"," <th>4</th>\n"," <td>0.473032</td>\n"," <td>1.353194</td>\n"," </tr>\n"," <tr>\n"," <th>5</th>\n"," <td>0.205228</td>\n"," <td>1.516997</td>\n"," </tr>\n"," </tbody>\n","</table>\n","</div>\n"," <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-1ca128ad-d19a-4067-8ee6-0f9ec6264087')\"\n"," title=\"Convert this dataframe to an interactive table.\"\n"," style=\"display:none;\">\n"," \n"," <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n"," width=\"24px\">\n"," <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n"," <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n"," </svg>\n"," </button>\n"," \n"," <style>\n"," .colab-df-container {\n"," display:flex;\n"," flex-wrap:wrap;\n"," gap: 12px;\n"," }\n","\n"," .colab-df-convert {\n"," background-color: #E8F0FE;\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: #1967D2;\n"," height: 32px;\n"," padding: 0 0 0 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-convert:hover {\n"," background-color: #E2EBFA;\n"," box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: #174EA6;\n"," }\n","\n"," [theme=dark] .colab-df-convert {\n"," background-color: #3B4455;\n"," fill: #D2E3FC;\n"," }\n","\n"," [theme=dark] .colab-df-convert:hover {\n"," background-color: #434B5C;\n"," box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n"," filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n"," fill: #FFFFFF;\n"," }\n"," </style>\n","\n"," <script>\n"," const buttonEl =\n"," document.querySelector('#df-1ca128ad-d19a-4067-8ee6-0f9ec6264087 button.colab-df-convert');\n"," buttonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n"," async function convertToInteractive(key) {\n"," const element = document.querySelector('#df-1ca128ad-d19a-4067-8ee6-0f9ec6264087');\n"," const dataTable =\n"," await google.colab.kernel.invokeFunction('convertToInteractive',\n"," [key], {});\n"," if (!dataTable) return;\n","\n"," const docLinkHtml = 'Like what you see? Visit the ' +\n"," '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n"," + ' to learn more about interactive tables.';\n"," element.innerHTML = '';\n"," dataTable['output_type'] = 'display_data';\n"," await google.colab.output.renderOutput(dataTable, element);\n"," const docLink = document.createElement('div');\n"," docLink.innerHTML = docLinkHtml;\n"," element.appendChild(docLink);\n"," }\n"," </script>\n"," </div>\n"," </div>\n"," "]},"metadata":{},"execution_count":29}]},{"cell_type":"code","source":["silhouettes = []\n","dunns = []\n","sse = []\n","\n","for c in range(3, 10):\n"," kmeans = KMeans(n_clusters=c).fit(df_clust_0)\n"," sse.append(kmeans.inertia_)\n"," dunns.append(davies_bouldin_score(df_clust_0,kmeans.labels_))\n"," silhouettes.append(silhouette_score(df_clust_0, kmeans.labels_))"],"metadata":{"id":"NBksULOFBU8i"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["silhouettes = []\n","dunns = []\n","sse = []\n","\n","for c in range(3, 10):\n"," kmeans = KMeans(n_clusters=c).fit(df_clust_2)\n"," sse.append(kmeans.inertia_)\n"," dunns.append(davies_bouldin_score(df_clust_2,kmeans.labels_))\n"," silhouettes.append(silhouette_score(df_clust_2, kmeans.labels_))"],"metadata":{"id":"mnoPk94wEsdc"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["fig, ax = plt.subplots(1, 3, figsize=(18, 4))\n","ax[0].set_title('SSE')\n","ax[1].set_title('Silhouette')\n","ax[2].set_title('Dunn Index')\n","\n","ax[0].plot(range(3, 10), sse)\n","ax[1].plot(range(3, 10), silhouettes)\n","ax[2].plot(range(3, 10), dunns);"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":284},"id":"LxyiUiT4EsY9","executionInfo":{"status":"ok","timestamp":1654453773362,"user_tz":-180,"elapsed":1437,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}},"outputId":"382011eb-1f4e-4aa4-ae94-31b8d10fb89f"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["<Figure size 1296x288 with 3 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABC4AAAELCAYAAAAWdseEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hT9f4H8HeS7pXukbSlC9pC2WVKi7YqKB2Mq3DBceGK2+v1XhX1IgUEsejPO1AuiooDrgOZRRQcKKNQKLODttBN23Tv3SS/P5AIAqUjyUnS9+t5+jxtzjk578Z6SD7n+/18RWq1Wg0iIiIiIiIiIgMkFjoAEREREREREdHNsHBBRERERERERAaLhQsiIiIiIiIiMlgsXBARERERERGRwWLhgoiIiIiIiIgMFgsXRERERERERGSwWLggIiIindm9ezcWLVqk+Tk4OBiFhYUAgJdeegn//Oc/hYpGREQGYt26dXj++eeFjkEGjIULot9JTU3FvHnzMHbsWIwfPx7z5s3DuXPn0NHRgTfeeAORkZEYPXo0oqKisHr1as1xUVFRGDFiBEaPHq35WrlypYC/CRGR/tzs2hkXF4ePPvpI6HjXePDBB7F169ZrHru6oEJEZAyufu8ZHh6OefPm4fPPP4dKpRIsT3JysiDnJtNnJnQAIkPS1NSExx9/HMuXL8c999yDzs5OpKamwsLCAu+//z7S09OxdetWuLu7o6SkBKmpqdccv2HDBkyePFmg9EREwuju2klERLpz5b1nY2Mjjh8/jtWrV+PcuXNYs2aN0NGItIojLoiukp+fDwCIiYmBRCKBlZUVpkyZgpCQEKSlpeHOO++Eh4cHRCIRvL29MXPmTIETExEJr7tr5/bt2/HHP/7xpsc2NDTg0UcfxejRo3HfffehqKhIs+3UqVOYM2cOxo4dizlz5uDUqVOabb+/s/f7YcZnzpzBvHnzEB4ejri4OKSkpAAA/vnPfyI1NRUrV67UjIxbsGABACA+Ph6jR4/G3r17AQAHDhxAfHy85k5mVlaWFl4tIiLts7e3R3R0NP71r39hx44dyMnJAXD9CLPfX5ODg4Px+eef4+6770Z4eDhWrFgBtVp9zb6JiYkYN24coqKi8Msvv/Qoz62OLS4uxgMPPIDRo0dj4cKFqK2tveb4m13DT506hQkTJqCsrAwAkJWVhXHjxiE3N7cPrxoZExYuiK7i7+8PiUSCJUuW4JdffkF9fb1m28iRI/Hxxx9jy5YtyM7O1lzUiYgGuu6unbeyd+9ePP300zhx4gR8fX01PS/q6urw2GOP4cEHH0RKSgoWLlyIxx577Lo3tzdSXl6Oxx57DE888QSOHz+OJUuW4C9/+Qtqamrw3HPPITw8HMuWLcPp06exbNkybNmyBQCwa9cunD59Gvfeey8yMzPxyiuvYOXKlUhJScHcuXPx5JNPoqOjo28vEhGRHowYMQKenp7XjQruzs8//4yvv/4au3fvxrfffotDhw5ptp07dw7+/v44duwYHnnkEfzjH//o8Xvg7o59/vnnMWzYMKSkpODJJ5/Ejh07NMd1dw0fM2YM5s2bhyVLlqCtrQ0vvPACnn32WQQGBvb49yXjxMIF0VXs7Ozwv//9DyKRCK+++iomTZqExx9/HFVVVXjsscewePFiJCUlYc6cOYiIiLjmIgsATz31FMLDwzVfX331lUC/CRGR/nR37byVO++8EyNGjICZmRni4uJw/vx5AJffSA8aNAgzZ86EmZkZYmJiEBAQgAMHDtzyOXft2oXIyEhMnToVYrEYt912G8LCwnp8pxAAvvzyS8ydOxcjR46ERCLBrFmzYG5ujjNnzvT4OYiIhODu7t6rAvLixYvh4OAAmUyGCRMmXDO6TCaT4f7779dcBysrK3t0be/u2NLSUqSlpeHZZ5+FhYWFZkTGFbe6hj/99NNoamrCfffdB3d3d82oOTJt7HFB9DuBgYF44403AAC5ubl44YUX8Prrr+Ptt9/GggULsGDBArS1tWHbtm145ZVXMGLECE2V991332WPCyIakG527ZwyZUq3x7m6umq+t7KyQktLCwCgoqICMpnsmn1lMhnKy8tvmaW0tBTffffdNUWOrq4uTJgwoce/T2lpKXbu3InNmzdrHuvs7ERFRUWPn4OISAjl5eWQSqU93t/NzU3zvbW1NZqbmzU/X32Ntra2BgDNdfpWbnZsbW0tHBwcYGNjo9kuk8k00z9udQ03NzfHrFmzsGrVKrz00ksQiUQ9/l3JeLFwQdSNwMBAzJ49G19++eU1j1tZWWHBggX4z3/+g4sXL3J4GhHRVa6+dt6qcHEz7u7uKC0tveaxsrIyREREALj8Jri1tVWzrbKyUvO9l5cX4uPjsWrVqj6d+8pzPP7443jiiSf6/BxERPp27tw5lJeXY+zYsQCuv1b2dLSELrm5uaGhoQEtLS2a4kVpaammAHGra3h5eTneeecdzJ49G2+88Qa2bdvGZtADAKeKEF0lNzcXH330ERQKBYDLb5L37Nmj6W+RkpKCtrY2dHV1YceOHWhubsbQoUMFTk1EJKzurp19NXXqVBQUFCApKQldXV3Yu3cvLl68iNtvvx0AEBISgr1796KzsxNpaWnYt2+f5ti4uDgcOHAAhw4dglKpRHt7O1JSUjT5XF1dUVxcfM35fv/Yfffdhy+++AJnz56FWq1GS0sLfv75ZzQ1NfX5dyIi0pWmpiYcOHAAf/vb3xAXF4fg4GAAQGhoKL7//nu0traisLAQX3/9tcBJAblcjrCwMKxbtw4dHR1ITU29ZnRFd9dwtVqNl156CX/4wx/w+uuvw93dHf/6178E/G1IX1i4ILqKnZ0dzp49i/vuuw+jRo3C/fffjyFDhuCll16CtbU1EhMTcdttt2HixInYsmUL1q1bBx8fH83xjz/+OEaPHq35euqppwT8bYiI9KO7a2dfOTk5YcOGDdi0aRMmTJiADz74ABs2bICzszMA4K9//SuKioowfvx4rFu3DrGxsZpjvby8sH79erz33nuYNGkSpk6dig8//BAqlQoA8NBDD2Hfvn0YN26c5o7e008/jZdeegnh4eHYu3cvhg8fjtdeew0rV67EuHHjcPfdd2P79u39eJWIiLTvynvPqVOnYsOGDVi4cOE1S6E+/PDDMDc3x+TJk7FkyZJrrpVC+r//+z+cPXsWEyZMwLvvvnvNSn3dXcM//fRTVFdX49lnn4VIJMLrr7+O7du396oZKRknkZpLIxARERERERGRgeKICyIiIiIiIiIyWCxcEBEREREREZHBYuGCiIiIiIiIiAwWCxdEREREREREZLBYuCAiIiIiIiIig8XCBREREREREREZLDOhA+hbbW0zVKqerwDr4mKH6uomHSbSPmbWPWPLCzCzvvQ2s1gsgpOTrQ4TGZ7eXocB4/tbMLa8ADPri7FlNra8QN8y81p8awPlb0FoxpbZ2PICzKwv2n5PPOAKFyqVutdvmHu7vyFgZt0ztrwAM+uLMWbWp75ch68cZ0yMLS/AzPpibJmNLS9gnJn1je+JDZexZTa2vAAz64s2M3OqCBEREREREREZLBYuiIiIiIiIiMhgsXBBRERERERERAaLhQsiIiIiIiIiMlgsXBARERERERGRwWLh4hbUauPr3kpERERERERkKli46MaBU5fwj/8mG+XSM0REpqCzS4UlG5KRnlsldBQiIiIycknJBXh5/WGhY1AfsHDRDXsbC6TlVuFohkLoKEREA5JIBDS0dOLQmRKhoxAREZERU6pU+DG1GOm51ahrahc6DvUSCxfdGBPshgC5FLsO56NLqRI6DhHRgGMmEWOwtxRpudVCRyEiIiIjlpFfg4aWTgBAbkm9wGmot1i46IZYJMKD94Siqr4Nh86VCR2HiGhACvV1QnF5IxqaO4SOQkREREYqOV0BWyszmJuJcZGFC6PDwsUtjA1xR5C3FElH8tHRqRQ6DhHRgBPs6wQAyC6uEzgJERERGaOWti6cvlCFCUM9EOTtyMKFEWLh4hZEIhHmRAagrqkDP53iHGsiIn0b5GkHa0sJsopqhY5CRERERig1uwKdXSpMDvNCqJ8zChWN6OziTWljwsJFDwT7OmGYnxP2HitEa3uX0HGIiAYUiViMof4uyC7iiAsiIiLqveR0BTycbeDvZY8QP2d0KdUoVDQJHYt6gYWLHpoVGYim1k58n1osdBQiogFneKArSquaUc8+F0RkwhITExEVFYXg4GDk5OTccJ9169Zh0qRJiI+PR3x8PFasWKHnlETGpaquFTnFdZgc5gmRSIQQv8tTUDldxLj0qHBxs4toVFQUpk+frrlwHjp0SLPtzJkziIuLw7Rp07Bo0SJUV1frdJuuBcgcMHqwK/YdL0JTa6fezktERMDwIFcAQDanixCRCYuOjsaWLVsgl8u73W/mzJnYtWsXdu3ahYSEBD2lIzJORzMUAIBJQz0AAE72VnB3tGbhwsj0qHDR3UX0P//5j+bCGRERAQBQqVR44YUXsGzZMuzbtw/h4eF46623dLZNX2ZFBqCtXYlvUwr1el4iooEuUC6FpYWE00WIyKSFh4fDy8tL6BhEJkOtViM5oxzBPo5wdbTWPB4ol+JiST3UarWA6ag3elS46O1FND09HZaWlggPDwcAzJs3D999953OtumLt5sdJgz1wI+pl1Df1K7XcxMRDWQSiRhDvB3ZoJOICMA333yD2NhYLFq0CKdPnxY6DpHByitrQHlNCyaHeV7zeJC3FA3NHaisbxMoGfWWWX+f4Pnnn4darcbYsWPxt7/9DQ4ODigrK4NMJtPs4+zsDJVKhbq6Op1sc3R07O+v0WPxEf44fr4Ce5ILseDuIXo7LxHRQBcyyBFbD1SjvrkDUlsLoeMQEQli3rx5ePzxx2Fubo4jR47gySefxN69e+Hk5NSr53Fxsev1ud3c7Ht9jNCYWfcMOe/XB/NgYSbG9CkBsLEy1zw+LswLn+3LRkVDO4YNdhcwYc8Z8ut8M9rM3K/CxZYtW+Dl5YWOjg6sXr0aK1eu1Pv0jd7q70Xazc0ed03wxY8nijD/nlC4O9toM57WDPQ/bH0wtrwAM+uLMWY2BiG+l9+UZxfVYnyoh8BpiIiE4ebmpvn+tttug5eXFy5cuIDx48f36nmqq5ugUvV8mLybmz0qKxt7dQ6hMbPuGXLeLqUKv5y6hFGDXdHc2IbmxsujK9zc7GEjEcHKQoLT58sR5qu/m+B9Zciv8830NrNYLOr2s3q/ChdXpo9YWFhg/vz5eOKJJzSPl5aWavarqamBWCyGo6OjTrb1hjYu0neNkePHE0XYlJSORfeG9ur8+jAQ/rCFZmx5AWbWF21fpOk3vh52sPq1zwULF0Q0UJWXl8PD4/I18Pz58ygpKYG/v7/AqYgMz7ncajS3dV03TQS4/P4rQObABp1GpM/Loba0tKCx8fKbc7Vajb179yI09PKH+LCwMLS1tSE1NRUA8MUXX2D69Ok626Zvzg5WuH20HMlpCpRVNwuSgYhooJGIxRjiwz4XRGS6Vq1ahcjISCgUCixcuBAzZswAACxevBhpaWkAgLfffhsxMTGIi4vD0qVLsXbt2mtGYRDRZUfTFXCwMccwf+cbbg+SS3Gpsgmt7V16TkZ90aMRF6tWrcL+/ftRVVWFhQsXwtHRERs2bMAzzzwDpVIJlUqFwMBAzXJMYrEYa9euRUJCAtrb2yGXy/Hmm2/qbJsQZkzyw6GzZdh1OB+Px4cJloOIaCAJ9nXEudxq1De1Q2pnKXQcIiKtWrp0KZYuXXrd4xs3btR8n5iYqM9IREapqbUTZy5WIXqsNyTiG9+rD5JLoVYD+WUNGOp34+IGGY4eFS5udhHduXPnTY8ZM2YMkpKS9LZN36S2Frgz3BvfHC3EvRMb4evBOe1ERLqm6XNRzOkiREREdGMnsiqgVKkxadj100SuCJA5QATgYkk9CxdGoM9TRQiYPsEX1pZm2HkoX+goREQ9kp+fj7lz52LatGmYO3cuCgoKrtvnxRdfRHx8vOYrJCQEP/74o2b73r17ERsbi5iYGMTGxqKqqkpv+a/0ucgqqtPbOYmIiMi4JKeXQe5mC1+Pm/cRs7Eyh8zNln0ujES/l0MdyGytzHHPBF9sP5iH3JJ6BMqlQkciIupWQkIC5s+fj/j4eOzatQvLli3Dp59+es0+a9eu1XyflZWFhx9+GBEREQCAtLQ0vPPOO/jkk0/g5uaGxsZGWFjob2nSK30ustnngoiIiG6gvKYFuSUNuO/2QIhEom73DZJLcfx8BVRqNcS32JeExREX/XRnuDccbMyx/WCe0FGIiLpVXV2NzMxMxMTEAABiYmKQmZmJmpqamx7z9ddfIzY2VlOc+Pjjj7Fo0SJNIzh7e3tYWuq310SIrxPKqltQ39Su1/MSERGR4TuaoYAIwMRupolcESSXorW9C2VVXHDB0LFw0U9WFma4d5IfzhfW4nzBzd/8ExEJraysDB4eHpBIJAAAiUQCd3d3lJWV3XD/jo4OJCUlYc6cOZrHcnNzUVxcjAULFmDWrFlYv3491OqeLzGtDcG/rreeXczpIkRERPQbtVqN5HQFQv2c4GR/6xsrQb+OmOd0EcPHqSJacMdoGfYdL8L2g3l4ZZDTLYckEREZgx9++AEymUyz1DUAKJVKZGdnY9OmTejo6MAjjzwCmUyGmTNn9vh5XVxuPt+0O25ul5sgOzvbwsbKDIUVzZgRabiNka/kNSbMrB/GltnY8gLGmZmI+u/CpXpU1bdhZoR/j/Z3d7KGnbU5LpbUY+oouY7TUX+wcKEF5mYSxN3mh0++y8bZi9UYNdhV6EhERNfx8vJCeXk5lEolJBIJlEolKioq4OXldcP9t23bds1oCwCQyWSYPn06LCwsYGFhgejoaJw7d65XhYvq6iaoVL0bpeHmZo/KykbNz0FyKU5nV1zzmCH5fV5jwMz6YWyZjS0v0LfMYrGoz0VVIjIcyekKWJpLMGaIW4/2F4lECJJLcbGkQcfJqL84VURLbhvuBXdHa2w/mAeVnodNExH1hIuLC0JDQ7Fnzx4AwJ49exAaGgpn5+uXAFMoFDh58iRiY2OveTwmJgaHDx+GWq1GZ2cnjh07hpCQEL3kv1qIrxMUNS2oY58LIiIiAtDZpcSJrAqMGeIGK4ue358P8paivKYFjS0dOkxH/cXChZaYScSIj/DHpcompGZVCB2HiOiGli9fjs2bN2PatGnYvHkzVqxYAQBYvHgx0tLSNPvt2LEDd9xxB6TSa1dLmjFjBlxcXHDvvfdi5syZCAoKwh/+8Ae9/g7AVX0uuCwqERERAThzsRqt7V2YPPzWTTmvdqXPRS5HXRg0ThXRogmhHth7rBA7DuVjbLAbJGLWhYjIsAQGBmLr1q3XPb5x48Zrfn7iiSdueLxYLMbLL7+Ml19+WSf5esrXww7WlhJkF9ViwlAPQbMQERGR8JLTyuBoZ4FQX6deHefnaQ+JWISLJfWc8m/A+Mlai8RiEWZFBKC8pgXJaQqh4xARmSyJWIwh3o7I4ogLIiKiAa+huQPp+TWYNMwTYnHvFkqwMJfA18OeK4sYOBYutGz0YFf4e9lj95F8dHaphI5DRGSygtnngoiIiACknC+HUqXGpLDeTRO5IkguRX5ZA7qU/PxmqFi40DKRSIRZkQGobmjHwbOlQschIjJZIYPY54KIiIiAo+kK+HrYwdutb6sDBXlL0dmlQnFFk5aTkbawcKEDw/ycEezjiKTkArR3KIWOQ0Rkknzd7TV9LoiIiGhgKq1qRoGiEZPDbry8e08EyhwAABcvcbqIoWLhQgdEIhFmTw1AQ3MHfjx1Seg4REQmSSwWYYi3I85zxAUREdGAdTRDAbFI1K9m3c4OVnBxsGSfCwPGwoWODPZ2xPAAF3x7rBAtbV1CxyEiMknBvk4or2lBbSP7XBAREQ00KrUayekKhAU4Q2pr0a/nCpRLWbgwYCxc6NDsyAA0t3Vh/4kioaMQEZkkTZ+LYk4XISIiGmiyC2tR29iOScP61pTzakFyKWob21HT0KaFZKRtLFzo0CBPe4QHu2HfiWI0tHQIHYeIyORc7nNhxgadRGQSEhMTERUVheDgYOTk5HS7b15eHkaOHInExEQ9pSMyPMkZClhbSjB6sGu/nyvIWwoAHHVhoFi40LGZEQHo6FTi22OFQkchIjI5YrEIwT6OyGLhgohMQHR0NLZs2QK5XN7tfkqlEgkJCbjzzjv1lIzI8LR3KpGaXYnwYHdYmEv6/XzebnawMBezQaeBYuFCx2Sutpg0zBM/nSrhHGwiIh0I9nVknwsiMgnh4eHw8rr1ygjvv/8+br/9dvj5+ek+FJGBOp1TifYOJSaH9X+aCACYScQI8HLgiAsDZdaTnRITE7Fv3z6UlJQgKSkJQ4YMuWb7O++8g3Xr1l2z7cyZM1i2bBna29shl8vx5ptvwsXFRWfbDFn8FH+kZJYjKbkAD00LFjoOEZFJCfF1AnC5z8XEodp580JEZKiysrJw+PBhfPrpp1i/fn2fn8fFxa7Xx7i52ff5fEJhZt0TKm9qTjrcnawxebQPxGJRr469Webhg92w7cBF2DtYw8qyRx+V9cbY/i4A7Wbu0X+N6OhoPPTQQ1iwYMF12zIyMnDmzJlrhrSpVCq88MILWLNmDcLDw7F+/Xq89dZbWLNmjU62GTo3R2tEjpTh4NlSTJ/gC3dHa6EjERGZDB93O1hbmiGrsI6FCyIyaZ2dnXj11VexZs0aSCT9GxpfXd0ElUrd4/3d3OxRWdnYr3PqGzPrnlB565racTqnAjMmDUJ1dVOvju0us8zJGiqVGqnppQj+9caIITC2vwug95nFYlG3BdUeTRW52bC1jo4OrFy5EsuXL7/m8fT0dFhaWiI8PBwAMG/ePHz33Xc622YMYib7QSwWYffhfKGjEBGZlCt9LrKLuLIIEZm2yspKFBUV4dFHH0VUVBQ++eQTfPXVV3j11VeFjkakV8cyyqFWQyuriVwtUM4GnYaqX+Nf/v3vfyMuLg7e3t7XPF5WVgaZTKb52dnZGSqVCnV1dTrZ5ujo2J9fQy+c7C0RNUaO/SeKcc/EQZC72godiYjIZAT7OuLMxSrUNrbDyd5S6DhERDohk8mQkpKi+XndunVoaWnBkiVLBExFpH/J6Qr4eznAy0W7n6nsrM3h5WLDBp0GqM+Fi9OnTyM9PR3PP/+8NvPonJDz+R6cMQwHz5bi2+NFePnh8Vp5zpsZ6HOg9MHY8gLMrC/GmNnYafpcFNViopbvvhAR6cuqVauwf/9+VFVVYeHChXB0dMQ333yDxYsX4y9/+QuGDx8udEQiwRWVN+JSZRMW3DXk1jv3QaBMitMXKqFWqyES9a53BulOnwsXJ06cQG5uLqKjowEACoUCf/7zn7FmzRp4eXmhtLRUs29NTQ3EYjEcHR11sq03hJ7Pd1e4D3YfKUBqWikGeermw81AmAMlNGPLCzCzvmh7Ph/1jI+7HWwszZBVVMfCBREZraVLl2Lp0qXXPb5x48Yb7v/MM8/oOhKRwTmaoYBELML4UHedPH+QtxSH08qgqGnR+ogO6rs+L4f66KOP4vDhw/jpp5/w008/wdPTEx9++CGmTJmCsLAwtLW1ITU1FQDwxRdfYPr06QCgk23G5O5xvrC1MsP2g3lCRyEiMhlisQhD2OeCiIjIpClVKhzLKMeIQBfY21jo5Bzsc2GYejTi4mbD1m5GLBZj7dq1SEhIuGbpUl1tMyY2Vma4d+IgbP05FznFdRjiY/j9OYiIjEEI+1wQERGZtPMFtahv7sDkMN2NrvRysYGNpRlyS+oRMUJ26wNIL3pUuLjZsLWr/fTTT9f8PGbMGCQlJd1wX11sMyZRY72x/0Qxth/Mw5L5ozl3iohIC4LZ54KIiMikJacrYGtlhhGBrjo7h1gkQqBcioslDTo7B/Ven6eKUN9ZmksQM9kPOcV1yCioEToOEZFJ+K3PBaeLEBERmZrW9i6cyqnEuFAPmJvp9mNskNwBpVXNaGnr1Ol5qOdYuBBI5EgZXBwssf2XPKjVPW8WSkREN3alz0VWUZ3QUYiIiEjLTmZXoqNLpdNpIlcE/drnIreUoy4MBQsXAjE3EyNuij8KFI04lVMldBwiIpMQ4uuIitpW1DS0CR2FiIiItOhohgLuTtYIlDno/Fz+MgeIRMDFS2zQaShYuBDQ5DBPeDrbYOehvF4t0UpERDem6XNRzFEXREREpqKmoQ1ZhbWYPMxTL/0BrSzM4ONux5VFDAgLFwKSiMWYGeGPkqpmpJwvFzoOEZHR8/Gwg62VGZdFJSIiMiFHMxRQA5ioh2kiVwTJpcgra4BSpdLbOenmWLgQWHiIO3zc7bDzUB66lPyfgoioP8Qi9rkgIiIyJWq1GsnpCgz2lsLd0Vpv5w2SS9HeoURJZbPezkk3x8KFwMQiEWZFBqCyrg2H08qEjkNEZPSCfZ3Y54KIiMhEFCgaUVbdgkl6HG0B/Nagk9NFDAMLFwZgZKALAmUOSDpSgM4updBxiMiE5efnY+7cuZg2bRrmzp2LgoKC6/Z58cUXER8fr/kKCQnBjz/+eM0+eXl5GDlyJBITE/WUvOdCfB0BANkcdUFERGT0jqYrYCYRY1yIu17P6yK1gtTOgoULA8HChQEQiUSYHRmA2sZ2HDhdKnQcIjJhCQkJmD9/Pvbt24f58+dj2bJl1+2zdu1a7Nq1C7t27UJiYiKkUikiIiI025VKJRISEnDnnXfqM3qPebtf7nORxT4XRERERq1LqULK+XKMGuwKWytzvZ5bJBIhSC7lyiIGgoULAxHq54zQQU745mgB2jq6hI5DRCaouroamZmZiImJAQDExMQgMzMTNTU1Nz3m66+/RmxsLCwsLDSPvf/++7j99tvh5+en68h9cqXPBUdcEBERGbf0/Bo0tnRi8jD9ThO5IkguRVV9G+qa2gU5P/3GTOgA9JvZUwOw+tOT+D71EmIn+wkdh4hMTFlZGTw8PCCRSAAAEokE7u7uKCsrg7Oz83X7d3R0ICkpCR9//LHmsaysLBw+fBiffvop1q9f36ccLi52fTrOzc2+x6vKFhoAACAASURBVPuOHeqJ07vSATMzuDnpr5HX1XqT11Aws34YW2ZjywsYZ2Yiul5yugJ21uYIC7j+fYo+XOlzkVtSj7HB+p2qQtdi4cKABMqkGBXkiu9SihA1Rq734VBERFf74YcfIJPJEBoaCgDo7OzEq6++ijVr1miKH31RXd0ElUrdq2Pc3OxRWdnY4/29nS8XK46euaT3Zl5A7/MaAmbWD2PLbGx5gb5lFotFfS6qEpFutLR14syFKkwdJYOZRJiJAr4e9jCTiHGRhQvBsXBhYGZFBiDho+P4LqUIc6YGCh2HiEyIl5cXysvLoVQqIZFIoFQqUVFRAS8vrxvuv23bNsyZM0fzc2VlJYqKivDoo48CABoaGqBWq9HU1ITXXntNL79DT13d50KIwgURERH1z4msCnQpVZgs4L/j5mZi+HnZs0GnAWDhwsD4uNthfKg7vk8txp3hPpDaWtz6ICKiHnBxcUFoaCj27NmD+Ph47NmzB6GhoTecJqJQKHDy5Em8/fbbmsdkMhlSUlI0P69btw4tLS1YsmSJXvL3BvtcEBERGbfkdAW8XGzg5yns1K8guRQ/pBajs0sJc7O+jzil/mFzTgM0MyIAXV1qfHO0QOgoRGRili9fjs2bN2PatGnYvHkzVqxYAQBYvHgx0tLSNPvt2LEDd9xxB6RSqVBR+y3E1wkVda2oaWgTOgoRUY8kJiYiKioKwcHByMnJueE+27ZtQ2xsLOLj4xEbG4tPP/1UzymJdK+irhUXLtVjcpgnRCKRoFmC5FJ0KdUoVDQJmmOg44gLA+TpbIPJwz3x8+kSTBvnCxepldCRiMhEBAYGYuvWrdc9vnHjxmt+fuKJJ275XM8884zWculCsK8jACCrqBaTw248HYaIyJBER0fjoYcewoIFC266z7Rp0zB79myIRCI0NTUhNjYW48ePR0hIiB6TEunWsXQFRAAmDhV+umfgrw06L5bUI8jbeG/oGDuOuDBQcbf5AQCSkvOFDUJEZKR+63PB6SJEZBzCw8Nv2nfoCjs7O80d6La2NnR2dgp+R5pIm9RqNZIzFAj2dTSIG7hSWwu4O1qzz4XAOOLCQLlKrTF1lBwHTpXgngmD4OFsI3QkIiKj8lufi1qhoxARadWPP/6It99+G0VFRfj73/+O4ODgXj9HX1ZRMcZlZplZ97SdN6ugBhW1rfjj3SE6ey16+7zDAl1wOqcSrq52ghUKje3vAtBuZhYuDFjMpEE4dLYUuw7n49G4YULHISIyOiG+Tjh9oQrV9W0GcdeGiEgboqOjER0djdLSUjz11FOIjIxEQEBAr56jt0tTD5SlcYVmbJl1kXfv4TxYmIkxRKab16Ivmb1dbXHg5CVkXqyEu6O11jPdirH9XQC9z3yrZalvOVXkZk2CnnzyScTFxWHmzJmYP38+zp8/r9mWn5+PuXPnYtq0aZg7dy4KCgp0us1USe0sER3ujZTMclyqYDMYIqLeutLnIruYoy6IyPTIZDIMHz4cP//8s9BRiLSis0uF4+fLMWaIG6wtDecee9CvfS5yL3G6iFBuWbiIjo7Gli1bIJfLr3k8MTERu3fvxs6dO7Fo0SK88sormm0JCQmYP38+9u3bh/nz52PZsmU63WbK7pkwCFaWEuw4lCd0FCIio8M+F0RkanJzczXf19TUICUlBUOGDBEwkWE6nVOJjLxqoWNQL53LrUJzWxcmhwnflPNqcldbWFlI2OdCQLcsXNysSZC9/W/zVZqamjRzfaqrq5GZmYmYmBgAQExMDDIzM1FTU6OTbabOztoc08b74vSFKuSVNggdh4jIqIhFIgT7OrHPBREZhVWrViEyMhIKhQILFy7EjBkzAFy7ZPWXX36JGTNmID4+Hn/605/wwAMPYMqUKULGNjjltS14d0c6Xl5/GDsP5fVqSgwJKzldAamtBUL9nISOcg2xWIRAmQMLFwLq1/ibf/zjHzhy5AjUajU++OADAEBZWRk8PDwgkUgAABKJBO7u7igrK4Nardb6Nmdn5/78CkbhrnAf/JB6CTsO5uLv80YLHYeIyKgE+zriVE4l+1wQkcFbunQpli5det3jVy9ZffUoZ7qxXYfzYSYRYWKYDLuPFODCpXo8GjsUUjtLoaNRN5paO3Eutxp3hntDIja8xS8D5VIkJRegtb3LoKaxDBT9esVXr14NANi5cyfWrl17zUXVUBlrB+W5dw3Bh7szoKhvx/Ag11vubwiZe8vYMhtbXoCZ9cUYM5uyEN/Ld22yimpx2/DulxkkIiLjdqmyCSkZ5Zg+wRdP3j8agTJ7bNmfg+WbTuDRuGEIHWRYd/LpN8fPl0OpUmPSMMOaJnJFkFwKtRrIK2vAMD/Tv3luaLRSKpo5cyaWLVuG2tpaeHl5oby8HEqlEhKJBEqlEhUVFfDy8oJardb6tt4y1g7K4wa7YpudBT7anY6XHxjT7TI8hpK5N4wts7HlBZhZX7TdQZn6T+5mC1srM2QX1bFwQURk4nYeyoeVpQT3TBwEAIgYIYO/lwPW70jHW1+cxswp/pgx2Q9igZa0pJtLTlfA280Ovh6GeQMoQOYAES436GThQv/6NAanubkZZWVlmp9/+uknSKVSODo6wsXFBaGhodizZw8AYM+ePQgNDYWzs7NOtg0UFuYSxN7mj4sl9UhjoyEioh670ucii30uiIhMWoGiAadyKnH3OF/YWZtrHvd2s8OyP4VjwlAP7DiUj39+eQYNzR0CJqXfU9S0IK+0weCacl7NxsocMjdb9rkQyC1HXKxatQr79+9HVVUVFi5cCEdHR3zyySd49tln0draCrFYDKlUig0bNmhGASxfvhwvvfQS1q9fDwcHByQmJmqeTxfbBoqIEV749lghtv+Sh7AAF1aKiYh66Eqfi6r6VrhK9b/+OhER6d72g3mwszbH3eN8rttmZWGGxTFDEezjiC3fX8DyTcfxWNwwBPty6oghSE5XQCQCJg7zEDpKt4LkUhw/Xw6VWs3PYnp2y8LFzZoEffXVVzc9JjAwEFu3btXbtoHCTCLGzAh/fLDnPE5mV2JciLvQkYiIjMKVPhfZRXVwHc7CBRGRqckprkN6Xg3uuyPwpo0TRSIRpo6Sw9/LAf/dmY43Pz+DWZH+uGfiIH4IFZBKrcbRdAWG+TnD0cAbqAbJpfjlTClKq5rh7capvvpkeO1aqVsTh3pC5mrLpZ2IiHpB7mYLO2tzZBfVCR2FiIi0TK1WY/vBPEhtLRA1xvuW+/t62GPZn8YhPMQN237Jw7+3nkNjC6eOCOVCcR2qG9owyYCniVwRJJcCAKeLCICFCyMjFoswc4o/yqpbcDRDIXQcIiKjIBaJEOzjyD4XREQmKKOgBjnFdYiZ7AdLc0mPjrG2NMNjccPw4N1DcL6wBss3ncCFSyxuCyE5XQFLCwnGDHYTOsotuTtZw87aHLmXWLjQNxYujNDYYDcM8rTHrsP56FKqhI5DRGQUgn0dUVXfhqq6VqGjEBGRlqjVamz/JQ8uDlaYOkrWq2NFIhHuGOONfzwYDjOJCIlbTuPblEKo1BzVrC8dnUqkZlcgfIgbLC16VnQSkkgkQpBcioulDUJHGXBYuDBCIpEIsyMDUFXfhoNnS4WOQ0RkFDR9Lop5R42IyFScvlCFAkUj4qb4wUzSt482gzztkfCn8Rg9xBVbD+Ri3dfn0NTaqeWkdCNnLlahtV1p0KuJ/F6QtxTlNS2cXqRnLFwYqTB/Zwz2liIpuQDtnUqh4xARGTzZr30uOF2EiMg0qFRq7DiUB09nm35/8LWxMsOTM8Mw/87BSM+vwYpNx5HLPgY6l5yugLODJYIHGc/qLlf6XOSWcNSFPrFwYaSujLqob+rAT6cuCR2HiMjgXelzwQadRESm4fj5cpRUNmNmhD8k4v5/rBGJRLgz3AevPDgWIpEIb2w5hf3Hi6Dm1BGdqG/uQHpeDSYO9TSqVV38PO0hEYvYoFPPWLgwYsG+Tgjzd8beo4Vobe8SOg4RkcFjnwsiItPQpVRh5+F8+LjbITzEXavP7e/lgISF4zAi0AVf/HQR72xPQ3Mbp45oW0pmOVRqtVGsJnI1C3MJfD3sWbjQMxYujNysyAA0t3Vh/4lioaMQERm8kEHsc0FEZAqS0xWoqG3FrIgAndytt7Uyx9Ozh2Ne9GCcy63Gik0nkF/GqQHadDRdgUGe9pC72godpdeC5FLklzVwoQQ9YuHCyPl7OWDMEDfsO17EJkJERLcgc2WfCyIiY9fZpcLuI/kIkDlgZJCLzs4jEolw9zgfvLRgDNRqNV7/7CR+SC3m1BEtKKlsQmF5o1E15bxakLcUnV0qFFc0CR1lwGDhwgTMivBHe4cSe48VCh2FiMigiUUiBPs6IquQIy6IiIzVz2dKUNPQjtmRARDpoTdCoFyKhIXjMTzABf/74QL+uzMdLW2cpt0fyRkKSMQiTAj1EDpKnwTKHAAAFy9xuoi+sHBhAuRudpg4zAM/nbyEuqZ2oeMQERm0EF8nVDewzwURkTFq71Dim+QChPg6Yqifs97Oa2dtjmfmDMf9dwThVE4VVn58AoWKRr2d35SoVGocyyhHmL8zHGwthI7TJ84OVnBxsGSfCz1i4cJExE/xh1Klxp7kAqGjEBEZtGBfRwBAFlcXISIyOj+cLEZDSydmTw3U+7lFIhGmT/DFSwvGoFOpwurPUnHg1CVOHeml80W1qG1sx+ThXkJH6ZdAuZSFCz1i4cJEuDvZYMoIL/xyphTlNS1CxyEiMlhX+lxks88FERmYxMREREVFITg4GDk5OTfc591338WMGTMQGxuL2bNn49ChQ3pOKZyWtk58l1KEEYEuCJJLBcsR5C3F8oXjEDrIGZ/tz8F7uzO4wl8vHE1XwNrSDKN02J9EH4LkUtQ2tqOmoU3oKAMCCxcmJHayH0QiEd7cnMr/gYjohvLz8zF37lxMmzYNc+fORUFBwXX7vPjii4iPj9d8hYSE4McffwRgGm+YNX0uOOKCiAxMdHQ0tmzZArlcftN9RowYga+//hpJSUl4/fXX8dxzz6GtbWC879t3vBjNbV2YFREgdBTY21jg2ftGYM7UAKRmVWLlxydQVM6pI7fS3qHEyexKjAtxh7mZROg4/RLkfbl4xlEX+sHChQlxdrDCIzGhKFI0IOGj4ziZXSF0JCIyMAkJCZg/fz727duH+fPnY9myZdfts3btWuzatQu7du1CYmIipFIpIiIiAJjOG2b2uSAiQxQeHg4vr+6Hz0dERMDa2hoAEBwcDLVajbo60y/ENrR0YH9qMcKD3TDI017oOAAuF8JnTPLDi/NHo71TiVWfnsQvZ0o4daQbp3Iq0d6pNNrVRK7m7WYHC3MxG3TqiZnQAUi7xod6YHSoJ17/+Dje3ZGO20fJMDd6MCzNjbuiSUT9V11djczMTGzatAkAEBMTg9deew01NTVwdr5xg7Ovv/4asbGxsLC43DzrSgEDuPYNs6encb0BCbmqz8UUR2uB0xAR9c3OnTvh6+vbp2uwi4tdr49xcxOuYLB7dzo6O5VYFD+8Vzn0kdnNzR7DBrvj7f+dxCffZaOwohlP/mEkrC379lFLyNe5L3qT90ROGjycbTBplDfEYt2vCHMz2nqNg32dUVDRpLe/M2OjzcwsXJggmZsd/vHgWGw/mIfvUoqQc6kej8cNg7d77/+BIiLTUVZWBg8PD0gklwuZEokE7u7uKCsru2HhoqOjA0lJSfj4449v+Hz9ecMstCt9LrKKajFlhHE3ByOigen48eP497//jY8++qhPx1dXN0Gl6vnIADc3e1RWCjMVoraxHd8cycfEYZ6wEqPHOfSd+alZYfgmuQA7D+cju7AGT8wMg7db795/C/k690Vv8tY2tuPshUrETvZDdXWTjpPdnDZfY193W3x7rAiXSupgaaG7G8XG9ncB9D6zWCzqtqDKwoWJMpOIcf8dQRjq54QP9pzHyk9SMTcqCFFj5HpZ75qIjN8PP/wAmUyG0NDQ67b15w1zX+7yAdq/0zBysBtyimvh6mqnk+viQL8zoi/MrHvGlhcwzsy9cfr0abzwwgtYv349AgKE7/ega3uSC6BSqRE3xV/oKN0Si0SIvc0fQd6OeH93BlZ9kooFdw9BxAiZ0NEMwrFMBdRqYNIw47vhcTNBcilUajUKFA0I9nUSOo5JY+HCxIX5u2DlovH44JtMbPk+Bxn5NVg0IxR21uZCRyMiPfPy8kJ5eTmUSiUkEgmUSiUqKipuOp9627ZtmDNnznWP9/cNc2/v8gG6udPg52GHI+dKcf5iJdy0PF1kINwZMQTMrHvGlhfoW+Zb3ekzJOfOncNzzz2H//znPxg2bJjQcXSusq4VB8+WImKkDO5GMrUvdJATli8aj/d3Z2DT3izkFNXhgbuDdXpH3tCp1WokpysQKHeAh7ON0HG0JlD+W4NOFi50q0fNOW+0NFNtbS0WL16MadOmITY2Fk8//TRqamo0x5w5cwZxcXGYNm0aFi1ahOrqap1uo5tzsLXAX+8biXlRQUjLq0bCR8eRVchlAIkGGhcXF4SGhmLPnj0AgD179iA0NPSG00QUCgVOnjyJ2NjYax43pTfMv/W54PWQiAzDqlWrEBkZCYVCgYULF2LGjBkAgMWLFyMtLQ0AsGLFCrS1tWHZsmWa1Z+ys7OFjK1Tuw/nQywWIXayn9BRekVqa4G/zx2FuNv8kJyuwGufpqKkqlnoWIIprmhCSWUzJpvQaAsAsLM2h5eLDRt06kGPChc3WppJJBLhkUcewb59+5CUlAQfHx+89dZbAACVSoUXXngBy5Ytw759+xAeHq7TbXRrYpEId4/3xdKHwmFhLsGbn5/G9oO56FKqhI5GRHq0fPlybN68GdOmTcPmzZuxYsUKANe+KQaAHTt24I477oBUKr3meFN6w3ylz0U2l0UlIgOxdOlSHDx4EJmZmThy5Ai++eYbAMDGjRsxfPhwAJdHwx07dkyz+tOuXbsQHBwsZGydKa1qRnKGAneMlsPJ3lLoOL0mFoswMyIAf5s3Ck0tHXjtkxNITi8TOpYgktMVkIhFGBfqIXQUrQuUS3GxpJ6ryehYj6aKhIeHX/eYo6MjJkyYoPl51KhR+PzzzwEA6enpsLS01Bw3b948REdHY82aNTrZRj03yNMeCX8Kx/++v4A9yYU4X1iLx2KHwdVIht4RUf8EBgZi69at1z2+cePGa35+4oknbnj8tm3bdJJLCCKRCCG+jsguqoVarWb/HyIiA7PzcD4szCW4d9IgoaP0yzA/ZyxfNB7v7crAB3vOI6uoDgvuGjJgVv1TqlQ4llmOUUGuJjldPUguxeFzZVDUtMDLxVboOCarRyMubkWlUuHzzz9HVFQUgMud62Wy35rQODs7Q6VSoa6uTifbqHesLMywaEYoHosbhtKqZiRsOo7j58uFjkVEpHfBvk6obmhHVX2b0FGIiOgqhYpGpGZV4K5wHzjYWAgdp98c7Szx/B9HIWbyIBw5V4ZVn6airHpgTB3JyK9FQ3MHJoWZ1jSRK67uc0G6o5XmnK+99hpsbGzwwAMPaOPpdMrY1qzuq55kjplqj/AwL7y15SQ27MpAblkjHp05HFZ9XHO6v4ztdTa2vAAz64sxZh6oQgZdbqSVVVir9QadRETUdzsO5cHG0gzTx/sIHUVrJGIxZkcGYoi3I95PysTKj1Px8PRgTDSxvg+/dzRDAVsrM4wIdBE6ik54udjAxtIMuSX1XEFGh/r9CTUxMRGFhYXYsGEDxOLLAzi8vLxQWlqq2aempgZisRiOjo462dYbxrRmdV/1JrMEwN/vH4ndR/LxTXIhzl2swuNxwzDIU78fvIztdTa2vAAz64u216wm3ZK52MDexhxZRXWIGMk3G0REhuBiST3O5VZjztQA2FiZ3tSCsAAXrFg0Hht2peP9pExkF9dh/p2DYW5melNHWtu7cCqnElNGeMFMopXB/gZHLBL92ueiQegoJq1ffz1vv/020tPT8e6778LC4rchXGFhYWhra0NqaioA4IsvvsD06dN1to36x0xyufr7/B9Ho72jC6s/S8X+E8VsMENEJk8kEiHY1wnZxbW85hERGYjtv+TCwcYcd441ndEWv+dkb4kX54/GvRMH4ZczpVj16UmU17QIHUvrUrMq0NmlwmQTnSZyRZDcAaVVzWhu6xQ6isnq0YiLVatWYf/+/aiqqsLChQvh6OiIf/3rX3jvvffg5+eHefPmAQC8vb3x7rvvQiwWY+3atUhISEB7ezvkcjnefPNNANDJNtKO0EFOWLFoPDbtzcIXP15ARn4N/jwjFA62xj+vkIjoZkJ8HZGaVYHK+ja4c7oIEZGgzhfUIKuoDn+MHgxLC9MbgXA1iViMP9weiCE+UmxMysSKj09gwfQQjBvsCgsTadx5NEMBDydrBHg5CB1Fp4J+7XORW9JgslNihNajwsXSpUuxdOnS6x7vbgm8MWPGICkpSW/bSDvsbSzwzJzh+OlUCb786SKWfXQci2OGYpi/s9DRiIh0Itj3cp+L7MJaFi6IiASkVqux/WAenOwtcfvogTN9b0Sg6+Wbh99m4cPdGdhmZ4HY2/wRYeTTK6rqW5FVVIdZEf4mv3KXv8wBItHlaU4sXOiG8f6fQDojEokQPdYbrz4cDjtrc/zfl2fw1YGL6FKqhI5GRKR1V/e5ICIi4ZzNrUZuaQPibvMzyX4P3XF2sMLf547C60/eBldHa3y2LxuvvH8MR9LKetWfz5Acy7i8auEkE28+ClxetdHH3Q65XFlEZ1i4oJvycbfDqw+H4/ZRMnyXUoTXPzuJ8lrTm3tHRAMb+1wQEQlPpVZjx8E8uDta47bhXkLHEczwQFe8vGAM/nrfSNhamePDb87j1Q9TcCKrAioj+jdKrVYjOV2BIT6OcB0goxmD5FLklTZAqeLNXl1g4YK6ZWkuwUPTQ/DUrDBU1LZi+aYTSE4vEzoWEZFWhfo6oqahHZX1bUJHISIakFKzKlBc0YT4CH+jnh6hDSKRCCMCXbDsT+F4cmYYAOC/O9Ox8uMTOHuxyiiK7AWKRihqWky+KefVguRStHcqcamiWegoJmlgXxWox8YGu2PFovEY5G6HD/acx8akDLS2dwkdi4hIK670ucgqrBU4CRHRwKNUqbDzUD7krraYEOohdByDIRKJEB7ijtf+PAGPxISitb0L//76HNZsPoXzBv7vVXKaAuZmYoQHuwsdRW+uNOi8yOkiOsHCBfWYi9QKL8wfjfgp/jiWWY4Vm04gv4zrFROR8fNysYGDjTmyiwz7jSARkSk6ml4ORU0LZkYEQCw27SaOfSEWizA5zAurF0/EQ9ODUd3Qhjc/P403Pz9tkD0VupQqpJwvx+jBrrCx6tFaECbBRWoFqZ0FcksN77+JKWDhgnpFIhYjfoo/lswfgy6VCq9/dhLfHis0qjl3RES/d6XPRVZRnVEMwSUiMhVdShV2H8mHn6c9xgxxFTqOQTOTiHH7KDneeGwi5kUPxqXKJqz+7CT+vfUsisobhY6nkZZXjabWzgE1TQS4/F4iSC7FxUssXOgCCxfUJ0N8HLFi0XiMGuyKrT/n4u0vz6CuqV3oWEREfRbi64jaxnZU1rUKHYWIaMA4eLYUVfVtmB0ZYPJLZmqLuZkEd4/zQeLjkzA7MgAXLtVj+aYT+O/OdJRVC99fITldAQcbcwzzdxY6it4FyaWoqm/j5yIdYOGC+szWyhxPzgzDw9ODcfFSPZZ9eBzncquEjkVE1CeaPhdcFpWISC/aO5VISi7AEG/pgPyQ219WFmaImeyHtU9MQszkQTiXW42lH6Tgw28yUSVQEb65rRNnL1ZhwlBPSMQD76PmlT4XhjiFx9gNvL8m0iqRSISpo+R49U/j4GhngX9tPYf//ZCDzi4uA0RExoV9LoiI9OvAqRLUN3Vg9tRAjrboBxsrc8yODETi45NwV7gPUjIr8PL7x/DZ/mzUNur3zv+J8xXoUqoH3DSRK3w97GEmEbNBpw6wcEFaIXe1xasPhyN6rDd+SL2E1Z+mGsRQNSKinmKfCyISWmJiIqKiohAcHIycnJwb7nP48GHMnj0bYWFhSExM1HNC7Wlt78LeY4UI83fGEB9HoeOYBAdbC8yLHow3HpuIiBFeOHimFC+9dxRf/nQBjS0desmQnK6A3NUWvh52ejmfoTE3E8PPy56FCx1g4YK0xtxMggV3DcFf5oxATWM7Vnx8AgfPlvIDABEZjZBBTqhtbEcF+1wQkQCio6OxZcsWyOXym+7j4+OD1atX489//rMek2nf9yeK0dTaiVmRAUJHMTnODlZ4aHoIVj86EeNC3LH/RDFe3HAUOw7moaWtS2fnrahtwcWSekwK8xzQI2iC5FIUKhrR2aUUOopJYeGCtG7UYFesWDQeAV4O+PjbLGzYlYGWtk6hYxER3VKI7+W7ftnsc0FEAggPD4eXl1e3+wwaNAihoaEwMzPeZSabWjux70QRRg92hb+Xg9BxTJa7ozUeiRmKlX+egOH+zkhKLsCSDcn45mgB2ju0/6E6OV0BEYCJQz20/tzGJEguRZdSjUJFk9BRTAoLF6QTTvaWeH7eaMyZGoCT2ZVI+OgElwYiIoPn6WwDB1sLZLHPBRGRznybUoi2diVHW+iJ3NUWT84ajoQ/jUOgXIptv+RhyXtH8X1qsdb60qnVahzNUCDUzwnODlZaeU5jFfhrg05OF9Eu4y3VksETi0WYMckPIb5OeG93Bt7YcgrxU/wwY5IfxOKBO3yMiAyXSCRCiK8jsn/tczGQh7oSkWlzcel9DwI3N/t+n7e2oQ0/nixB5GhvjB7a/egSbdBGZn3TVWY3N3uED5chM78am7/Nwuc/XMD3qZcw765gRI/zgZmkb/e03dzskZlfjcq6NjxwT6hRvOa6zOjmBni52KK4qlmr5zGG1/X3tJmZhQvSuUC5FMsXgvoZcgAAIABJREFUjsdn+7Ox41A+MgtqsTh26ICvxhKRYQr2dcLx8xWoqGuFh5ON0HGIiHSiuroJKlXP+5C5udmjsrKx3+fd8n0OurpUmD7eWyvP1x1tZdYnfWR2s7PAX/8wHJmFtdj+Sx7e2XoGX/2Qjfgp/pgQ6tGrG4xX8n57OA8W5mIM9jL811wfr7Gfpz0y8qpRUdGglZsgA+FvWSwWdVtQ5VQR0gsbKzM8GjsUf54RigJFIxI+Oo5TOZVCxyIiug77XBAR6UZ1fRt+OVOCKSM8WRgWmEgkwjA/Zyx9aCyemTMcFmYSbEzKRMJHx3Eyu7JXzfU7u5Q4fr4CY4e4wcqC98UBIMhbiobmDlTWtwkdxWSwcEF6IxKJcNtwLyQsHAdXqTXe2Z6Gz/Zno6OTHXeJyHCwzwURCWXVqlWIjIyEQqHAwoULMWPGDADA4sWLkZaWBgBITU1FZGQkNm3ahC+++AKRkZE4dOiQkLF7bPeRfABA7GR/gZPQFSKRCKMHu2H5onF4LG4YulRqvLsjDa99kor0vOoeFTDOXqxGS3sXJofpfuqPsQj6tc9FLnv8aQ1LYqR3ns42eOXBsdh+MBf7jhcjp7gOT983Ch4OlkJHIyJinwsiEszSpUuxdOnS6x7fuHGj5vvw8HAcPHhQn7G0orymBUfSFIgaI4eLlNOFDY1YJMKEoR4ID3FDcpoCu4/k4+2vzmKItxSzpwZiiI/jTY9NTlfA0c4CoYOc9JjYsMldbWFlIdEsDzvQdCm10/T1ahxxQYIwNxNjbtRgPHf/SDS1duLl9UeQuOUUzhfW9mpoGhGRLoT4OqG2sR0Vta1CRyEiMgk7D+fDzEyEGZP9hI5C3ZCIxYgYKcPrj07CgruGoLy2FW9sOYW3vzyD/LKG6/avb2pHWl41Jg7zZPP9q4jFIgTKHAbkyiLltS14bt1hnM6u0Orz3rJwkZiYiKioKAQHByMnJ+eWjwNAfn4+5s6di2nTpmHu3LkoKCjQ6TYyXsMDXJD42CQsnhmG8toWvPn5abyx5RQy8mtYwCAiwQT/2ueC00WIiPrvUkUTjmeW486xPpDaWggdh3rA3EyM6LHeeOPxSbjvjkDklzXgtU9SsW7bOVyqbNLsd+hMCZQqNSYPwFEFtxIol+JSZRNa27uEjqJXX/10EV0qNQZ5OWj1eW9ZuIiOjsaWLVvw/+3deXxU9b3/8dfMZF9mkkkmyWTfIAmENeyLKLsIBFcsWK0Ltuqt9td6FS1lqVaL995Wr160WkUtbbWoiCCbLELZV9kCAbIQErIvJATIMnN+fwQiiEBCMnPmJJ/n4+HDTM4s78kDPkw+53s+34iIiBZ9H2DOnDlMmzaN1atXM23aNGbPnu3QY0LbPNwNTB6ewPxfNHV2y85c4H8+/Y5X/raHA1ktu7ZOCNEyLWkCP/fcc6Snpzf/l5yczLp16wCw2WzMmzeP0aNHM2bMGBYvXuzkd+AcYWYfTL4eMqBTCCHawZJ/Z+PlaWD8wGi1o4hW8nQ3cPvAGF57Ygjpw+I4crKSOe/v5N2vDlNceY71u08RHeJHpKX12+t2dImRJhQFsn9kpUpHdeRkJfuOl3HHoJh230Hyho2Lfv36YbVePWjlWt8vLy8nIyODiRMnAjBx4kQyMjKoqKhwyDHRcbi7GZo6uz8fzIPjkqg6W8fri/fz8se7+e5EmTQwhGgHLWkCv/baayxdupSlS5cyf/58TCYTw4cPB2DZsmXk5eWxZs0aPv30U958803y8/Od/TYcTqfTkRQdwNE8uXxNCCHaIvt0NfuOlzFuQDR+3u5qxxE3ydvTjfRhcbz2xBDGD4xm77FSfvvuDo6fqpLVFtcQbzWho/MM6LTbFT5Zd5wgoxdj+0e1+/O3+4yLwsJCQkNDMRgMABgMBkJCQigsLHTIMdHxuLvpubVPBK/+fDA/uz2ZmnMN/O9nB5j34S72HivFLr9ECHFTbqYJ/NlnnzFp0iQ8PJqW9q5YsYJ7770XvV6P2Wxm9OjRrFq1yin5nS05OpCqs/Uy50IIIdpgyaYs/LzdGdOv/X+REc7n5+3OvbclMv8Xg7mtbwSxViODukvj4sf4eLkRbvHtNHMuNh8s5FTJWe69LQEPd0O7P3+n21UkKKj1y5gsFn8HJHGsjpL57jAT6bd14ds9+fxr3THe+uIgsVYj949JYnAPq6pDgDrKz9jVSeb2c70msNlsvur+9fX1LFu2jA8//PCK5wgPD2++bbVaKSoqalWOm6nD4Pyf6+DeEXy8OpOCyvOkJoW2+vGu+ufgeiSzc2gts9bygjYzd0SZeZUczq3kvtsS8fbsdL92dGgmP0+mj+mKxeJPaWmN2nFcVmKEiZ1HirErCvoOvEvZ+bpGvtiUTWKEif7JIQ55jXavIFarleLiYmw2GwaDAZvNRklJCVarFUVR2v1Ya5WXn8Vub/kZey3+ZeyImXvFBZL6SH92ZpSwbGsuf/x4FxHBvkwaGku/pBCnNzA64s/YFXWGzHq97qZ/kXe0tWvXEh4eTkpKSrs+b2vrMKjzZ8EDBZOvB7sPF9E3IahVj+0Mf3ZdgWR2PK3lhZvL7Mq1WKsUReHzTdkE+Hkwsu/VM/GE6AwSI0xs/O40p8tqO/QckBXbT1JdW88z9/R02Dby7X6pSFBQECkpKSxfvhyA5cuXk5KSgtlsdsgx0XkY9HoGp4bx8mMDeXxyN+yKwjtLD/O793ew/XBRq38REqKzubyxDNywCfz5559z9913X/Ucp0+fbr5dWFhIWFjHXCKq0+lIjgnkiMy5EEKIVjuYXcGJ/DNMGhLrkGXjQmhBYoQJoENfLlJWdZ7VO08xuHsoce28k8jlbti4ePnll7nlllsoKiri4Ycf5o477rju9wHmzp3LokWLGDduHIsWLWLevHkOPSY6F71ex6BuYbz02ECemJKKXq/j3WUZ/PavO9hysBCb3a52RCFcUmuawEVFRezZs4dJkyZd8f3x48ezePFi7HY7FRUVrF27lnHjxjklvxqSogM4c7aeYplzIYQQLaYoCks2ZRNs8mJ4r/AbP0CIDiok0Bs/b/cOPaBz8bdZ6HVw94gEh77ODS8VmTVrFrNmzWrx9wESEhKuuUWeI46Jzkmv09E/OYS0JAv7jpXy1ZZc3v/6CF9tyWHi4FgGp4bhZmj3RUVCaNrcuXOZOXMmCxYswGg0Mn/+fABmzJjB008/TY8ePQBYsmQJt912GyaT6YrHp6ens3//fsaOHQvAU089RVRUxx24lhwdCMDRvErCzD4qpxFCCG3Yk1nKyeIaHr0jRT6LiU5Np9ORGGHqsCsujudXsetoCZOHxrb79qc/JFNyhObpdTrSkkLo29XCdyfK+GpLLgtXHmXZ1lzuGBzD0B5W+UdTiIuu1QR+7733rrj9xBNP/OjjDQZDp1rxFhrojcnPg8y8Km7tLddoCyHEjdjtCl9uzsEa5MNg2W1CCBIjTXx3oozqc/UYfTzUjtNu7IrCP9ceJ9Dfk9sHxjj89eS3OdFh6HQ6+nSxMPuhfjxzT0/8fTz4aFUmM/+yjQ1782lolEtIhBCto9PpSI4O5KjMuRBCiBbZkVHM6bJapgyPV3X3NyFcxaU5F1kdbNXF9sNF5BbVcPeIeDw9HD/HRhoXosPR6XT0Sgxm1oNp/Pq+XgT6e/K3NceY+ZdtrN19ioZGm9oRhRAaInMuhBCiZRptdr7cnE10iB9pSRa14wjhEmLD/DHodR3qcpG6ehuffZtFnNWfQU5aWSWXiogOS6fTkRofRPc4M0dOVvLV5hz+sfY4X28/ye0DYxjROxxPmXIthLgBmXMhhBAts/lgIaVVF3jmnp7oHbQlohBa4+FuIDrUv0MN6Fy54yRVZ+ubNkpw0t91WXEhOjydTke3WDMzH0jjuZ/0wWr24ZN1x3n+7a2s2pFHXb2swBBCXNvlcy6EEEL8uIZGG8u25JIQYaRnQpDacYRwKYkRJnKKami0af/S9YrqC6zakceAlBC6RAY47XWlcSE6leSYQJ6b1peZ0/sSGeLHvzac4D/f3srX23I5X9eodjwhhAvS6XSkRAdy9KTMuRBCiGvZsO80lTV13HVLAjpZbSHEFRIjTTQ02skrPqt2lDb7fGMWdgXuudWx25/+kDQuRKfUNSqAZ+/vw4sPpBFr9efzjdk89/ZWlm3N5dwFaWAIIa6UFB3Amdp6iirOqR1FCCFczoX6Rr7elktKTCApMYFqxxHC5SSEGwHtD+jMPl3NtsPFjBsQRbDJ26mvLY0L0aklRpr49X29mfVgPxIjTCzZ1NTAWLo5h3MXGtSOJ4RwEZfmXMjlIkIIR5o/fz4jR44kKSmJY8eO/eh9bDYb8+bNY/To0YwZM+ZHt7h2trW786k518Bdt8SrHUUIl2Q2ehFk9NT0gE5FUfhk3XFMvh5MGOT47U9/SBoXQgDx4UaeubcXs3/Wj6ToAJZuzuE/397Kkk3ZnD0vDQwhOruQQG8C/Dw4mlepdhQhRAc2atQo/v73vxMREXHN+yxbtoy8vDzWrFnDp59+yptvvkl+fr4TU17p3IUGVu3Io1dCEAkXt30UQlwtIcKk6cbFrqMlnCg4w523xOPt6fw9PqRxIcRlYsOM/PLunsx9uD/dYs0s25rLf769lc83ZlFzrl7teEIIleh0OpKjA8nMq5I5F0IIh+nXrx9Wq/W691mxYgX33nsver0es9nM6NGjWbVqlZMSXm3VzjzO1TVyp6y2EOK6EiNMVNbUUVF9Qe0orVbfYGPxhhNEh/gxrMf1a5SjSONCiB8RHerPU3f24PePDKBXQhArtp3kube3sXjDCaprpYEhRGckcy6EEK6gsLCQ8PDw5ttWq5WioiJVslTX1vPNrnz6J4cQHeqvSgYhtCIxsmlFkhZXXazZdYry6jruH9UFvV6d4bvOX+MhhIZEhvjxi/RUJg2t5eutuazamce6PfmMGxxLQpgf8eEm/Lzd1Y4phHCCy+dcWIN8VU4jhBBtExTk1+rHWCxXNieWbj1EQ6ONhyenXnXMVbhqruvRWmat5QV1MgeaffH0MFBQcf6mXl+tn3NF9QVWbD/J4B5WhveLbtVj2zOzNC6EaIGIYF8en9ydSUNj+XrbSb7ekoPd3rRcPDTQm/hwEwkRRuLDjURa/HAzyGImITqay+dc3Nrn2tefCyGEI1mtVk6fPk3Pnj2Bq1dgtFR5+dnmzzItYbH4U1pa03y7ovoCX2/JYXBqGF56rjjmKn6YWQu0lllreUHdzHFh/hw8Xtrq11cz8wcrjtDQaGfykJhWZWhtZr1ed92GqjQuhGgFa5Avj03sxq+mpbHn0GmyTleTVXCGjNwKth1uWqbp7qYnNsyfhHAT8eFGEiJMBPp7qpxcCNFWOp2O5JhAMnIrURQFnU6dpZJCiM5t/PjxLF68mLFjx1JVVcXatWv5+9//7vQcy7fmoigK6UPjnP7aQmhVQoSJldvzqKu34elhUDvODZ0sqmHLgULGDYgmNNBH1SzSuBDiJnh7upEUHUjSxaXjiqJQXn2B7NPVZJ+uJuv0GdbuOUXjzqYzGYH+niSEG5tXZsSE+uPh7vrFSghxpeToQLYfLqao4pxcLiKEaHcvv/wya9asoaysjIcffpiAgAC+/vprZsyYwdNPP02PHj1IT09n//79jB07FoCnnnqKqKgop+YsqTrPvw8UckvvcIIDvJ362kJoWWKECbuikFtU3fx7hKu6tP2pr7c7E4fEqh1HGhdCtAedTkewyZtgkzcDUkIBaGi0c6rkLFmnzzQ1MwrOsDuzFACDXkdUiF/TqowIIwnhRiwB3nIGVwgXlxQdAMBRmXMhhHCAWbNmMWvWrKu+/9577zV/bTAYmDdvnjNjXWXpv3PQ63VMHByrag4htObSlsEnCs64fONi77EyMk9V8dNxSfh4qd82UD+BEB2Uu5ue+PCmuReXnKmtJ/uyRsbmg4Ws29u097qft3vTqowIEwnhRuKsRlX2SBZCXFtIgDeB/p5k5lVym8y5EEJ0QgVltWw/XMS4AdFyKawQreTn7Y41yIcT+a69s0hDo51/bThORLAvt/RSZ/vTH5LfioRwIpOvB326WOjTxQKA3a5QUFbbtCqjoOkSk/1Z5QDogPBg3+Y5GfHhRsKDfFXbgkgI0bS6Kik6QOZcCCE6rS//nY2nh4HbB7VudwEhRJOECBP7jpW69OeIdXvyKa26wK+n9sKgd41NB6RxIYSK9BcvGYkK8ePW3k1nb89daCCnsKb5EpO9x0r594FCALw8DMRZjRd3MGlqZhh9PNR8C0J0OjLnQgjRWZ0sqmFPZimTh8biL58/hLgpiREmNh8odNnPEdW19SzbmkPPhCBS44LUjtPsho2L+fPns3r1agoKCli2bBldu3YFICcnh5kzZ1JVVUVAQADz588nNjZWlWNCdCQ+Xu50jzPTPc4MNA3GKak8T9bpM2Sdria7oJoV2/KwK02DP0MCvC/OyWhqZESFyHasQjhS85yLk5Uu+YFDCCEc5YtN2fh6uTG2v6y2EOJmJV4258IVP0d8uTmH+gY7U0cmqh3lCjdsXIwaNYoHH3yQ6dOnX/H9OXPmMG3aNNLT01m6dCmzZ8/m448/VuWYEB2ZTqcj1OxDqNmHIalN15jVNdg4WVTTfInJkZOVbD9cDDTN1ogJ8ych/PtmhtnopeZbEKJDuTTn4mheFbf1jVQ7jhBCOEVGTjkHs8u559YElxjUJ4RWhQX54OvlRlbBGYb3DFc7zhXyS86y8bsCRvWNdLmmyg2rTr9+/a76Xnl5ORkZGSxcuBCAiRMn8tJLL1FRUYGiKE49Zjab2+cnIYSGeLob6BoVQNeopjO/iqJQWVNH1sWhn9mF1azbU8DqnacACPDzYGCqlUmDovHxclczuhCap9PpSI4O4HBOhUtfnyqEEO1FURT+tvIIRl8PRknDVog20et0xIebOFFQrXaUKyiKwifrj+Pj6cbkYXFqx7nKTbVLCwsLCQ0NxWAwAE3bMoWEhFBYWIiiKE49Jo0LIZp+kTIbvTAbveifHAJAo61pO9bs09WcKDjDNzvz2HOkmJ+ndych3KRyYiG0LSk6kG2HiyksP0d4sGudkRBCiPaWkVvJoaxypo3ugqeHQe04QmheYoSRg9nl1F5owNdFTiruzyonI7eSn4zugp+3a2S6XKdb5xUU5Nfqx1gs/g5I4liS2fG0kNcaZmJAz6ahn0dzK/ivRbv546K9PDghhSkjEjWxQ4kWfs4/pMXMonWSL865yMyrlMaFEKLDO1FwhgiLLyN6yzbQQrSHS3Musgqq6Zmg/gDMRpudf60/QZjZx2W3e7+pxoXVaqW4uBibzYbBYMBms1FSUoLVakVRFKcea63y8rPY7UqL72+x+FNaWtPq11GTZHY8reUFSI41M/uhfixceZSFyzPYdbiIxyZ2w+jrulPBtfhzbm1mvV53Uw1VoS6LzLkQQnQik4bG8tOJ3amuOqd2FCE6hLhwIzpdU1PQFRoXG/YVUFRxjmfu6emyQ/5vKlVQUBApKSksX74cgOXLl5OSkoLZbHb6MSFEy/l4ufPklFQeHJdE5qkq5nywk4zcCrVjCaE5l+ZcZOZVoigtb4YLIYQW6XU6PN3lEhEh2ouXhxtRIX5kFZxROwpnzzfw1eYcuscGukQT5VpuuOLi5ZdfZs2aNZSVlfHwww8TEBDA119/zdy5c5k5cyYLFizAaDQyf/785sc4+5gQouV0Oh239okgMcLE20sP8T+ffMeEwTFMGR6HQe+aHVbRflq6tfSKFSt4++23m4dPLly4kODgYMrLy3nhhRcoLCyksbGRgQMHMmvWLNzcOt2VhzLnQgghhBA3LTHCxJaDRdjsdlU/g3+1OYdzdY1MHdXFpQeO3/CT5qxZs5g1a9ZV309ISGDx4sU/+hhnHxNCtF5kiB+zH+rPP9Ye4+ttJ8nMq+Lnk7sTZJKtUzuylmwtffDgQd566y0++ugjLBYLNTU1eHg0XVL0zjvvkJCQwLvvvktDQwPTpk1jzZo1TJgwQY23o6pLcy6OypwLIYQQQrRSYoSJ9XsLyC+pJSZMnfloheW1rN9bwIjeEURaXPvSZTm9KkQn5ulh4OEJKTw+uRv5pWeZ88FO9mSWqh1LOMilrawnTpwING0tnZGRQUXFlZcLffjhhzzyyCNYLBYA/P398fT0BJpW7NTW1mK326mvr6ehoYHQ0FDnvhEXYQnwxmxsmnMhhBBCCNEalwZ0nlDxcpFP15/A00PPlOGut/3pD0njQgjBoG5hzH24PyGB3vzfkoMsWpNJQ6NN7ViinV1vK+vLZWVlcerUKaZPn86dd97JggULmuc4PPnkk+Tk5DBs2LDm/9LS0pz+XlyBTqcjKSpQ5lwIIYQQotWCTF6Y/DxUm3NxKKecA1nlTBoSh9HHdYf1X9L5LkoWQvyokEAfXvxpGp9vzGL1zlMczz/DL9K7Yw2SJfCdjc1mIzMzk4ULF1JfX89jjz1GeHg4U6ZMYdWqVSQlJfHRRx9RW1vLjBkzWLVqFePHj2/x89/sLiquuM1s/+5hbDtcxAU7RP9gmacr5r0RyewcWsustbygzcxCiM5Fp9ORGGFSZcWFzW7n03UnCAnwZlSaNnZHk8aFEKKZm0HP1JFdSIkJ5K/LjzDvw108MCaJoT3CXHpYj2iZ621lfbnw8HDGjx+Ph4cHHh4ejBo1igMHDjBlyhQWLVrEK6+8gl6vx9/fn5EjR7Jjx45WNS5auy01uO7WuOFmbwC27S/A2/D93xFXzXs9ktk5tJZZa3nh5jLL1tRCCDUkRpjYk1lKZU0dgf6eTnvdTd+dpqCslqfu7IG7mzYuwtBGSiGEU/VMCGbeIwOItxr5YMUR/ro8g/N1jWrHEm3U0q2lJ06cyObNm1EUhYaGBrZv305ycjIAkZGRbNq0CYD6+nq2bdtGly5dnPtGXIjF5CVzLoQQQghxUy7NuXDm5SLnLjSw5N85JEUF0LdrsNNet62kcSGE+FGB/p48e38fpgyPY3tGMfM+3MXJIm2ddRNXmzt3LosWLWLcuHEsWrSIefPmATBjxgwOHjwIwB133EFQUBATJkxgypQpJCYmcs899wDw4osvsmfPHiZNmsSUKVOIjY3lvvvuU+39qE3mXAgh2ltOTg5Tp05l3LhxTJ06ldzc3KvuU1payhNPPMGkSZO4/fbbWbp0qfODCiHaLDrUHzeD3qmXiyzfepLa8w3c7+Lbn/6QXCoihLgmvV7H5KFxJEUF8O6yDP7wt93ce2sio/tFaqrQie9da2vp9957r/lrvV7PCy+8wAsvvHDV/aKjo1m4cKFDM2pNcnQA2w4XcbqslggX30pMiNY4dqqKj9ccI8TkRWq8mYhgX6n9TtCSbav/+Mc/kpqayttvv01FRQV33XUXAwYMuOrSPyGEa3N30xNr9XfaioviynN8s/sUQ3taVduC9WbJigshxA0lRQcy75EBpMYF8c91x3nz84OcPd+gdiwhXEJSTCCAXC4iOgxFUVi1I4/X/rGPHYcL+deGE8x+fyfPLtjKByuOsOtoCbUX5N8AR2jpttVHjx5l+PDhAJjNZpKTk1m5cqXT8woh2i4xwkRuUY1TdvRbvCELNzc9d90S7/DXam+y4kII0SJ+3u788u4erN2Tz+INJ5jzwU4en9SNpOhAtaMJoSqLyYsgoyeZeZWamcwtxLWcu9DIByuOsPdYKWldLfzng/3JP13FoZwKDmWXsyezlM0HCtHpID7cSI+4ILrHm4kLM6LXy2qMtrrettWXzyPq3r07K1asoEePHuTn57Nv3z4iI6X+CKFFiREmVu3I42TRWRIjTQ57nSMnK9l7rJS7boknwM95g0DbizQuhBAtptPpGNMviq6RAby99BCv/XMf6UPjmDgkVj6wik5Lp9ORFB3IgaxyFEWRpfRCs/KKa1jw5SHKqi4wdWQiY/tH4evtjtnoxS29wrmlVzg2u52c0zUczC7nUE45Szfn8OXmHHy93OgeZyY1LojUeLMmPxRrycyZM3nllVdIT08nPDycwYMHNzc7WupmdlHR4jazktnxtJYXXCvzAC93+OIghVUXGNzn2g3ItmS22RU+/3gPlkBvpk3ohqd76+rFzWrPn7M0LoQQrRYT5s+cn/Vn0ZpMvtycw9G8SmZM6u7UbZyEcCVJ0QFsPSRzLoR2bT5QyN/WZOLj5cZz0/rQNSrgR+9n0OtJjDSRGGnizlviqTlXz+HcCg5lV3Aop4KdR0oAiArxIzXOTGp8EF0iTbgZ5OrklmjpttVms5n//u//br49Y8YMEhMTW/Vard2aurNsjas2rWXWWl5wzcwhAd7sP1bC8NTQHz3e1syb9p8m+/QZfpHeneqqczf9PK3R2sw32pZaGhdCiJvi7enGjEnd6RZr5m9rMpnzwU4evSOFXona2VZJiPaSHP39nIvO3LhQFAVFAbuiYLMr2O0X/680ff3D25fuc/n9m+93xX0uPaf94vGm2wN6hOMlvw+3SX2DjX+sPcam/YWkxATy+OTumHw9Wvx4fx8PBnULY1C3MOyKQn7J2ebLStbsOsXKHXl4uhtIiQkkNd5MapyZkEAfB74jbbt82+r09PRrbltdWVmJv78/bm5ubNu2jWPHjvG///u/KqUWQrRVQoSJw7kVDlm5eb6ukS82ZZMYYaJ/cki7PrczSeNCCNEmQ3tYiQ838s7Sw7zx2QHG9o/inlsT5Oya6FSCNTjnotFm51TJWXIKq8kprKb6XCMX6hquaiQ0NRrAfrFp8P3tKxsPl24706I1mUwYFMMdg2Nxd5Oa01olVedZsOQgecVnuWNwDHcOj2/TZX96nY7oUH+iQ/2ZMCiG83WNHM2r5FB2BQezy/nuRBkAIYHezbMxUqID8fRwzpJlrZg7dy4zZ85kwYIFGI1G5s+fDzStqngejQpkAAAfjUlEQVT66afp0aMHBw4c4A9/+AN6vZ7AwEDeeecdvL29VU4uhLhZiZEmth0uovTMBUIC2vfv8ortJ6murefpu3tq+nJWaVwIIdrMGuTLrAfT+HT9CdbsOsWxU1X8PL07oXJWTXQSP5xz4WrsikJxxbmmJsXpGnKKqskrrqHR1pTV38edyBB/DHodHm569Ho9el3Tsk2DXof+4n8Gna75e7of3Nbrdeh1339t0OvQ/eD2D+9z9W0ue049Oj1Nx3RX57DZFVbvyeerLbnsySzlZxOSSQh33FCzjmbf8VL+uvwIOuDpe3rS2wGr5bw93ejTxUKfLhYURaGk8vzF2RgV/PvgadbtzcfNoKNLZACp8WZ6xAURYZEtV1uybfWIESMYMWKEM2MJIRwoMaLp36+s/DPt2rgoqzrP6p2nGNw9lPhwY7s9rxqkcSGEaBfubgYeGJtESoyZD1ceYd7CXTw4PolB3cLUjiaEU1yac1FQVktIiLofDipr6ppXUmSfria3qIbzdY0AeLobiA3zZ3RaFHHhRuKs/gQZvQgJMbrcNb838ptpafSKM/Px6kxe+XgPY/pHcefweDmDfx02u50vNmazckceMaH+PHlnKpZ2Prv3Y3Q6HaFmH0LNPozuF0VDo41j+Wc4nF3BwZxyFm/IYvGGLAL8PJoHfHaLNePn7e7wbEIIobaIYF+8PAycKDjD4NT2++y8+Nss9Dq4e0RCuz2nWqRxIYRoV2lJFmLD/PnLssO8+1UGGbmVTB/dVX6REB1eysU5F5l5VfTpZr3BvdvPuQuN5BZd2aSorKkDmlYrRFr8GJgSQpzVSFy4kfAg3w61C1CvxGBejgrgs2+zWLPrFPuOl/Kz8cmkxJpv/OBO5szZOt5ZepjMU1Xc2ieCn4xKxN1Nndrs7mage6yZ7rFm7iORiuoLHM6p4GBOBXuPlbL54MUtV61GUuODSI0zE2eVLVeFEB2TXq8jIdzIiYIz7facx/Or2HW0hMlDYzEbvdrtedUijQshRLsLMnnx/LQ+LN2cw9dbT5JVcIYn0lOJDOm8QwtFxxcc4E2Q0YujeZUOe42Gxu/nUjQ1KaopLP9+OnhooDdJ0QHEhTU1KaJD/PBw0pZnavL2dOOn45IYkBLCwpVH+a9PvuOWXlbuuy0RHy85Yw+QmVfJO0sPc76ukccmpjAk1XnNtZYwG70Y3iuc4Ze2XC2s4dDFy0q+2pzD0otbrnaLNV8c8hkkO1kJITqUhAgTy7bmcr6uEW/Ptv2ablcUPll3nEB/T24fGNNOCdUljQshhEMY9HruuiWB5OhA3luWwUsf7+b+UV24tXd4p79+WXRcydEB7M8qb9UWg9diVxSKypvmUmQXVpNzuppTJWebB2AafT2ItxoZ1C2UuHAjsWHGTr+sPik6kN8/MoClm3NYtTOP/VnlPDg2iT5dLWpHU42iKKzakcfnG7OxBHrzm/t7E+niO98Y9HoSI0wkRpiYMjyes+cbOJxTwaGccg5lV7DraNOWq5EWX1Ljg+gRZyYxMkAGtAohNC0x0oSiQHZhNd3buGpw++EicgpreGxiSodZ9SyNCyGEQ3WLNTPvkQH8dXkGf1udSUZuBQ/fnixnQUWHlBQdyJZDRZwqrsHHreUNOkVRmudSXGpS5BbVcKHeBoCXR9NcirEDoogLMxIfbiTQ31OagD/Cw93Avbcl0i85hIUrjvLmFwcZkBLCtNFdMbZim8+O4NyFBt7/+gj7jpfRL8nCwxNS2nwWTw1+3u4M7BbKwG6hKIpCfmkth7LLOZhdzje7TrFqRx4e7npSogNJjQ9izOBYtSMLIUSrxVtN6Gga0NmWxkVdvY3PN2YTG+bPoO4dZ9Zcm//1+vbbb3njjTdobGzEZDLx6quvEhUVRU5ODjNnzqSqqoqAgADmz59PbGwsgEOOCSFcl9HXg1/d14vVO/P4YmM2cwp38Yv07iREyA4AomNJjg4A4GBWGQOTrn2Wv/ZCA7mFNc1NipzCas7U1gNNcymiQvwYnBpGvNVIrNWI1ewj1/a3UpzVyOyf9WPl9pMs25rL4ZwKpo3uyqDuoZ2i4XOyqIYFXx6korqOn4zqwuh+kR3ifet0TX8/okL8uH1QDBfqGzl6soqDOeUcyi5nf1Y5uzJLmDmtr9pRhRCiVXy83Iiw+LZ5zsXKHSeprKnjF+nd0XeAun9JmxoXZ86c4fnnn+eTTz4hLi6OpUuXMnfuXN5//33mzJnDtGnTSE9PZ+nSpcyePZuPP/4YwCHHhBCuTa/TcfvAGLpGBfCXpYd5ddFe7hoRz/iB0R2qqIrO7dKci8sbFw2NNvKKzzY1KS42Koorzzc/JszsQ7dYM/HhRmKt/kSH+Kk2MLGjcTPomTQ0jr5JIXy44gjvLc9gx5FiHhyX1CEGlV3Lpv2nWbTmGP4+7jw/rS+JkR23Sezl4UbvLsH07tK0nWtx5Tkswf5gs6mcTAghWi8hwsTOI8XYFeWmPh9XVF9g1Y48+ieH0CUywAEJ1dOmxsXJkycJDg4mLi4OaNpT+rnnnqO8vJyMjAwWLlwIwMSJE3nppZeoqKhAUZR2P2Y2y+RwIbQiIdzE3If78+GqTD77NosjuRU8Nqk7pk62hFt0XMnRAew/XsbHqzPJOV1Nfun3cykC/DyIsxoZ1tNKnNVIbJi/XDblBBHBvrzwQBrr9ubz+cYsfvvXHdx3awIj+kR0qMZpXYONv685xuaDhXSLDeTxSd073eUxoYE+WMw+mtvaVwghABIjTGz87jSny2pvah7R5xuzsCtw763a3/70h9rUuIiLi6OsrIwDBw7Qs2dPli1bBkBhYSGhoaEYDE1njAwGAyEhIRQWFqIoSrsfk8aFENri4+XOE+nd2RQbyD/WHmfOBzuZMbEb3ePk77LQvh4JQWw5VMSOjCJiw4yMHxjdtBWp1Si7IKhIr9cxpl8UvROD+WjVUf625hg7Mor52YQUwsw+asdrs+LKc/zfF4fILz3LpCGxpA+Lk8uLhBBCYxIvXkZ9ouBMqxsX2aer2Xa4mDsGxxAc4O2IeKpqU+PC39+fP//5z7z66qvU1dVxyy23YDQaOXfu3I0frJKgoNZ3riwWfwckcSzJ7Hhaywuul/meMUb6p4Yz/2+7+dO/vuPu27owfXwybobvJ8O7WuaW0GJm0X76J4cwqFcEjXUNHepsfkdhCfDmN1N7s/lgIZ+uO8GcD3YyZVgcYwdEYdBrc1eKPZmlfLAiA71Ox6/u7UXPhCC1IwkhhLgJIYHe+Hm7k5V/hlt7R7T4ccrF7U+Nvh5MGNQxtj/9oTYP5xwyZAhDhgwBoKysjPfff5+IiAiKi4ux2WwYDAZsNhslJSVYrVYURWn3Y61RXn62VdvUWSz+mltuKJkdT2t5wXUz+7jpePGBvvxz7XE+W3+cfZnF/HxSd4IDvF028/W0NrNer7uphqpwXTqdjiCTN6WljWpHEdeg0+kY3jOcHvFBLFpzjMXfZrHzSAkPT0gmOlQ7jcdGm53PN2axeucp4qz+PDEllWBTxzvLJoQQnYVOpyMxwtTqAZ27jpZwouAMP7s9WZO7R7VEm08tlJaWAmC32/nTn/7E/fffT0REBCkpKSxfvhyA5cuXk5KSgtlsJigoqN2PCSG0zdPdwM9uT+YX6d05XVbL3IW72H20RO1YQogOLsDPk/+4qwdPTkml8mwdL320my82ZdHQ6PqDHStr6vivf+5j9c5T3NY3gpnT06RpIYQQHUBipIniyvNUn6tv0f3rG2ws3pBFdIgfw3q07qS+lrS5HfP666+zd+9eGhoaGDp0KM8++ywAc+fOZebMmSxYsACj0cj8+fObH+OIY0II7RuQEkqs1chflh5iwZeH2H2sjF7xZnolBuPj1TG7x0II9fVLDiE5JpBP1x1n+daT7Mks5eHbU1x2N44jJyv5y9JDXGiw8fikbgzqHqZ2JCGEEO3k0pyLrIIz9Oly7a3VL1mz6xTl1Rd49I4+HXq2UZt/E/jDH/7wo99PSEhg8eLFTjsmhOgYQgK8eeGBNJZvzWXzwSJ2ZhRh0OvoFmsmLclCny7B+Pt0rin5QgjH8/N259GJ3RjYLZSPVh3l1UV7GJUWyV0j4vHycI3GqV1RWLn9JF9syibM7MN/TutLRLCv2rGEEEK0o9gwfwx6HSda0LioOlvH19tP0qdLMMkxgU5KqA7X+JdYCCEu42bQM2V4PI9O6cmOAwXsySxhT2YpH64s5+NVOpKiAy42MSyyS4MQol2lxgfx+0cH8sXGbNbtyWff8TIeuj2J1Dh1B17WXmjgr8sy2J9VzoCUEB4a33GvYxZCiM7Mw91AdKg/Wfk3nnPxxaZsGhvt3Dcy0QnJ1CX/4gkhXJZe3zSgKDHCxH23JZJXfJY9x5qaGIvWHOPva46REGEiLclCWpJFru8WQrQLb083po/tSv+UED5ceZQ/fbqfoT3CuH9UF3y93J2eJ7eomgVLDlFZU8f0MV0Z2TcCnexYI4QQHVZihIlvvyug0Wa/Yre9y50sqmHLgULGDogiNFD723rfiDQuhBCaoNPpiAnzJybMn7tuSaCgrLZ5Jcan60/w6foTxIT50y/JQlpSCGHmjl/AhRCO1TUqgHmP9OerLbms3J7HoewKHhjblbSkEKe8vqIobNx/mn98cwyjrwczp/clIcI1524IIYRoP4mRJr7ZfYq84rPEhxuvOn5p+1Nfb3cmDYl1fkAVSONCCKFJEcG+RATHMXloHCWV59iTWcruzFI+35jN5xuzibD4ktbVQr+kECIsvnJ2UghxU9zdDNw9IoF+SSEsXHGE/1tyiLQkCw+M6YrJz3GXqtU12Ph4VSbbDhfRPc7M45O6yXyfTiInJ4eZM2dSVVVFQEAA8+fPJzY29or7lJeX88ILL1BYWEhjYyMDBw5k1qxZuLnJR3shOoKEi82KEwVnfrRxsfdYGZmnqvjp2K74qLASUA1S3YQQmhcS6MPtg2K4fVAMFdUX2HOslD2ZpSzbkstXW3IJDfSmb1JTEyM2zF+aGEKIVosJ82fWQ/1YvTOPpZtzOXpyB/eP6sKQ1LB2rylFFef4vyUHOV1aS/qwOCYNie3Qk+LFlebMmcO0adNIT09n6dKlzJ49m48//viK+7zzzjskJCTw7rvv0tDQwLRp01izZg0TJkxQKbUQoj2ZjV4EGT05UXCGsf2jrjjW0GjnXxuOExHsyy29w1VK6HzSuBBCdChmoxdj+kUxpl8UZ2rr2XeslD2ZJazZeYqV2/MIMnrSt2sIaUkWEiNN6DtZE6MlZ/IAVqxYwdtvv42iKOh0OhYuXEhwcPANjwnRkbkZ9NwxOJa+XS18uPIo7399hO0ZxTw0LonggPaZsbP7aAkfrDiCm0HP/7uvF6nx6g4FFc5VXl5ORkYGCxcuBGDixIm89NJLVFRUYDabm++n0+mora3FbrdTX19PQ0MDoaGhasUWQjhAQoSJY6eqUBTliu+v25NPadUFfj21Fwb9j8+/6IikcSGE6LBMvh7c2ieCW/tEcPZ8A98dL2NPZgkb9uXzze5TmHw96Nu1abBnUnRApyj+LTmTd/DgQd566y0++ugjLBYLNTU1eHh43PCYEJ2FNciX56f3ZcPeAj7bmMXv3t/J3SPiGZkWedPN0EabncUbsvhm9yniw408OSUVs9GrnZMLV1dYWEhoaCgGgwEAg8FASEgIhYWFVzQunnzySX75y18ybNgwzp8/z/Tp00lLS1MrthDCARIjTOw8UkJFdR0hF0crVZ+rZ9nWHHomBKm+25WzSeNCCNEp+Hm7M6ynlWE9rZyva+RAVjl7MkvYcqiQDfsK8PN2p3eXYNK6WugWa8bdreM1MVp6Ju/DDz/kkUcewWJp2jvc39+/RceE6Ez0Oh2j0iLplRjEx6sy+cfa4+w8WsLDtydjDfJt1XNVVF/gnaWHOVFwhlFpkUwdmXjNKfJCAKxatYqkpCQ++ugjamtrmTFjBqtWrWL8+PEtfo6gIL9Wv67For2aL5kdT2t5QRuZ+6eG84+1xympqSOZpsyLP9tPfYOdX9zdSxPvoT0zSuNCCNHpeHu6MbBbKAO7hVLXYONQdsXFbVZL2HygEG9PA70SgklLspAaH4Snu0HtyO2ipWfysrKyiIyMZPr06Zw7d44xY8bwxBNPoNPprntMiM4o2OTN/7uvF1sPFfHJuuPM+WAnk4fGMX5gdIuaD4dzK3j3q8PUN9r5RXp3BqTIcv/OzGq1UlxcjM1mw2AwYLPZKCkpwWq1XnG/RYsW8corr6DX6/H392fkyJHs2LGjVY2L8vKz2O3Kje94kcXiT2lpTYvv7woks+NpLS9oJ7Ovuw4Pdz17jxRzS59I9mUUsmp7LqP6RuKlx+XfQ2t/znq97roNVWlcCCE6NU93A2lJTZeLNDTaOXKygt2ZpXx3vIztGcV4uOvpER9EWpKFXgnBeHt2/LJps9nIzMxk4cKF1NfX89hjjxEeHs6UKVOue6ylbuYsH2jj7MjltJYXJHNbTBlpZET/aP6y5CBfbMrmuxPl/HJqbxIjA666r8Xij92usHjdMf6++iiRIf688FB/okJd4738kKv8jFtDi5kBgoKCSElJYfny5aSnp7N8+XJSUlKuaC4DREZGsmnTJnr27El9fT3btm1jzJgxKqUWQjiCm0FPvNXIiYIzKIrCp+uO4+PpxuRhcWpHU0XH/wQuhBAt5O6mp2dCMD0TgrHZ7RzLq2L3sVL2XtylxM2go1usmbQkC326WPDz1tb2Uy09kxceHs748ePx8PDAw8ODUaNGceDAAaZMmXLdYy3V2rN8oJ2zI5doLS9I5vby6O3J9I4PYtGaTH7z+ibGD4xm8tBYPC6u3LJY/MnJq+C9ZRkczC5nULdQHhyf5LJnz1zxZ3wjN5P5Rmf6nGnu3LnMnDmTBQsWYDQamT9/PgAzZszg6aefpkePHrz44ovMmTOHSZMmYbPZGDhwIPfdd5/KyYUQ7S0hwsTK7Xls3n+aw7mV/GRUF819/mwv0rgQQogfYdDrSYk1kxJrZvqYrmQVnGFPZtMOJQeyyvlIl0lyTABpSSH07RKMyc9T7cg31NIzeRMnTmTjxo2kp6fT2NjI9u3bGTdu3A2PCSGapCVZSI4J4NP1J1ix/SR7jpXy8O3JdI0K4FheJa8s3MmZ2np+OrYrt/aJkEutxBUSEhJYvHjxVd9/7733mr+Ojo5unlckhOi4EiNM2BWFN/+1jzCzD7f1jVA7kmqkcSGEEDeg1+noEhlAl8gApo5MJLeoprmJ8bfVmSxanUmXSBNpySHcNzZZ7bjX1ZIzeXfccQeHDh1iwoQJ6PV6hg0bxj333ANw3WNCiO/5ernzyIQUBnYL5aOVR/nj3/fSp0swB7MrMPm688IDacRZjWrHFEII4cISIkwAnK+zMWNS5x7crFN+uDFsByeDiFyT1jJrLS9IZkdQFIWCstrmJkZ+aS2/e2QgcSEt31HAlZYnO4tcKuKaJLPj1NXb+GJTNmt3n6JvcggPjUvSzFJfrfyML6f1S0WcRT4TuyatZdZaXtBe5nkf7iI4wJsn07traoWeDOcUQggXodPpiLT4EWnxI31YHLUXGoiJDKSs7Kza0YQQLsTTw8BPRnfhjiExxEebpUYIIYRoseen9SEs1EhV5Tm1o6iq8641EUKIdubr5a6pTrgQwrmMPh5SI4QQQrSKl4cb7m4GtWOoThoXQgghhBBCCCGEcFnSuBBCCCGEEEIIIYTLksaFEEIIIYQQQgghXJY0LoQQQgghhBBCCOGy2ty42LBhA1OmTCE9PZ3JkyezZs0aAHJycpg6dSrjxo1j6tSp5ObmNj/GEceEEEIIIYQQQgjR8bSpcaEoCs899xyvvfYaS5cu5bXXXuP555/HbrczZ84cpk2bxurVq5k2bRqzZ89ufpwjjgkhhBBCCCGEEKLjcWvrE+j1empqagCoqakhJCSEyspKMjIyWLhwIQATJ07kpZdeoqKiAkVR2v2Y2WxuRd7Wb0N2M49Rm2R2PK3lBcnsLK3JrMX311Y3+5619rPSWl6QzM6itcxaywutz6zF99hW8pnYdWkts9bygmR2lvb8TNymxoVOp+P111/nySefxMfHh9raWt59910KCwsJDQ3FYGjab9ZgMBASEkJhYSGKorT7sdY0LgIDfVv9PoOC/Fr9GLVJZsfTWl6QzM6ixczOdDN1GLT3c9VaXpDMzqK1zFrLC9rM7Gzymdh1aS2z1vKCZHaW9szcpktFGhsb+ctf/sKCBQvYsGEDb7/9Nr/61a84d+5ce+UTQgghhBBCCCFEJ9amFRdHjhyhpKSEtLQ0ANLS0vD29sbT05Pi4mJsNhsGgwGbzUZJSQlWqxVFUdr9mBBCCCGEEEIIITqmNq24CAsLo6ioiOzsbACysrIoLy8nJiaGlJQUli9fDsDy5ctJSUnBbDYTFBTU7seEEEIIIYQQQgjRMekURVHa8gRfffUV7733Hjpd0zCNp59+mtGjR5OVlcXMmTOprq7GaDQyf/584uPjARxyTAghhBBCCCGEEB1PmxsXQgghhBBCCCGEEI7SpktFhBBCCCGEEEIIIRxJGhdCCCGEEEIIIYRwWdK4EEIIIYQQQgghhMuSxoUQQgghhBBCCCFclpvaAVzVk08+SX5+Pnq9Hh8fH373u9+RkpKidqwWeeutt3jzzTdZtmwZXbt2VTvOdY0cORIPDw88PT0BePbZZxk+fLjKqa6vrq6OV155hW3btuHp6Unv3r156aWX1I51Tfn5+Tz11FPNt2tqajh79iw7d+5UMdX1bdiwgTfeeANFUVAUhf/4j/9g7Nixase6rm+//ZY33niDxsZGTCYTr776KlFRUWrH0jyt1mIt1WHQXi2WOuwcWqvFUocdQ6t1GLRVi7VWh0FbtVjqsPM4rBYr4kdVV1c3f/3NN98oU6ZMUTFNyx06dEh59NFHldtuu03JzMxUO84NaSXn5V566SXlD3/4g2K32xVFUZTS0lKVE7XOyy+/rMybN0/tGNdkt9uVfv36Nf+5OHLkiNK7d2/FZrOpnOzaqqqqlAEDBijZ2dmKoijKl19+qTzyyCMqp+oYtFiLtVaHFUV7tVjqsONprRZLHXYcLdZhRdFeLdZKzstpuRZLHXYMR9ZiuVTkGvz9/Zu/Pnv2LDqdTsU0LVNfX8/vf/975s6dq3aUDqu2tpYvv/ySZ555pvnPRHBwsMqpWq6+vp5ly5Zx9913qx3luvR6PTU1NUBTRzwkJAS93nXL1cmTJwkODiYuLg6AESNGsHnzZioqKlROpn1aq8VShx1P6rDzaKkWSx12HK3VYZBa7AxarsVShx3HkbVYLhW5jt/+9rds2bIFRVH461//qnacG3rjjTeYPHkykZGRakdplWeffRZFUUhLS+PXv/41RqNR7UjXdOrUKQICAnjrrbfYsWMHvr6+PPPMM/Tr10/taC2yfv16QkND6d69u9pRrkmn0/H666/z5JNP4uPjQ21tLe+++67asa4rLi6OsrIyDhw4QM+ePVm2bBkAhYWFmM1mldNpn5ZqsVbrMGinFksddg6t1WKpw46lpToM2q3FWqnDoO1aLHXYcRxai9tl3UYHt2TJEuWxxx5TO8Z17d27V3nwwQebl2ppZbnZ6dOnFUVRlLq6OmX27NnKb37zG5UTXd+hQ4eUrl27Kl999ZWiKIry3XffKYMGDVJqampUTtYyjz32mPLRRx+pHeO6GhoalIceekjZvXu3oiiKsnv3bmXEiBHK2bNnVU52fVu2bFHuv/9+5c4771T+/Oc/K/369VOOHDmidqwOxdVrsVbrsKJoqxZLHXYOLdZiqcOO5+p1WFG0W4u1VIcVRdu1WOqwYzmqFrvuOhMXMmXKFHbs2EFlZaXaUa5p165dZGVlMWrUKEaOHElRURGPPvoomzdvVjvadVmtVgA8PDyYNm0ae/fuVTnR9VmtVtzc3Jg4cSIAvXr1IjAwkJycHJWT3VhxcTG7du1i0qRJake5riNHjlBSUkJaWhoAaWlpeHt7k5WVpXKy6xsyZAj//Oc/+eKLL3jggQe4cOEC0dHRasfqUFy9Fmu1DoO2arHUYefQYi2WOux4rl6HQbu1WEt1GLRbi6UOO56jarE0Ln5EbW0thYWFzbfXr1+PyWQiICBAxVTX9/jjj7N582bWr1/P+vXrCQsL4/3332fYsGFqR7umc+fONV+zpSgKK1ascPkp1WazmYEDB7JlyxYAcnJyKC8vJyYmRuVkN7ZkyRJGjBhBYGCg2lGuKywsjKKiIrKzswHIysqivLzc5T98lpaWAmC32/nTn/7E/fffj4+Pj8qptE1rtViLdRi0V4ulDjuHFmux1OH2p7U6DNqsxVqrw6DdWix12PEcVYtlxsWPOH/+PM888wznz59Hr9djMpl45513NDGMSEvKy8v55S9/ic1mw263k5CQwJw5c9SOdUPz5s3jxRdfZP78+bi5ufHaa6+59DWIlyxZsoTf/va3ase4IYvFwty5c68Y9vTKK6+49IckgNdff529e/fS0NDA0KFDefbZZ9WOpHlSi51Di7VY6rDjabEWSx1uf1KHnUOLdRi0WYulDjueo2qxTlEUpV2eSQghhBBCCCGEEKKdyaUiQgghhBBCCCGEcFnSuBBCCCGEEEIIIYTLksaFEEIIIYQQQgghXJY0LoQQQgghhBBCCOGypHEhhBBCCCGEEEIIlyWNCyGEEEIIIYQQQrgsaVwIIYQQQgghhBDCZUnjQgghhBBCCCGEEC7r/wOS4vDjoe2ysgAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"code","source":[""],"metadata":{"id":"wdqzp0nfEsh5"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["def draw_clustering(items, labels, palette=plt.cm.gist_rainbow, ax=None, comments=True):\n"," unique_labels = set(labels)\n"," colors = [palette(each) for each in np.linspace(0, 1, len(unique_labels))]\n","\n"," n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)\n"," n_noise_ = list(labels).count(-1)\n","\n"," if comments:\n"," print(\"Number of clusters: %d\" % n_clusters_)\n"," print(\"Number of noise points: %d\" % n_noise_)\n","\n"," if ax is None:\n"," fig, ax = plt.subplots(figsize=(10, 7))\n"," for k, col in zip(unique_labels, colors):\n"," if k == -1: # noise\n"," col = [0, 0, 0, 1]\n","\n"," class_member_mask = labels == k\n","\n"," xy = items[class_member_mask]\n"," dots, = ax.plot(xy[:, 0], xy[:, 1], 'o', \n"," markerfacecolor=tuple(col), \n"," markersize=5)\n"," dots.set_label(k)"],"metadata":{"id":"qudN7EFWqbaI"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["vectors2d_tsne = TSNE().fit_transform(df_clust_0)"],"metadata":{"id":"xba3m3R4pRrA"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["vectors2d_pca = PCA(n_components=2).fit_transform(df_clust_0)"],"metadata":{"id":"JYsQ9yUJrPEM"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["fig, ax = plt.subplots(1, 2, figsize=(15, 5))\n","\n","dbscan = DBSCAN(eps=0.08, metric='cosine').fit(df_clust_0)\n","draw_clustering(items=vectors2d_tsne, labels=dbscan.labels_, ax=ax[0])\n","draw_clustering(items=vectors2d_pca, labels=dbscan.labels_, ax=ax[1])\n","\n","plt.tight_layout()\n","plt.legend()\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":434},"id":"G2R74XDaqk-V","executionInfo":{"status":"ok","timestamp":1653246304944,"user_tz":-180,"elapsed":3265,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}},"outputId":"11cf788a-c18a-45b3-cb85-ccb0bd5be3b5"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Number of clusters: 1\n","Number of noise points: 91\n","Number of clusters: 1\n","Number of noise points: 91\n"]},{"output_type":"display_data","data":{"text/plain":["<Figure size 1080x360 with 2 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABCwAAAFcCAYAAAADCC/2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde3zU5Z3//fd8Z5JwSAJkEkICOUBCTDiMIUbtSbYqp5+CrN1VqaW93RWrt8VWBSzWu3hg7xaViK7Yu91iZVtt7dquB6IlATxQFbUIOEA4hUASSQjJJEgQCMx85/4DiAQSSMhM5puZ1/Px2Meamcw1n7m+UJL397o+l83v9/sFAAAAAABgIUaoCwAAAAAAADgbgQUAAAAAALAcAgsAAAAAAGA5BBYAAAAAAMByCCwAAAAAAIDlEFgAAAAAAADLIbAAAAAAAACW4wh1Aac1NX0p0/Sf87jTGSuP53AIKrIO5oA5kJiDSP/8EnMgMQdSaObAMGwaNKh/j75nIHX0M0Y44u+ItXA9rIXrYS1cD+ux4s8YlgksTNPf4Q8TkfJDxvkwB8yBxBxE+ueXmAOJOZCYg646388Y4SiSPmtvwPWwFq6HtXA9rMdq14QtIQAAAAAAwHIILAAAAAAAgOVYZksIAAAAAABoy+fzqqmpXl7v8aC+z4EDhkzTDNr4Dke0Bg1Kkt3e+RiCwAIAAAAAAItqaqpXnz791L//ENlstqC9j8NhyOsNTmDh9/v15ZeH1NRUr8TElE6/ji0hAAAAAABYlNd7XP37xwc1rAg2m82m/v3ju7xKJCArLJqamvTAAw+oqqpK0dHRysjI0GOPPaaEhIRADA8AAAAAQMTqzWHFaRfzGQKywsJms2nWrFkqKSnRihUrlJaWpsWLFwdiaAAAAAAAEIECElgMHDhQV155ZevX+fn5qqmpCcTQAAAAAADAQqqqKnXnnf+mGTO+ozvv/DdVV1cF5X0C3nTTNE396U9/0jXXXNOl1zmdsR0+l5QU192yej3mgDmQmINI//wScyAFfg5M7wkd/Psr+nLXehl9+yv+8usVm3O5/KapxvdeVvPGUvlPHFdUygilzFggR5++AX3/i8GfAwAAegfT9Mtd4VFVXbPSk+PkGuGUYfTM9o5gvvfixb/Ud75zkyZPvk4lJW/pySd/of/8z18HZOwzBTywWLhwofr166eZM2d26XUez2GZpv+cx5OS4lRf3xyo8nol5oA5kJiDSP/8EnMgBX4OvMeOqeF3d2l/U7NWbavRhNwUDd7xmfqkXqITjZ9rf0ODVm2rPfn4l0fU+IsZGnzHMjn69AlYDV0Vij8HhmE7740FAABwLtP0a+mLn+jQzmqN275ZxbljtTYnTbNnXhH00CKY793U1KidO7dryZLnJEkTJkzWkiVPqKmpSYMGDQpE+a0CekrI448/rsrKSj399NMyDA4gAQBYl+n1qmn53drfdEjXPbtaT5Zu1fVL16j+8DH5DuzS/gaPrnt2zRmPt+iE16uWkqJQlw4AAHoBd4VHh3ZWq2hZkW5bu1JFy4r0xc7P5a7w9Or3rqurU2LiYNntdkmS3W5XYmKSDhyo6/bYZwtYqvDUU09py5Yteu655xQdHR2oYQEACBi/acpbuUktG15Xy7v/pSNHj6q0rFbeUyv8vKZfq7bVyKaT///sx48c98ls2nfOWN7KTfKbwTm3vLOsVg8AAJGuqq5Z47ZvluPUv8kO01TBdreq64K/UjKU7x1IAdkSsmvXLv3mN79RZmamZsyYIUkaNmyYnnvuuUAMDwBAt/lNU42vL9K+8q0qde/VxFGpirJJV2UP1tNryuQ1/XIYNk3KS5VfNk3MS9WS1V89PjEvVf2i7TIGDW0zlrflqDKdsTL6xit2xuKQbBc5+7NNcmVqaPZoJUyfLxsrHgEACIn05DgV547VzPdL5TBNeQ1DG3JdmpYc/F5UwXzv5ORkNTQckM/nk91ul8/nU0NDvQYPTg5A5W0FJLAYOXKkduzYEYihAAAIOL9p6vinr2nfjs805emV8pp+PbVqi966Z4K8pl9/vetq/X1XnSaNSlVSXB/ZB4/UEMfneuueCVq1rUYT81KVFBsjm2EoZvIc+ard2le+VQMdphpbpOc/2KWJeSlK/u0dGnzn87L38ErD0/VMKSpu/Wwlc6QB1W45MvJ7tBYAAHCSa4RTa3PSdP+suSrY7taGXJcG5AyTa4SzV7/3oEEJys7O0erVJZo8+TqtXl2ikSMvCXj/CikITTcBALAS3/HjOvTn+fIfblDplqo22zxWb6vRv16WqY/31OuWwkz16xOjuEl3KWb4FfKbpgas/19lpb4j+U5Izgz1/T/z5OjTRy2eSnlbjqqxRbpu6Rp5Tb+WrC7T3348QbG/v1v2jHGK+ac7eiy48HkqVere2+azlbj3KufaKgILAABCxDBsmj3zCrkrslRdV6BpPXhKSLDfe968n+k//uNhvfDCMsXFxennP380IOOejcACABC2fMeP68CyH6qu6ZB21B3ShNwUPXXGNo9Jl45Q8thvatrIw7InZytq3A0yHCf/abQZhvp+7WbpazefM67dmaFMZ6ye/2BXm5CgtKxG/9InSsaWvytmx8ca/MNlPRJa2J0ZmuTK1FOrtrR+tsmuTNmd6UF/bwAA0DHDsCk/O1H52Ylh9d4ZGZn67W//O+Djno3AAgAQlvymqUN/nq+6pkO67tk1Mv1+/fp7X9db90zQ6m01mjQ2XUOzR6vPNXd1uc+DPc0lo2+8JualtOlz8a3sZP0/r23UPdfkydnf1MC1y9R3wt1B+oRt6xmaPVolc6QS915NdmUqNXu07GmuoL83AABAsBBYAADCkq/arROHGrRq21engNz10jo9c8sV+vdvjlT/wn9W9GX/fFFNKW2GodgZi5X82zv0t3smqHRbjb6Vnaz9XxzV2ztqlZ+WoMsyEpRavyfQH6vDehKmz9eAardyrq2S3Zkue5qLhpsAAKBXI7AAAISlEwcq5Dd9mpj71SoIw2bTJckDZItNvOiw4jRHnz4afOfziv/bkxrYL1oPvrpBb++olWGz6aqRyXL2j5Y9aXgAP9H52QxDjox8elYAAICwQWABAAhLZs021R46qj5R9janfSTH91P8LYsCsvrAHh2tftMeVP9Xf6mfTjmugvQEXX3JEDlj+ygmKkrR42cF4JMAAABEJgILAEDY8ZumThzYo1XbarVk9Vb96Nt5uiwjQU1HWpSVmRnQRpg2w5DzxgcVv2eDsje8KvNYs2zJI2UMGKKW0iWyJ49s08wTAAAAncNPTwCAsOOrduvQkWOacGo7yDNvb5PDsOmteybIkZwV8PezGYaiswoVnVUo0+vVgefv1v6Gd1tXdQzZsFKDb/8VoQUAAEAX8JMTACCs+E1TJ3Z/pN11Xygzsf9Z20H6Bn2bxvGNr2t/g0dTl67WN7OT1XLCp5sL7Rqw4TX1veJfg/reAACgZ5mmX+4Kj6rqmpWeHCfXCKcMwxbqssIGgQUAIGz4TVONry/Svp2b9WlVg/pEGYp2GHINHaSE2L5KuP7HAd0O0h5f5Sat3lajZ2d8TUPi++jv5Qd06NgJNW9cqT6F3+HkDgAAwoRp+rX0xU90aGe1xm3frOLcsVqbk6bZM6+wRGjhN035qt3yeSpld2YE7QSxpUuf1nvvva3a2hr9/vcva8SI7ICNTWABAAgbvmq39pVv1ZQlb8lr+uUwyrTiR9cqa0iC+qePUnRmYfCLiOmnaa40NX7Zon/5zbvymn49vaZMK38ySQnVbk7xAAAgTLgrPDq0s1pFy4rkME3NfL9U98+aK3dFlvKzE0NaW+tNnPKtKnXv1SRXpoZmj1bC9PkBDy2uuurbuummGfrRj+4I6LiSxG0eAEDY8HkqVereK6/plyR5Tb/e2blfQy+9Kij/QLcnasxEJfSP0Qe7D7Spo7Rsn3yeqqC/PwAA6BlVdc0at32zHKYpSXKYpgq2u1Vd1xziys64iVNUrCdKNmtKUbFqyrfKV+0O+Htdemm+kpOHBHxcicACABBG7M4MTXJlynFqGabDsGmya7iisq7ssa0YURkFsicM08S81HPqsDvTe6QGAADQfabp16byBr3xwR5tKm+QeepGxGnpyXHamDtW3lM/Y3gNQxtyXUpLjgtFuW20dxOnxL231908YUsIACB8JOdqSMIArfzxRJWW7dOkMelKyRole5qrx0qwGYYG3rRQ5isLtPI+h0q3VGuya7hSs0f3aB0AAODidaY/hWuEU2tz0nT/rLkq2O7WhlyXBuQMk2uEM8TVf3UT56lVW05tk7Vpsiuz1908IbAAAIQF3/Hjql92h1pOeBVlt2lceoL62P3y1u+V3zS7vMLixJEjaileKH9zg2xxiYqZ+nNF9evXqdcaDoect/yHBla7dYmnSnZnetAaXQEAgMDrTH8Kw7Bp9swr5K7IUtX+cRpjnnzMXeEJ+Wkh9jSXhmaPVskcqcS9V5NdmQG7efLmm2/olVdeliTdeuv3NWnS/+n2mB0hsAAAhIXja5ep+WiLPIe/anbpMGz62z0TNGjjG4q5/DudHuuIp0GH/vgT1R06plXbajQhL0WDl92hpFm/7VRoYXq9OrHxDfnqdsmePFLG0DGEFRfQ0tKiX/ziF1q3bp1iYmKUn5+vhQsXas+ePZo/f74OHjyogQMH6vHHH1dmZmaoywUAhLmO+1MUtGmoaRi2kystPtxtqdNCbIahhOnzNaDarZxrA3vz5Prrb9D1198QgCovjMACABAWfPUV+rzpiNZXetrs11y1rUYjLy3v9DgnjhxR85/u1f5DR3Xds2vkNf16anWZ3rpnguKLFyrq5l+e9/Wm16sDz9+t/Q0erdpWo0l5qUr+9E0l/fv/F/QjVXuzJ598UjExMSopKZHNZlNDQ4Mk6eGHH9att96q6dOn6/XXX9eCBQv0+9//PsTVAgDCXXpynIpzx2rm+6VymGZrf4pp7fSnsOppITbDkCMjP+gnlD399JN677131Njo0b33/kjx8QP04ov/E5CxCSwAAGHBnjRCwwZVqW+UXU+vKWtdYTExL1X25M6fB95SvFDHTnhVWlbbJvhYva1GWUMSLvj64xtf1/4Gj657drW8pl9LToUdUS//VAkzi1hp0Y4vv/xSr732mt577z3ZbCfvRCUmJsrj8aisrEwvvPCCJGnq1KlauHChGhsblZBw4WsBAMDF6kp/is6uxghX9947T/feOy8oYxNYAADCQvT4WYrbvk4xDrtW/OgavbNjvybmpSo50amocZ1ftuhvbtBHexp0VfbgNsHHpFGpssVd+IcOX+UmrdpWc9aRpjWa0S9a8VWbFJVZcNGfMVxVV1dr4MCBWrp0qT7++GP1799fP/nJT9SnTx8lJyfLbrdLkux2uwYPHqza2loCCwBAUJ3Zn6K6rkDTkuM67EvRldUY6BoCCwBAWLBHR2vwD5/XsXd/q4SaLcoZNkRKGKYY1+QurWqwxSXqkmSP9nq+1F/vulp/31WnSaNSNTiuj2Km/vyCr/dH9dGkvFQtWX3mKo8UfbynXlMr/kFg0Q6fz6fq6mqNGjVKP/3pT/XZZ5/prrvu0jPPPBOQ8Z3O2ICM01skJfEDspVwPayF62EtveF6TEyOv+D3XOOM1Ufrh2vOHXNVsG2zNuSNVdLoTF1zZabsAehhceCAIYejZ1ZoBvt9DMPo0nUnsAAAhA17dLT6Tfi/1fj6Iu0r36rSt9/SpJ1lGpo9WgnT53cquIiZ+nMNXnaHJJt21H2hmwsz1TfKrrjvPt2phpu2fgM1oF90a9hx1chkDegbLdcwVgR0JCUlRQ6HQ1OnTpUkXXrppRo0aJD69Omjuro6+Xw+2e12+Xw+HThwQCkpKV0a3+M5LPPUipdwl5QUp/r65lCXgVO4HtbC9bCWcLseP7y5QO6KDFXXFWjqqdUYjZ7DARnbNE2dOOFr3TYZLA6HIa/XDNr4fr9fpmm2ue6GYTvvjQU20gIAwoqv2q195Vu1aMV6HWk5oUUr1qumfKt81e5OvT6qXz8lzfqtskfm6LpLhytxaKYS/v2/1M/ZuT2otpZm/eXTvXp6TZmOnvDq6TVlenVjpRL6x8gx4vLufLSwlZCQoCuvvFIffPCBJGnPnj3yeDzKzMxUXl6eiouLJUnFxcXKy8tjOwgAwHIMw6b87ERd//VMSVLxur3aVN4QkMDcMOzy+bzdHifUfD6vDMPepdewwgIAEFa8DXvlazmqe6/N03u76nTvtXnythyVt6Gy012yo/r1u+BpIB2xJ+doQl6qnlpdpnd27JfDsOlnU8bKEZ8oR3pwu3T3Zo8++qh+9rOf6fHHH5fD4dATTzyh+Ph4PfLII5o/f75+9atfKT4+Xo8//nioSwUAoF2m6dfSFz8J+PGmffvGqrn5oAYOdMpm651rDvx+U83NTerbt2vbNAksAABhxe/zqn+MQ5/sbdCQ+L565u1temDSGMnsmTsTUeNu0JANK/XWPRO0alvNycafCQMVf8vjnBByHmlpafrDH/5wzuNZWVl65ZVXQlARAABdE6zjTWNjB6ipqV51dZ9LCt4WR8MwZJrB2hJiU3R0H8XGDujSqwgsAABhw2+aat78to60eLX/i6P6ds4QfTNrsA4ePS7fF3U9UoPNMBSVmK6ElqOaOnaY+vfto6jBw2U4+CcXAIBwFqzjTW02mxISBgeqzA5Zsa8It3oAAGHDV+1W7YF6Xbd0jZ4o3aobfvW26pqPKTbGoZZKt/xBu2vwFW/VJjVWbdfvP9ihR4o/0zd++YZqKrZ1uocGAADondKT47Qxd6y8p1ZUnj7eNI3jTS8at3sAAGHD56nUqrJ98p5qcOU1/Xp/V50KMhLUJzpa8dXuTvexuBh+09TBtX/QF4e/VLTDrnuvydOMwuEqde9VzrVVQX1vAAAQWq4RTq3NSdP9s+aqYLtbG3JdGpAzTK4RzlCX1msRWAAAwobdmaFJY9L11Kqt8pp+OQybJo5KUWL/Pvqw4oCme4IbGnirNqm2pkY3PPe2vKZfT68p01/vulpj05Nkd6YH7X0BAEDoGYZNs2deIXdFlqrrCjTt1PGm3Wm4GekILAAAYcOe5lJq+nC9dc8ElZbV6KqRydrr+VJ+vzQuI0lGwrCgvK/fNHVizwYdfefXKt1S1WaFxwfldbp9Spbsaa6gvDcAALCO08ebdqdnBb5CDwsAQNiwGYZic67UzgPNOnrCq6fXlOmul9ZpzfZaxUcbOrThbwHvY+E3TXle/YUq//cJldd6NM2Vpmj7yTspDsOmSWPSFfut73FCCAAAPcA0/dpU3qA3PtijTeUNMs3un6oRjDHROaywAACEFUdipnKHJeneP3/cui1kfM4QPfDXT7ToX6QvX7pX9pRcRY+fJXt0dLffz1u1SV9WlanhcIv+Xn5AE/JS9P4D1+mvn+7VNbkpSkkdKkc6vSsAAAg20/Rr6Yuf6NDOao3bvlnFuWO1NidNs2decdHbMoIxJjqPwAIAEFbsaS4NzR6tlfd5VbK5St/KTlbNwSNaeEOB6g5+qRc/KtfEvH1K3vahEm//L0X169et9/NWfKL6w0f1L795t7VvRfHsa/WdggzF9YnWgPEzWV0BAEAPcFd4dGhntYqWFclhmpr5fqnunzVX7oqsi96iEYwx0Xn8BAUACCs2w1DC9Pm65JpbdMsV2Xr27W060uJV45ctum7pGj1ZulXXPbtadYeO6uB/3y3T6+3uO+rdHfvb9K14e3utYhyG7HGJrK4AAKCHVNU1a9z2zXKc2v7pME0VbHeruq7ZUmOi8wgsAABhx2YYir7sn9U/LU8PTivU+Jxkrdpe2yZUKC2r0dFjLTqx8Y1Ojek3TXkrN6llw+vyVm5q7YXhGHG5Jo4eJofxVd+KiXmpioqKUfwti1hdAQBAD0lPjtPG3LHynvq312sY2pDrUlpynKXGROexJQQAEJZOr7QYUO3WsU/+ool5LVqyuqy1r8VVI5P10Z56TR1ZLkk6ceSIjq14TGqul6L7Kupr31dM9uWyGYZMr1cH/7JAh+uqtfvAQY1IjFVsXLzib10iR3q+hl4yTivvs6t0S5UmjRqqlNShSvjuEwHpkQEAADrHNcKptTlpun/WXBVsd2tDrksDcobJNcJpqTHReQQWAICwZTMMOTLy1TdllJJ/8+9tjjutO3RUOckDZE/O1okjR1S/7A4d9/nUcLhF7+7Yr4nVtRp6yTgl/PN8Nb6yQJ9X7NCqbTWakJsiz+EWNR2pV/LzP1TSHcvk/Of5Gljt1iWeKtmd6bKnuVhZAQBADzMMm2bPvELuiixV1xVoWnKcXCOc3WqOGYwx0XkEFgCAsGePjlbi7f8lx3/frRmFmfpoT71ykgdoSJJTUeNu0JH//bkOt5yQ53BLa/PMp1aXaeVPDMVtfEM1lbt13bOr5TX9WrK6TH+962o9u2qbfjp5jOJLitR/+kNyZOTLkUG/CgAAQskwbMrPTgxoQ8xgjInOIbAAAESEqH795LxjmU5sfENTR5bLnpytqHE3yHA45G9uUHXTEX1a6Wnb52Lr58oeu0ulW6vbPP73XXW6ZEi8SrfVaMTQ5FB+LAAAgLDFelUAQMQwHA7FXP4d9Zv6gGIu/44Mx8nc3haXqLRB/XRV9uA2zTMnjR4me/JITRo7vM3jV41M1o79hzQxL1XGoKEh+zwAAADhjBUWAICIFzP154pddoeiHXat+NE1emfHfk0clarUkZcqatwNGvr5dq28369S9x5NyEuV6ffrgcljNDi+r2Imzwl1+QAAAGGJwAIAEPGi+vVT0qzf6tiKx+RsrldOxtA2p4ScPm1k5Lcr5Nv7D/m/PCgjYZhiJs+Ro0+fUJcPAAAQlggsAADQydAi6pZF7T53+rQRR0a+dMV3ergyAACAyEQPCwAAAAAAYDkEFgAAAAAAwHIILAAAAAAAgOUQWAAAAAAAAMshsAAAAAAAAJZDYAEAAAAAACyHwAIAAAAAAFgOgQUAAAAAALAcAgsAAAAAAGA5AQss9uzZo1tuuUWTJ0/WLbfcor179wZqaAAAAAAAEGECFlg8/PDDuvXWW1VSUqJbb71VCxYsCNTQAAAAAAAgwgQksPB4PCorK9PUqVMlSVOnTlVZWZkaGxsDMTwAAAAAAIgwjkAMUltbq+TkZNntdkmS3W7X4MGDVVtbq4SEhE6N4XTGdvhcUlJcIMrs1ZgD5kBiDiL980vMgcQcSMwBAACIDAEJLALB4zks0/Sf83hSUpzq65tDUJF1MAfMgcQcRPrnl5gDiTmQQjMHhmE7740FAACAYAjIlpCUlBTV1dXJ5/NJknw+nw4cOKCUlJRADA8AAAAAACJMQAILp9OpvLw8FRcXS5KKi4uVl5fX6e0gAAAAAAAAZwrYlpBHHnlE8+fP169+9SvFx8fr8ccfD9TQAAAAAAAgwgQssMjKytIrr7wSqOEAAEAEWrp0qZ599lmtWLFCOTk52rRpkxYsWKCWlhYNHTpUTz75pJxOZ6jLBAAAPSAgW0IAAAC6a+vWrdq0aZOGDh0qSTJNU/PmzdOCBQtUUlKiwsJCLV68OMRVAgCAnkJgAQAAQu748eN67LHH9Mgjj7Q+tmXLFsXExKiwsFCSNGPGDK1cuTJEFQIAgJ5GYAEAAELumWee0Q033KBhw4a1PlZbW6vU1NTWrxMSEmSapg4ePBiKEgEAQA8LWA8LAACAi7Fx40Zt2bJFc+fODcr4TmdsUMa1qqSkuFCXgDNwPayF62EtXA/rsdo1IbAAAAAh9Y9//EO7d+/WtddeK0nav3+/br/9dn3/+99XTU1N6/c1NjbKMAwNHDiwS+N7PIdlmv6A1mxVSUlxqq9vDnUZOIXrYS1cD2vhelhPKK6JYdjOe2OBLSEAACCkfvjDH+r999/X22+/rbfffltDhgzR888/r1mzZunYsWNav369JOnll1/WlClTQlwtAADoKaywAAAAlmQYhp544gk9/PDDbY41BQAAkYHAAgAAWMrbb7/d+t8FBQVasWJFCKsBAAChwpYQAAAAAABgOQQWAAAAAADAcggsAAAAAACA5RBYAAAAAAAAyyGwAAAAAAAAlkNgAQAAAAAALIfAAgAAAAAAWA6BBQAAAAAAsBwCCwAAAAAAYDkEFgAAAAAAwHIILAAAAAAAgOUQWAAAAAAAAMshsAAAAAAAAJZDYAEAAAAAACyHwAIAAAAAAFgOgQUAAAAAALAcAgsAAAAAAGA5BBYAAAAAAMByHKEuAAAAAEDo+U1Tvmq3fJ5K2Z0Zsqe5ZDO4vwkgdAgsAAAAgAjnN001vr5I+8q3qtS9V5NcmRqaPVoJ0+cTWgAIGQILAAAAIML5qt3aV75VU4qK5TX9emrVFpXMkQZUu+XIyA91eQAiFHEpAAAAEOF8nkqVuvfKa/olSV7TrxL3Xvk8VSGuDEAkI7AAAAAAIpzdmaFJrkw5DJskyWHYNNmVKbszPcSVAYhkbAkBAAAAIpw9zaWh2aNVMkcqce/VZFemUrNHy57mCnVpACIYgQUAAAAQ4WyGoYTp8zWg2q2ca6tkd6ZzSgiAkCOwAAAAACCbYciRkU+TTQCWQWQKAAAAAAAsh8ACAAAAAABYDoEFAAAAAACwHAILAAAAAABgOQQWAAAAAADAcggsAAAAAACA5RBYAAAAAAAAyyGwAAAAAAAAlkNgAQAAAAAALMcR6gIAAEBka2pq0gMPPKCqqipFR0crIyNDjz32mBISErRp0yYtWLBALS0tGjp0qJ588kk5nc5QlwwAAHoAKywAAEBI2Ww2zZo1SyUlJVqxYoXS0tK0ePFimaapefPmacGCBSopKVFhYaEWL14c6nIBAEAPIbAAAAAhNXDgQF155ZWtX+fn56umpkZbtmxRTEyMCgsLJUkzZszQypUrQ1UmgAjgN015KzepZcPr8lZukt80Q10SENHYEgIAACzDNE396U9/0jXXXKPa2lqlpqa2PpeQkCDTNHXw4EENHDgwhFUCCEd+01Tj64u0r3yrSt17NcmVqaHZo5Uwfb5sBvd5gVAgsAAAAJaxcOFC9evXTzNnztSqVasCMqbTGShMrmsAACAASURBVBuQcXqLpKS4UJeAM3A9eobf9OnI7o06vn+PoocMV7+scbIZ9nO+73zX48td67Vld5mmFBXLa/r11KotKp1rU9qhXeo/sjCY5Ucs/n5Yj9WuCYEFAACwhMcff1yVlZX69a9/LcMwlJKSopqamtbnGxsbZRhGl1dXeDyHZZr+QJdrSUlJcaqvbw51GTiF69EzOrsy4kLXo6Viu0o+2yPvqf+98Jp+rfxsj0ZW7NCRgZcE/XNEGv5+WE8orolh2M57Y4G1TQAAIOSeeuopbdmyRc8995yio6MlSWPGjNGxY8e0fv16SdLLL7+sKVOmhLJMABbkq3ZrX/lWTSkq1hMlmzWlqFg15Vvlq3Z3aRy7M0OTXJlyGDZJksOwabIrU3ZnejDKBtAJrLAAAAAhtWvXLv3mN79RZmamZsyYIUkaNmyYnnvuOT3xxBN6+OGH2xxrCgBn8nkqVere22ZlRIl7r3KurZIjI7/T49jTXBqaPVolc6QS915NdmUqNXu07GmuYJUO4AK6HVg8+uijWrdunaKjo9WvXz899NBDGjt2bCBqAwAAEWDkyJHasWNHu88VFBRoxYoVPVwRgN7k9MqIp1Ztkdf0X/TKCJthKGH6fA2odivn2irZnemyp7louAmEULcDi/Hjx+tnP/uZoqKi9M477+i+++7T6tWrA1EbAAAAAJxXIFdG2AxDjoz8Lq3MABA83Q4srr766tb/zs/P1/79+2WapgySSAAAAABBxsoIIHwFtIfFSy+9pG9/+9uEFQAAAAB6DCsjgPB0wcDixhtvbHOk2Jk+/PBD2e0nzzd+8803tWLFCr300ksXVcj5jjKx2lmwocAcMAcScxDpn19iDiTmQGIOAABAZLhgYPHqq69ecJBVq1ZpyZIlWr58uRITEy+qkI7OSOd8XuZAYg4k5iDSP7/EHEjMgWTNM9IBAACCodtbQt555x398pe/1AsvvKBhw4YFoiYAAAAAABDhuh1YPPjgg4qKitKPf/zj1seWL1+uQYMGdXdoAAAAAAAQobodWHz00UeBqAMAAAAAAKAVx3kAAAAAAADLIbAAAAAAAACWQ2ABAAAAAAAsh8ACAAAAAABYDoEFAAAAAACwHAILAAAAAABgOQQWAAAAAADAchyhLgAAAAAAgN7GNP1yV3hUVdes9OQ4jclM0Ja9ja1fu0Y4ZRi2UJfZqxFYAAAAAADQBabp19IXP9GhndUat32zVuSO1UvxAzTg0Bcat32zinPHam1OmmbPvILQohsILAAAAAAA6AJ3hUeHdlaraFmRHKapS/ZV6vdXTVHR75+RwzQ18/1S3T9rrtwVWcrPTgx1ub0WPSwAAAAAAOiCqrpmjdu+WQ7TlCRVJqboyvKy1q8dpqmC7W5V1zWHssxej8ACAAAAAIAuSE+O08bcsfIaJ3+lzmio1cfZo1q/9hqGNuS6lJYcF8oyez22hAAAAAAA0AWuEU6tzUnT/bPmqmC7W5/munQ0Pr716w25Lg3IGSbXCGeoS+3VCCwAAAAAAOgCw7Bp9swr5K7IUnVdgW4445SQ6roCTevBU0LOPq0knE4nIbAAAAAAAKCLDMOm/OzENk01z/462M4+rSTcTichsAAAAAAA4Ay9ZdXC2aeVhNvpJAQWAAAAAACc0ptWLZx9WslXp5MUhEVgwSkhAAAAAACccuaqhdvWrlTRsiJ9sfNzuSs8oS7tHGefVhJup5OwwgIAAAAAEPY6u82jN61aOPu0knA7nYTAAgAAAAAQ1rqyzSM9OU7FuWM18/1SOUyzddXCNAuuWjj7tJKePJ2kJxBYAAAAAADCWleaU/a2VQvtnVYSLggsAAAAAABhrSvbPMJ91UJvQtNNAAAAAEBY62pzytOrFqZ9c7jysxMJK0KEFRYAAAAAgLDW27Z59JQzG5GOzRmsDGc/S4UzBBYAAAAAgLAWrts8OnvySUevPbMR6R/zXIobOazdRqShQmABAAAAAAh74dacsisnn7Tn7Eak3vM0Ig0VAgsAAIBOal6+UDq++6sHorMUd9vPQ1cQACBideXkk/Z0pRFpqNB0EwAAWNqePXt0yy23aPLkybrlllu0d+/ekNTRvHyhmg9t1+76Q/r12h3aXX9IzYe2nwwxAADoYR0HDs2den1XG5GGAoEFAACwtIcffli33nqrSkpKdOutt2rBggWhKeT4bh1oPqrrnl2jJ0u36rpn1+hA87G2Ky4AAOgh3Q0cXCOcij/ViHT5+Cmac8dcyzUiZUsIAACwLI/Ho7KyMr3wwguSpKlTp2rhwoVqbGxUQkJCj9ezalutvKZfkuQ1/Vq1rUZZSZf0eB0AAHT35JOzG5F+j1NCAAAAOq+2tlbJycmy2+2SJLvdrsGDB6u2tjYkgcXEvBQtWV0mr+mXw7BpYl5qj9cAALC27pzc0RXnO/mkszWc2Yg0KSlO9fWd207SUwgsAABAWHM6YwMyTvOgPA0+5tZb90zQqm01mpiXqsFxfaRBeUpKss5+XyvVAq6H1XA9rCVQ18Nn+vXp9jpV7PtCI4YO0GW5ybKHaJWAz/TrF8+9J8/WvRq3bbPezBurj0Zn6mc/+qeg1TQxOT5gNVjt7wiBBQAAsKyUlBTV1dXJ5/PJbrfL5/PpwIEDSklJ6fQYHs9hmae2cXRH3E0/lZYvVFyf3V9tA4nOUtxNP7XMHSkr3h2LZFwPa+F6WEugrsfZR3u+lDtWK7pwtGegbSpvUMOWPa0nd3zv/RLdP2uu3v44o8dO3rjYGkLxd8QwbOe9sUBgAQAALMvpdCovL0/FxcWaPn26iouLlZeXF5LtIJI4whQALKa7R3sGmhWOCrVCDYHCKSEAAMDSHnnkEb344ouaPHmyXnzxRT366KOhLgkAYBHdPdoz0KxwVKgVaggUVlgAAABLy8rK0iuvvBLqMgAAFpSeHKfi3LGa+X6pHKbZ+sv5tBD9ct7ZkzuC2Zizu6eHWAmBBQAAAACgV7LaL+dnn9xx/eBY2fxS8bq9rcGEpDZ9N4pzx+qttCEaPTpVGUPiux1enO/0kN6GwAIAAAAA0CtZ8Zfz00eFukY4zwkm1uak6aqvjTin78bsH9yr+k8+1eaUoVp7kU1D21u1EYieFT11TGt7CCwAAAAAAL3W6YDAag0lO2oI+o+Bsef03fha+Vb1PXFc8958+aKahp59WsrpcKS7p6UEa9zOoukmAAAAAAAB1lFDUEnnNMXcmDFSww/UXnTT0DPDkdvWrlTRsiJ9sfNzuSs83foMwRq3swgsAAAAAAAIsI5O6yjMG6z4U303ll81RbN/cK+chw/psr07LvpEj2CdlhLqU1jYEgIAAAAAQIB11BA0PytR+VmJcldkqWp/gaLLalRf5dAfrpp80U1Dhw2O1SujCxR9/ISy6/bp0qpdATktJdSnsBBYAAAAAAAQYO01BB2TmdCmgeXUb2Rq6jcy5a7wXHTTUNP06/11FYpqadFxR5T++6rJ+iL2X5U5PKnbp6WE+hQWAgsAAAAAAILgzIag52tg2Z2moaf7TDy7fMnJ5p4flure2+do/Nezut0YM9SnsBBYAAAAAAAQZB2dGtLVE0HO1l6ficIdm/V5/WUal5N0wdefPrbUs6lGztjocwKJUJ7CQtNNAAAAAEDEMk2/NpU36I0P9mhTeYNM0x+U9wlWA8uOmnt2pnHn6VUfxcvfVct//JeKl7+rpS9+ErQ56CpWWAAAAAAAItL5tmkEettDsBpYdqfPxNmrPr73fklAVn0ECoEFAAAAACAiBWubRnuC1cCyO30mOl71UUBgAQAAAABAqPTkL+zBbGB5sX0mQn1s6YUQWAAAAAAAIlJP/8IeygaW7Tlz1cdl2zfr09yxPXps6YUQWAAAAAAAIlKwtmn0Fmeu+mg8/HVNa+eUkFAKWGDx8ccf67bbbtNDDz2kmTNnBmpYAAAAAACCIpjbNHqL06s+kpLiVF/fvRNLAi0ggcXhw4e1ePFijR8/PhDDAQAAAADQLabpl7vCo6q6ZqWfJ4iw2jYNfCUggcWiRYt0++2369133w3EcAAAAAAAXLSuHFfa2WADPc/o7gDvvfeempubNWXKlEDUAwAAAAC4SKbp16byBr3xwR5tKm+QafpDXVJInHlc6W1rV6poWZG+2Pm53BWeNt93OtgoXv6u7EuWq3j5u1r64icRO29Wc8EVFjfeeKNqamrafW7lypUqKirSCy+80O1CnM7YDp9LSrLGkSqhxBwwBxJzEOmfX2IOJOZAYg4AAO3ryqqCcNfZ40rPDDYcpqmZ75fq/llz5a7Iav0+VmCEzgUDi1dffbXD59avX6/6+nrddNNNkqSmpia98847OnjwoGbPnt2lQjyew+2mWFZs/NHTmAPmQGIOIv3zS8yBxBxIoZkDw7Cd98YCAMAaOvPLd6To7HGlFwo2CIFCq1s9LAoLC7Vu3brWr+fPn68xY8ZwSggAAAAA9LDOriqIBJ09rvRCwQYhUGgF7FhTAAAAAEDodHZVQSTo7HGlFwo2CIFCK6CBxaJFiwI5HAAAAACgkzq7qiAUzu4DcU0PbDXszHGlFwo2CIFCixUWAAAAABAGOruqoKe11wfio/XD9cObC0Jem3T+YMPKIVAkILAAAAAAgDDRmVUFPa29PhBz7pgrd0WGpepsj1VDoEhBYAEAAAAACJp2+0Bs29xr+kBYMQSKFEaoCwAAAAAAhK/05DhtzB0rr3Hy10+vYWhD3lil9bI+EKbp16byBr3xwR5tKm+QafpDXVLYY4UFAAAAACBo2usDkTQ6s1f1gWivD8fanDTNnnkF20OCiMACAAAAABA07fWBuObKTDV6Doe6tE5rrw/H/bPmyl2RxVaRICKwAAAAAAAE1dl9IOy9bFVCu304trt7TR+O3ooeFgAAAAAAnEe7fThyXb2uD0dvwwoLAAAAAECvYZp+uSs8qqprVnoPHTPaXh+OATnDelUfjt6IwAIAAAAA0CuEqvlle304eiIoiXQEFgAAAACAkOrsqonuNr/szuqMs/twIPgILAAAQMg8+uijWrdunaKjo9WvXz899NBDGjt2rCSpoaFBDzzwgPbt26eYmBgtXLhQl156aYgrBgAEWldWTXSn+WVn3icU203QMZpuAgCAkBk/frxWrFihN954Q3feeafuu+++1ueKiopUWFiokpISLViwQPPmzZPf7w9htQCAYDhz1cRta1eqaFmRvtj5udwVnnO+t6Pml16fX298sEebyhtkmu3/W3Gh9zkdaBQvf1f2JctVvPxdLX3xkw7HQ/CxwgIAAITM1Vdf3frf+fn52r9/v0zTlGEYWrlypdasWSNJKiwsVHR0tDZv3iyXyxWqcgEAQXB61YTN79cnw3NVMThVKbWfq2r/oXNWTbTX/PJQfLy2lG5QQTdXZ3R3uwkCjxUWAADAEl566SV9+9vflmEYampqkt/vV0JCQuvzKSkp2r9/fwgrBAAEQ3pynDbkjtX/e8P39cdvTNCxqChVOZO1ZWvNOasbTje/nHbbP8m87zaNmTRO8Ye+0FPdWJ1x+mjSjgON5iDPADrCCgsAABA0N954o2pqatp97sMPP5Tdbpckvfnmm1qxYoVeeumlgNfgdMYGfEwrS0qKC3UJOAPXw1q4HtZy+npc44zV39YOU+1xr579/TMnVzd8uEpz7pirSs8RXTFqyDmvnZgcL0l6edUOXbZ9S5uQ4bLtm9V4+OvnXO9rnLH6aP1wzbljrgq2bdaGvLFKGp2pa67MlN2waWzOYP0xz6WWD1bps/SRKk8eqvfHXKZZ2UkR82fHap+TwAIAAATNq6++esHvWbVqlZYsWaLly5crMfHkkttBgwZJkhobG1tXWdTW1mrIkHN/aL0Qj+dwxOw/TkqKU309dwKtguthLVwPazn7eozKSZbjzb+1CR7GbXNry84CDU/q3+E4zthoFeeO0ffeL5HDNOU1DH2aO1ZjDh3T86+5z2mc+cObC+SuyFB1XYGmnnqu0XNYkpTh7KfY7KG6/c4HNeBwsy6v2KGoY8f0ZslWDU/qH/bNN0Pxd8QwbOe9scCWEAAAEDLvvPOOfvnLX+r555/XsGHD2jw3ZcoUvfzyy5Kk9evX69ixYxozZkwoygQABFnGkDhtzGu7XWP9JWM1LOn8q+RcI5yKP9XTYvn4Kbp/1tzWnhbtNc48fTTptG8OV352YpsQwjBsGv/1LA06fkzPvPisbnt/pZ5dvqTDLSYIPlZYAACAkHnwwQcVFRWlH//4x62PLV++XIMGDdKcOXM0b948vfbaa4qJidETTzwhw+BeCwCEo9PNNO+57T5duXOr/jEiV4eiYrR23W5delawcKbTPS3cFVmqrivQGJ9fW0o36KmLbJxZXX9Yl+3cclHHpiLwCCwAAEDIfPTRRx0+l5SUpOXLl/dcMQCAkDEMm7719RF6Zfd+xXiP6//6+0pdWrVL826fI3eF57xhwelVE/nZiXrjgz0qOM9JIBeSnhyn4tyxmvl+aesWkw25Lk1LtlZvh0jBbQoAAAAAiECm6dem8ga98cEebSpvCHm/n88PHNa3tm7Qdz96W1fs2a4Yn6/Lp3Rc6CSQC2lvi8mAnGFyjXBe1GdC97DCAgAAAAAijGn6tfTFT3RoZ7XGbd+s4tyxWpuTptkzrwhZc8lArG44vbXk/llzVbDdrQ25ri4FDmdvMZl2VtNO9CwCCwAAAACIMO4Kjw7trFbRRfZ6CIbuhg1SYAKHM7eYILQILAAAAAAgwlTVNWtcN3o9dJVp+uWu8KiqrlnpyXG6pp2jLC8mbDh73NPfT+AQHggsAAAAACDC9GRzyfa2n3y0frh+eHPBOWFEV8KGYG1r6SgEQc8jsAAAAACACBOI7Red1d72kzl3zJW7IqNbqyCCsa3Fir09IhmBBQAAAABEmJ5sLtnu9pNtm7u9/SQY21qs2NsjknGsKQAAAABEoNPbL6Z9c7jysxODtoKg3aNG88Z2+qjRLo3bhSNM29NxCNL5o1UROKywAAAAAAAEjWuEU++NHKa77nxQzsZ6eRKSlJ6b2u3tJ8HY1tKTvT1wYQQWAAAAAICgstls6nuiRXk1Vfo0Lr5Tr7lQ88tgbGvpyd4euDACCwAAAABA0JzuC7Hkd0+d7Avxwemmm5kd9oXobPPLQB9h2pO9PXBh9LAAAAAAAARNx003O+4LcWbzy9vWrlTRsiJ9sfNzuSs8Qa+3p3p74MIILAAAAAAAQXMxTTdpfgmJwAIAAAAAEESuEU7Fn+oLsXz8FN0/a64SR2eety9EeyHH+kvGqtZzRJvKG2Sa/p4qHyFEDwsAAAAAQFCcbpyZMSJJZmaSfFMKNG1InK65MlONnsMdvu7s5pcfZ4/W4agYXfb7/+mwnwXCD4EFAAAAACDgzm6cuTF3rOJz0jT1G5myXyBoOLP55SfbcnVifbmW/eaXivH55H2/VPfPmit3RVbAmm3CmtgSAgAAAAAIuO42zjzd/HJIQj99a+sGxfh8kuhnEUkILAAAAAAAAReoxpntNu3MdZ23aSfCA4EFAAAAACDgAhU0tNe0c0DOsPM27UR4oIcFAAAAACDgzm6cuSHXdVFBw5n9LKrrCjQtOU6uEU4abkYAAgsAAAAAQMAFMmg43c+CJpuRhcACAAAAABAUBA3oDnpYAAAAAAAAy2GFBc7Lb5ryVbvl81TK7syQPc0lm0HOBQAAAAAILgILdMhvmmp8fZH2lW9VqXuvJrkyNTR7tBKmzye0AAAAAAAEFYEFOuSrdmtf+VZNKSqW1/TrqVVbVDJHGlDtliMjP9TlAQAAAADCGLfJ0SGfp1Kl7r3ymn5Jktf0q8S9Vz5PVYgrAwAAAACEOwILtPKbpryVm9Sy4XV5KzfJSEjTJFemHKeOHXIYNk12ZcruTA9xpQAAAACAcMeWEEhqv19FatZoDc0apZI5Uol7rya7MpWaPVr2NFeoywUAAAAAhDkCC0jquF9F7k1zNOCy65VzbZXsznROCQEAAAAA9AgCC0jquF9FzrWfK6bgBppsAgAAAAB6FLfKIUmyOzPoVwEAAAAAsIyArLD4wx/+oJdeeklRUVEyDEOvv/56IIZFkPhNU75qt3yeStmdGbKnuWRPc2lo9mj6VQAAAAAALKHbgUVpaalWrlypv/zlL4qNjVVDQ0Mg6kKQtNdcc2j2aCVMn6+E6fM1oNpNvwoAAAAAQMh1O7D43e9+p5/85CeKjY2VJCUmJna7KARPR801B1S75cjIb/0/AAAAAABCqduBxe7du/XZZ5/pmWee0fHjxzVjxgzdfPPNXR7H6Yzt8LmkpLjulBgWAjUHTdv3t9tcc9wNdRpk8XnmzwFzEOmfX2IOJOZACs85+Pjjj3XbbbfpoYce0syZMyVJDQ0NeuCBB7Rv3z7FxMRo4cKFuvTSS0NcKQAA6CkXDCxuvPFG1dTUtPvchx9+KJ/Pp9raWv3xj39UU1OTvvvd72r48OG6/PLLu1SIx3NY5qlfos+UlBSn+vrmLo0VbgI5B96+QzTJlamnVm2R1/S3Ntc81ifZ0vPMnwPmINI/v8QcSMyBFJo5MAzbeW8sdNfhw4e1ePFijR8/vs3jRUVFKiws1O9+9zutX79e8+bNU0lJiWw2W9BqAQAA1nHBwOLVV1897/OpqamaOnWqDMOQ0+nUN77xDbnd7i4HFugZNNcEAFjNokWLdPvtt+vdd99t8/jKlSu1Zs0aSVJhYaGio6O1efNmuVz8mwUAQCTo9paQqVOn6u9//7suv/xyHTlyRJ9++qkmTpwYiNoQBDbDoLkmAMAy3nvvPTU3N2vKlCltAoumpib5/X4lJCS0PpaSkqL9+/cTWAAAECG6HVjcdttt+vnPf67rr79ekjR9+nR985vf7HZhCB6bYdBcEwDQI863tXTlypUqKirSCy+8ENQagrmdxYrCscdJb8b1sBauh7VwPazHatek24FFnz599OSTTwaiFgAAEGbOt7V0/fr1qq+v10033STp5KqKd955RwcPHtTs2bMlSY2Nja2rLGprazVkyJAu19BRn6xwRJ8Xa+F6WAvXw1q4HtZjxT5Z3Q4sAAAALkZhYaHWrVvX+vX8+fM1ZsyY1lNCpkyZopdffll333231q9fr2PHjmnMmDGhKhcAAPQwAgsAAGBJc+bM0bx58/Taa68pJiZGTzzxhAx6LgEAEDEILAAAgCUsWrSozddJSUlavnx5aIoBAAAhx20KAAAAAABgOQQWAAAAAADAcggsAAAAAACA5RBYAAAAAAAAyyGwAAAAAAAAlsMpIZJM0y93hUeV+w/JNCXDsCljSJxcI5wyDFuoywMAAAAAIOJEfGBhmn4tffETfbGzWidaTkg2m67cvU3FeWO1NidNs2deQWgBAAAAAEAPi/jAwl3h0aGd1frummL9+WvXavGffiWHaWrmB6X68b/dr7+uTVDDwWPaU9usESnx+vfr8hQdbQ912QAAAAAAhLWIDyyq6po1bvtmVSamaFzlLjlMU5LkME1dvmOz3uobq8TmL/RPu8v0cdYo3e+u0g9uuUyFIwcHZeXF6e0pVXXNSk8+uS0FAAAAAIBIE/GBRXpynIpzx2rGqRUW3/twlRymKa9h6N28cXIe/kLP/uGZk6suPlyl2T/4if77z5/qo0znRW8XMU2/Pitv0D+2H5BfUtKAPjIMyTSljZ99rqj9B3TZzi0qzj25LeWR+64N/AcHAAAAAMDCIj6wcI1wam1Omv6oafK2HNfsH9yrr5Vv1UfZo/RlTB9dvW1jm1UXXysv0+pRBWooq9Rn5SM0LiepS+9nmn49+4eP9fmuWiUfbFR93ECVRUVJkqJ8XvVvOaZbPyhVZWKKZqwp1h81TZ9ur9PwpP4B/+wAAAAAAFhVxB9rahg2zZ55hW647Z9UOP1K9XNla0X+N3TMEaW4o0f0jxG58honp8lrGPooe5QGHDmsK3du1T92HOjy+23a3aC9FfUa+OVhjaqpVPyxI7L7/XL4vBr1+V61REXrpW9M0rGoKP35a9fK23Jcuz8/GOiPDQAAAACApUX8CgvpZGiRn52o/OxE+VWhyooD6nvihJ5+8T/1xNRbNee7d2tcZbk+yh6lpv6xunvl/+p/vjlBqf6uv9f6bQc04Mvm1uae3/twlX4y88fyy68taSMU23JMT7/07MltKR+u0uwf3CufeRFvBAAAAABALxbxKyzOljEkXobfrysqtinG59PP3nhR3/twtbalpqs2fpAGHj6kv37t2/oiNlaFeYMv6j0ur9jRtrlnxXbVxQ+SZNOVu8vabkHZXSa7wWUCAAAAAEQWfhM+i2uEUwMS+uvjrFHyGobsfr8KKnfqYL9YRfm8GnDsiI7ED1Dm8CTlZyV2efzLcwfr45zRbbaZrMseJdNmaFTNXm3KGNnmuU9yxihr2ICAfkYAAAAAAKyOLSFnMQybHr3zW/pp0Rr96Af36v9v797DqqrzPY6/9+YiKRSCgCAkKpooIpJmY0Om4UiGg8wcn7S0x7x0Zpy0mfKC6ehoNmpOzVTjeXqaanoyLbMSj0qK5szoeC81VLQIRZCbCjigSB73XuePRkbiEgXstdl8Xn9tWL9n8V3rt7/7t/ju3/qtu7Mz2d+jD1c6+jIlOYbCkkrC/v240R/yhJD+EZ3Y3acrv57yNANPHeNAryiudfInwMeLnCvB+FRe4ckJMxh0+hT7I/pyS3gwd/YOorTkcvU+6nr0aUs8YlVERERERETELCpY1MHT042Vs+PZtDeHk/k9ubOLL6OHhOPu3vQJKTcW+cw43YPcojvxyCzALbeQKxeh0qsDFpudriXFbI8ayNft2uFvcWPttpPEx3TB3d2K3W7w53cOUv5lHgNOHat+9OkPfcSqiIiIiIiIiDNSwaIe7u5Wku/t3iL7vrHIJ8DnWwvxrLjC5Q4+BP+rtHoxzutWK088+iRds0+xL3XqcQAAE8hJREFU56tcPvmkI8uejud4TinlX+bxwusv4G63M+Gf6Tw1dRYZp3tU71NERERERESktdMaFibKLa6gc2E+F3xuI6i8jAFns2ouuPlVJt0vFPLnt/+EV0kZr20+wdmiCgacOlajXeypDPKKK8w8FBEREREREZFmpYKFiUIDvTkSfgd9Cs5S2uFWjnxrwc0jXXvS7XxhdfHicGYR+47k8WmvqBrtDveOJizIx8xDEREREREREWlWuiXERBYDOnx9laLb/AgtPc9XnUOZOXEmg7JPcSAikpCyEu7M+YLrViv7IyIZ/FUmZzt15kIHb56cMJNBp09xoFdfOvUKJbq7v9mHIyIiIiIiItJsVLAwUe75yww9eZRzfgFc8L6NyPwcjt4ewcbYIXhev47VbvD2PSOrixdzt7yLYbHw1Pjp3HX6FG6Gnf9r58WPf9RdC26KiIiIiIiIS9EtISax2w0yMgs40KMPczavZcLeHXS7WMStVysZdPoUNquF4tt82dl3AF0vFjP/f1fjZhi42+3ceTYLD7uN8ft38uMTn5F//vJ3/0ERERERERGRVkQFC5NknC6B3EK8qyp5cuJMMrt0ZX+PPtxeep5zQSEM6B9GWIAPbobBOb8ADMs3MyiuW60c/vfaFlq/QkRERERERFyVbgkxSW5xBbGnjvHwP9NJeei/2dknlsiCs+QGhdAp8namjY4C4EjWBT78+AQzHnuKwV8e50DPvlR43cKJsHDeGfFTbtP6FSIiIiIiIuKCVLAwye1BPmzu3Y8J/0xn5XuvcrB7b/4nYSxxwyJJ+nG36jUp7rwjkBFDurPzQA55xQNJDvDGsED++ShGB/kQ3d1f61eIiIiIiIiIy1HBwiTR3f3Z1SuMp6bOIvZUBod7RxPerVONYsUNblYLMRGdiInoVP272J4Bjg5ZRERERERExGFUsDCJ1WrhiQl3kXG6B3nFsZotISIiIiIiInITFSxMZK1j5oSIiIiIiIiI6CkhIiIiIiIiIuKEVLAQEREREREREaejgoWIiIiIiIiIOB0VLERERERERETE6ahgISIiIiIiIiJORwULEREREREREXE6Lv1YU7vdION0CbnFFdwe5EN0d3+sVovZYYmIiMhNVq9ezZo1a/Dw8MBqtbJx40YArl69yrx58zhx4gRubm7MnTuXYcOGmRytiIiIOIpLFizsdoP9JwtZm3oM339d4kfZmWyK7MeuXmE8MeEuFS1EREScRHp6Olu3buWDDz7A29ubixcvVm9744038Pb2Zvv27eTk5PDII4+Qnp5Ohw4dTIy4bTDsdmx5GdhKzuLm3xW3sGgsVk3MFRERx3K5goXdbvCnt/bxZX45geWXeGX1S7jb7UzYk85TU2eRcboHMRGdzA5TREREgDfffJMnn3wSb29vADp1+s8Y/fHHH7N8+XIAwsPDiYqKYteuXTzwwAOmxNpWGHY7pRuXk//VCdIzcvhJdDhdIvril5SiooWIiDiUy406GadLyD53Ca//u8bg7Ezc7XYA3O12Yk9mkFdcYXKEIiIickN2djaff/4548aN42c/+xnvv/9+9baCggK6dOlS/XNwcDBFRUVmhNmm2PIyyP/qBAkvbOb5bcdIeGEzBV+dwJaXYXZoIiLSxrjcDIvc4gosdoOoc2c42rUn1/dux91u57rVyr6IvvxXkI/ZIYqIiLQZycnJFBQU1Llt79692Gw2CgsLWbt2LWVlZYwfP55u3boxaNCgZovB39+72fbVGgQENO1ap+xUEekZOVy3GwBctxtsy8hhwE+L6djEfbdFTe0PaV7qD+ei/nA+ztYnLlewuD3IB8Nq4ax/ECGXSnh6/HQGnM1if0QfKjr6Et3d3+wQRURE2owNGzY0uD0kJITExESsViv+/v4MGTKEjIwMBg0aREhICPn5+fj5+QFQWFjI4MGDv3cMJSWXsf/7n29XFxDgw4ULTZtNev2WzvwkOpwXtx/nut3A3WphZHQ4VV5BTd53W9Mc/SHNR/3hXNQfzseMPrFaLQ1+seByt4REd/enR6gvpd63kt/Rn87/KiU9aiAXfHx57on7tOCmiIiIE0lMTGT37t0AVFZW8tlnn9G7d28AEhISWLduHQA5OTkcO3aMuLg402JtK9zCoukS0ZdtTycyZ2Q/tj2dSEhEX9zCos0OTURE2hiXm2FhtVr49aQfcfBUEWu3Z3GgUxCBHb1Y9shA2rf3MDs8ERERucmkSZP47W9/y4MPPghAUlIS99xzDwBTpkwhJSWFESNGYLVaWbJkSfXinNJyLFYrfkkp3JaXQa/7c3Hzv11PCREREVO4XMECvila3N0nmLv7BJsdioiIiDTAy8uLlStX1rmtffv2vPzyyw6OSOCbooV71xjcu8aYHYqIiLRhKpWLiIiIiIiIiNNRwUJEREREREREnI4KFiIiIiIiIiLidFSwEBERERERERGn0+RFN8+cOcPChQspLy/n2rVrjBo1ihkzZjRHbCIiIiIiIiLSRjW5YLFy5UpGjhzJhAkTuHLlComJiQwdOpToaD2rW0RERERERER+mCbfEmKxWKioqACgqqoKi8WCn59fkwMTERERERERkbaryQWLZ555hrS0NOLi4hg+fDhTpkwhNDS0OWITERERERERkTbqO28JSU5OpqCgoM5te/fuZd26dSQlJTF16lTOnz/PxIkTiYqKon///t8rEH9/73q3BQT4fK99uSKdA50D0Dlo68cPOgegcwA6B9+X1WoxOwSHamvH6+zUH85F/eFc1B/Ox9F98l1/z2IYhtGUPzBgwAB27NiBv78/AIsWLSIsLIypU6c2ZbciIiIiIiIi0oY1+ZaQ0NBQdu/eDcDly5f57LPP6NmzZ5MDExEREREREZG2q8kzLI4fP87SpUuprKzk+vXrjBo1iieeeKK54hMRERERERGRNqjJBQsRERERERERkebW5FtCRERERERERESamwoWIiIiIiIiIuJ0VLAQEREREREREaejgoWIiIiIiIiIOB0VLERERERERETE6ahgISIiIiIiIiJOx93sADZu3Mjrr79OdnY2zzzzDBMmTKjedvXqVebNm8eJEydwc3Nj7ty5DBs2rM79vP/++/zlL3/BMAzuvfdeFixYgNXaOusxkyZNoqysDACbzUZWVhYbN26kd+/eNdodOHCAxx9/nPDwcAA8PT1Zv369o8NtdikpKezdu5eOHTsCkJCQwC9/+cs6265atYoNGzYAkJyczK9+9SuHxdmSFi9ezL59+/D09KR9+/bMnz+ffv361Wr30Ucf8fvf/54uXboAEBoayqpVqxwdbrM5c+YMKSkpXLp0CV9fX1asWFH9/r7BZrOxdOlSdu/ejcVi4fHHH2fs2LHmBNwCysrKmDNnDrm5uXh6etK1a1eWLFmCn59fjXbfJ09am+HDh+Pp6Um7du0AmDVrFnFxcTXafJ/xobU5d+5cjc+yiooKLl++zMGDB2u0e+WVV1i7di2BgYEAxMbGsmjRIofGKs6hoc+DixcvMmfOHPLz82nXrh3PPvss/fv3NzPcNqEx45m0rPrGkqNHj7Jw4UK+/vprunTpwsqVK/H39zc5WtezYsUKtm3bRn5+Pps2baJXr15Aw7mhvGk59fVHQ9dcTpMrhsm++OILIysry5g9e7axevXqGtteeeUVY/78+YZhGMaZM2eMIUOGGJcvX661j9zcXCMuLs4oKSkxbDabMXnyZGPDhg0Oib+lbd++3XjwwQfr3LZ//34jOTnZwRG1vLlz59Z6L9Tl4MGDRmJionH16lXj6tWrRmJionHw4EEHRNjydu7caVy7dq369f33319nuw8//NCYMWOGI0NrURMnTjRSU1MNwzCM1NRUY+LEibXabNiwwZg8ebJhs9mMkpISIy4uzsjLy3N0qC2mrKzM2L9/f/XPy5cvN+bNm1erXWPzpDUaNmyY8cUXXzTYprHjgytYunSpsXjx4lq/f/nll43ly5ebEJE4m4Y+D1JSUoxVq1YZhmEYhw4dMkaMGGHY7XZHhtcmNWY8k5ZV11his9mM+Ph449ChQ4ZhGMaqVauMlJQUM8JzeYcOHTIKCgpq9UNDuaG8aTn19Ud911zOlCumT0Ho1asXERERdc6G+Pjjj3nooYcACA8PJyoqil27dtVqt23bNuLj4/Hz88NqtTJ27FjS0tJaPHZH+OCDD/j5z39udhhOKS0tjTFjxuDl5YWXlxdjxoxxmX4fNmwYHh4eAMTExFBUVITdbjc5qpZVUlJCZmYmiYmJACQmJpKZmUlpaWmNdmlpaYwdOxar1Yqfnx/x8fFs3brVjJBbhK+vL4MHD67+OSYmhoKCAhMjck6NHR9au2vXrrFp0yaNA/KDbd26lXHjxgEwcOBAPD09OXbsmMlRubbGjmfieMePH6ddu3YMHDgQgHHjxrnUNYQzGThwIMHBwTV+11BuKG9aVl390RBnyhXTCxYNKSgoqJ7qDhAcHExRUVGtdoWFhYSEhFT/HBISQmFhoUNibEkXLlxg3759JCUl1dsmJyeH5ORkxo4dW31rhCv461//yujRo5k+fTrZ2dl1tvl2vwcHB7tEv3/bmjVruO++++q9xengwYMkJSXxyCOP8Pe//92xwTWjwsJCgoKCcHNzA8DNzY3AwMBafVpXv9f1ueAK7HY77777LsOHD69ze2PypLWaNWsWo0eP5ne/+x3l5eW1tjd2fGjtdu7cSVBQEH379q1z+5YtWxg9ejSTJ0/myJEjDo5OnEldnwdlZWUYhlHjljJXzRVn0tjxTFret8eSb19D+Pn5YbfbuXTpkolRth0N5Ybyxjx1XXM5U660+BoWycnJ9X47uHfv3uo3ZVvS2HOSmppKXFxcrXvXb+jbty//+Mc/8PHxIS8vj8cee4ygoCCGDBnSYrE3h+86/t/85jcEBARgtVpJTU1l6tSp7Nixw6XeK419D2zZsoVNmzaxZs2aOtved999jBo1Ci8vLzIzM5k2bRpvv/02PXr0aLHYxXGeffZZ2rdvX2NtnxtcOU/WrFlDcHAw165d47nnnmPJkiX84Q9/MDssU3z44Yf1zq4YN24cv/jFL/Dw8GDPnj1Mnz6dtLS06nUMxHX80HFTpC2raywZMWKE2WGJOJXWcM3V4gWLpnzrHxISQn5+fvU/7IWFhTWmSt8QHBxcYyAvKCj4XlNeHK2x5+Sjjz5izpw59W739vaufh0WFkZ8fDyHDx92+oLFdx1/UFBQ9esxY8awbNkyioqKanybCrX7vbCw0Kn7/WaNeQ9s376dP/7xj7z11lt06tSpzjY3F7P69OlDbGwsGRkZrbJgERwcTHFxMTabDTc3N2w2G+fPn6/Vpzf6PTo6GqhdAXYVK1as4OzZs7z66qt1zq5pbJ60Rjf63NPTk4cffrjOxUQbOz60ZsXFxRw6dIjnn3++zu0BAQHVr++55x6Cg4PJysrirrvuclSI4iBNHTdLS0tr5Ernzp1bLlhp9HgmLauuseTRRx+tce1YWlqK1WrF19fXrDDblIZywzAM5Y0J6rvm+vb/WWbmilPfEpKQkMC6deuAb259OHbsWK2V4gFGjhzJjh07KC0txW63s379eh544AFHh9usDh8+TEVFBffee2+9bc6fP49hGABcunSJPXv21HqSSGtUXFxc/Xr37t1YrdYaF2M3JCQkkJqaSlVVFVVVVaSmprb6fr/hb3/7G8uWLeONN94gNDS03nY3n6v8/HyOHj3KHXfc4YgQm52/vz+RkZFs3rwZgM2bNxMZGVlrhlFCQgLr16/HbrdTWlrKjh07GDlypBkht5gXX3yR48ePs2rVKjw9Pets09g8aW0qKyupqKgAwDAM0tLSiIyMrNWuseNDa7ZhwwaGDh1a74yJm98DJ0+eJD8/n27dujkqPHEiDX0eJCQk8N577wHw6aefUlVVRVRUlClxthWNHc+k5dQ3lkRFRVFVVcWnn34KwHvvvUdCQoKZobYpDeWG8sbxGrrmcqZcsRg3/uM1yebNm3n++ecpLy/Hw8ODW265hTfffJOIiAgqKytJSUnh5MmTWK1WZs+eTXx8PAAvvfQSgYGBjB8/HvjmJL7++uvAN980LVy4sFVPjV6wYAG+vr7MmjWrxu9vPu533nmHd999F3d3d2w2G2PGjGHq1KkmRdx8Jk2aRElJCRaLBW9vb+bMmUNMTAwA8+fPZ/jw4dx///3AN4/1S01NBb75VmnGjBmmxd2c7r77bjw8PGp8SL/11lt07Nixxjl48cUX+eSTT6rf64899hjJyclmhd1k2dnZpKSkUF5ezq233sqKFSvo3r0706ZNY+bMmfTr1w+bzcaSJUvYs2cPANOmTatefNEVZGVlkZiYSHh4OF5eXsB/HleblJTEa6+9RlBQUIN50prl5eUxY8YMbDYbdrudHj16sGDBAgIDA2scf0Pjg6sYOXIk8+fPr1G4vjkX5s6dy4kTJ7BarXh4eDBz5kyGDh1qYsRiloY+Dy5cuMDs2bMpKCigXbt2LF68mNjYWJMjdn31jWfiGA2NJYcPH2bRokU1HtVY30xW+eGWLl1Keno6Fy9epGPHjvj6+rJly5YGc0N503Lq6o9XX3213jwBnCZXTC9YiIiIiIiIiIh8m1PfEiIiIiIiIiIibZMKFiIiIiIiIiLidFSwEBERERERERGno4KFiIiIiIiIiDgdFSxERERERERExOmoYCEiIiIiIiIiTkcFCxERERERERFxOipYiIiIiIiIiIjT+X/soqs/i0Bf9AAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"code","source":["fig, ax = plt.subplots(1, 2, figsize=(14, 5))\n","\n","kmeans = KMeans(n_clusters=5).fit(df_clust_0)\n","draw_clustering(items=vectors2d_tsne, labels=kmeans.labels_, ax=ax[0])\n","draw_clustering(items=vectors2d_pca, labels=kmeans.labels_, ax=ax[1])\n","\n","plt.tight_layout()\n","plt.legend()\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":434},"id":"nUjfvNZ4rIsu","executionInfo":{"status":"ok","timestamp":1653246345417,"user_tz":-180,"elapsed":2751,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}},"outputId":"911cef9b-e785-4377-b3b6-bca893c30b65"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Number of clusters: 5\n","Number of noise points: 0\n","Number of clusters: 5\n","Number of noise points: 0\n"]},{"output_type":"display_data","data":{"text/plain":["<Figure size 1008x360 with 2 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA+QAAAFcCAYAAABBW3QgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzda3xU1b3/8e/syY3cyJUQyI0kQAIkBBrE1tZrLbSlWnuOlSK1tHLaHuWIVlHUf73UtoKAd+3lWOQotJ5je7xAT4mggkUERcQEQkBIIMGEQCYJJIEQMnv/H0SQSICQ7JlJZj7vR2Qms/ZaO3m9wnevtX7LYVmWJQAAAAAA4FWGrzsAAAAAAEAgIpADAAAAAOADBHIAAAAAAHyAQA4AAAAAgA8QyAEAAAAA8AECOQAAAAAAPkAgBwAAAADAB4J83YETGhpaZJqdj0SPj4+Uy9Xsox55X6CNVwq8MTNe/8Z4/Zs3x2sYDsXGRnjlWp7Q1d90fxBov/N9Affc+7jn3sc9976+9De9zwRy07S6/OPtj3/QzybQxisF3pgZr39jvP4t0MbbU2f6m+4P/HVcfRn33Pu4597HPfe+vnLPWbIOAAAAAIAPEMgBAAAAAPCBPrNkHQAAAAAAt7tdDQ0H1d7e5pH2DxwwZJqm7e0GBYUoNjZRTmf3YzaBHAAAAADQZzQ0HFRYWLgiIgbL4XDY3n5QkKH2dnsDuWVZamk5rIaGg0pISO7251iyDgAAAADoM9rb2xQREe2RMO4pDodDERHR5z2rb8sMeUNDg+68805VVlYqJCRE6enp+tWvfqW4uDg7mgcAAAAABJD+FMZP6EmfbZkhdzgcmjlzpoqKirR8+XKlpqZq4cKFdjQNAAAAAIBfsiWQx8TEaOLEiSe/LigoUHV1tR1NAwAAAADgU5WVe/Wzn/1YU6d+Tz/72Y9VVVVpS7u2F3UzTVN/+ctfdPnll5/X5+LjI7t8PTExyo5u9RuBNl4p8MbMeP0b4+2ZtnZT/72qTO9vq1VkeLC+89VMTRyTLLdpadnK7Vr53h61tZvKHhqtB356kSLCfFOTNNB+vgAA9IRlmmopKdaxyr0KTUtXRF6+HIbny5eZpqXicpcqa5uUlhSl/Mx4GYY9S98XLnxY3/vetZo06VsqKvo/LVjwWz355O973a7t/6N56KGHFB4erunTp5/X51yuZpmm1em1xMQoHTzYZGf3+rRAG68UeGNmvP6N8fZMa2u77nr0TUU3NurCXdu0MWuUnizdp2GpMao52KIBdfX65u5SbcwapcrmFs2442969K5vKMzLodybP1/DcJzxQTUAAH2ZZZratfBJVe04pLW1Bbok6TWljlyj7Dtu8WgoN01LTy99X4d3VmlcWYlW5OTpnRGpmjX9gl6H8oaGeu3cWabHHntGkvT1r0/SY489ooaGBsXGxvaqbVvvyPz587V37149/vjjMrzwBAQA0L+1t5u64/G3NbChQU+/8LhmrCvSUy8+oZiWJn1S3awBdfV66sUnTr4ee6RJQe52PfbXj33ddQAA0IWWkmJV7Tik6zfN0+8qp+v6TfNUtaNRLSXFHr1ucblLh3dWadFzizTjnZVa9NwiHdq5T8Xlrl63XVtbq4SEQXI6nZIkp9OphIREHThQ2+u2bUvNjz76qLZu3apnnnlGISEhdjULAPAzpmlpy646vf5uhZ5bUSrjSKsm7i5VkNlxHmiQaerCXaUyLXX5+oDjx/XpwZZO7WzZVXfaKitfjMeX/QAAoC84VrlXa2sL5LY6VrK5rSCtrR2nYzbtuT6TytomjSsr6fT/hvFlxaqq7durF20J5J988on+8Ic/6MCBA5o6daquvvpq3XzzzXY0DQDwIyeWk61YskbOx5aoekOpwo8f00fpw9X+2cqqdsPQhuzRMhzSxqxRX3h9lI4GB2toYrieXvq+XluyRpte3aBn/3uz7nhyrVpb2306nhVL1ujppe8TygEAASs0LV2XJG2R09HxN9npaNclSR8pNDXNo9dNS4rSRzl5nf7fsDknX6lJva//kpSUpLq6A3K73ZIkt9uturqDGjQoqddt27IBb/jw4dqxY4cdTQEA/NjHu+rUWFapxxY/qiDT1PR1b2jWDbPlNE3d/oObNG7vJ9qQPUr1EVEaPiRSNcEOzbphti7cVaoN2aPUEB4l0+HQZYUpKlq6Ti5nqGLUrqs/XKeNWaM055FVWjT3GwoJcXplPKcujzsxnl/MvEPF5VkqyE7wSh8AAOhLIvLylTpyjZbpLq2tHadLkj5S6sgYReTle/S6+ZnxemdEqn4x8w6NLyvW5px8DRyRovzM+F63HRsbp+zsEVq9ukiTJn1Lq1cXafjwkb3ePy55oKgbAABdaWtza/GKbZq0Y2un5WQTd2/XqtGFyttXrjfGTFBbaKhmfC9fE0YmyTQtvfJOuf7v42QdP24qfXCkbv/+OL3xYZXcx44rRu166sUnOsLw+lW6+YZbNevxdzRueIJu/PYojwfzMy+PG08gBwAEJIdhKPuOW5RcUqyxVZUKTf2uV6qsG4ZDs6ZfoOLyLFXVjtd3bK6yPmfOPfr1r+/X888/p6ioKP3ylw/a0i6BHADgcW1tbt25YJXCWo5o07CR+uG7byjINNVuGPpwZJ5yxw9TQ+5QXTo0Rt/5SoaCgjr+aBuGQ9denq1rL8/u1F5aUpRWxMTr6g/XdQrDX961TatDw7TjoybdvnWfFt3l2dnytKQorcjJ0/R1n49nc06+vmPD8jgAAPorh2EocmyBIscWePW6huFQQXaCRx6Kp6dn6D//879sb5dADgDwKNO0dP8f31V0Y6MeX/qkHpky7bPl6bu0MStXSk7UT68afV5PsPMz4xUZEaKNWaM0ff2qk2H4o/Thunn1K3rpwivUGB6hxf+3XT//7hiPjc2Ty+MAAID/I5ADADyquNylQ41H9O3dpQp1u3XP60v1YcZI/W3CxaqNidPPJo867+VkhuHQb3/+Vc15pGOZ+pd3bdNH6cOV0HxIF5SXaWdymkqHpKui5rCHRvV5Pzy5PA4AAPg3DgsHAHhURfUhmaZ1smK607I0fu9OHQqPUNzAMBVk9WxZWVhYkBbN/YYi8rP1Rt4ETd3wpu55faksh0Ob04dr/8BYDUuOtnk0pzuxPO47Fw1TQXYCYRwAAHQbM+QAAI/aXtmghKZDag0O7lwxPWqgHv3pRb0KsCEhTt01bbyeevG4lnztm9qRnK4PMnPUGB4hd3CwfvKtXBtHAgAAYC8COQDAY0zTUmX1YX1nd6mmrV+l/5l4ucqGpCnq6BG1pqfYUnDNMBz6jx9O1OadmXptXYaajrQpO3WgBscM0ON/+1jDv1AoDgAAoK8gkAMAPKa43KUBR46cLL42/b3VajcMzbphtrKGxth2HcNwqDBnkApzBqm93dTdj76pA3UuTdxVqo3Zo7R+w249/IsrCOUAAKBPIZADADzCNC29X1qrIa5afRqbqJtvmK0vn1iuHjlQv/TQcvLX363QgDqXHn/xSX2cNlwh7e0qypug19aV618uzT53AwAA4Jws01RLSbGOVe5VaFq6V84a90cEcgCA7UzT0tNL31djWaW+9GmljgWFqN3p1M7BKWoKj9SPvj/eY+eDb9lVpwt2leqRKdPkihyocXs/UeSxo/rnhgpdc3EWRdcAAOglyzS1a+GTqtpxSGtrC3RJ0mtKHblG2Xfc4tNQbpmm3FXFcrv2yhmfLmeqfQ8Jnn76ca1d+5Zqaqr1wgsvKTPTnof8BHIAgO2Ky106vLNKjy1+VEGmqenrDc2efosOJA5WZmaivjRikMeuHREWrLU5BYo52qKFf3lWQaap69ev0n/MuE3F5S4VZPesqjsAAOjQUlKsqh2HdP2meXJbQfpj1VQt011KLilW5NgCn/TJMk0dWTVP7a3b1Ja5RyFbMhRUNlrhV861JZR/7WuX6tprp+rmm//Nht5+jjUFAADbVdY2aVxZiYJMU5IUZJqaUFGmYYVZmjX9Ao/OUl8xIUWHwyNUsHdXp+tP/GSbqmqbPHZdAAACxbHKvVpbWyC31TG/67aCtLZ2nI5VVfqsT+6qYrW3btPhH69Q6+UlOvzjFWo/uk3uqmJb2h87tkBJSYNtaetUBHIAgO3SkqL0UU6e2j97It1uGNqcm68LcpM8vmR8fHaihiZEaEP2qNOun5oU5dFrAwDgDyzTVPPHW+Ra/pqaP94i67MH3CeEpqXrkqQtcjraJUlOR7suSfpIoalpvuiuJMnt2qu2zD2S0+p4wWmpLWuP3C7fPSToDpasAwBsl58ZrzXZKZo14zZN/GSbNg4frfjsocrPjPf4tQ3DoXtmfkWP/Gm9bvnxL3TBzq3anJuvgSNSvHJ9AAD6s+7sD4/Iy1fqyDVapru0tnacLkn6SKkjYxSRl++zfjvj0xWyJUOtl2ztCOVuh0J2Z8g5zncPCbqDQA4AsF1ra7t27q1XhBGksuQ0tRpB2rm3Xq2t7QoPD+52O0eOHNdvln2ousZWJcSE6d7rv9StzwcFGZr7bxepuNylqtpCfScpSvmZ8RR0AwDgHLqzP9xhGMq+4xYN/niLcj/8QLKSFTlhgk/77UzNV1DZaEUvltqy9ihkd4aCBoyWM9V3Dwm6g0AOALDdb5Z9qITmw3rqxScUZJonzx7/zbIP9Zt/u7BbbdTVHdH/e3atEpoP6zu7S7UxM1dzFtRrwZwrzxnK29tNLV+/R5982qjhQ2M0JiOOMP4Fx44d029/+1u99957Cg0NVUFBgR566CFVVFRo7ty5amxsVExMjObPn6+MjAxfdxcA4CVn2h8+tqrytIJt+1e98/lM+oblSh35js8qrTsMQ+FXzpW7qlhhrko5x6XZWmXdU/p27wAA/VJdY6sm7i7tVFTtwl2lqmts7dbnjxw5rv/3u3c0qOmQnnnhcf34nyv19ItPKK7lsH6z7MOzfra93dTdj76pj1a8r9Evv6rNKz7QnIWr1dbm7vW4/MmCBQsUGhqqoqIiLV++XLNnz5Yk3X///Zo2bZqKioo0bdo03XfffT7uKQDAm7q7P/zUmfTfVU7X9ZvmqWpHo1pK7Cmi1hMOw1BQeoFCx1+loPQCW8P4448v0DXXfEsHDx7QrbferOnTv29LuwRyAIDtEmLCtDGrc1G1DdmjlBAT1q3P/2bZhwo73nZaqJ+4e/s5Q/3r71ZoQJ1LT73whGasK9LTLzyuyPp6PfCHd2WaVu8G5idaWlr06quvavbs2XI4OlYOJCQkyOVyqbS0VFOmTJEkTZkyRaWlpaqvr/dldwEAXtSxP3yglhXepX9PW6plhXd1uT+8L1Za96Rbb52jV175P61du1Gvv16kpUv/x5Z2WbIOALDdvdd/SXMW1GvWDbN14a5SbcgepfqIaC24/kvd+nxdY6sm7KvQlvThal+/6uSy9+6E+i276jRx1+mz828MiNDHu+o0bkRir8fX31VVVSkmJkZPP/20Nm7cqIiICM2ePVthYWFKSkqS0+mUJDmdTg0aNEg1NTWKi4vzca8BAN5wYn94ckmxxlZVKjT1u4rIO33pd8dM+mv6Y9VUua2gU2bSv+ujnvdPBHIAgO3Cw4O1YM6V+s2yTXo1IUkDQp26/hvDFRbWvT87CTFh2hufpCGNLt3+g5s0bu8n2pA9SnUR0Xr0HKF+QKhTG7JHa/opQX5jVq5GV5Xrgx2ZBHJJbrdbVVVVGjVqlO666y59/PHH+vnPf64nnnjClvbj4yNtaacvSkzk6Dxv4557H/fc+/rkPU/62lnfTrjsK3K9vU5/dszVmv0FunTwFmWOSVDGZV+R47MHuz114IChoCDPLub2VPuGYZzXz5NADgDwiLCwICWFGhpw2KVxZSV66+ABbRqRqlnTLzhngbUTM+yWQ8qoq9UbYwp1LDhEv/73i89Z0C06IkS1YQN0+w9u0vi9n2hz+nA1h4Vr5+BUjWDFuiQpOTlZQUFBJ5emjx07VrGxsQoLC1Ntba3cbrecTqfcbrcOHDig5OTk82rf5Wr2y+0BiYlROniwydfdCCjcc+/jnntff77nabfcpPiSYuVXVSo09WpF5OWrrv5Ir9s1TVPt7ea5v7GHgoIMj7Vvmmann6dhOM76oJo95AAAjygud+nQzipNfXOFwo61aeqbK9S4c5+Ky13n/OyJGXZreIY+yB2ryNRBevT2K5SQEH7Oz7YcbdfXt27S9etXK+x4m65fv1qXb9uspvAIFeYOsmNo/V5cXJwmTpyod999V5JUUVEhl8uljIwM5ebmasWKFZKkFStWKDc3l+XqAIAuOQxDkWMLFD/lKkXk5aulpFiu5a+p+eMtskzPBWp/wgw5AMAj9u4/rOPHjuvPX/66vrRnp/785a+r/VibKvcfVkF2wjk/Hx4e3O0j0k41PCVG72eP0g/Xr9IFFWVqNwwtvuRbih04QAVZ575uoHjwwQd1zz33aP78+QoKCtIjjzyi6OhoPfDAA5o7d66effZZRUdHa/78+b7uKgCgj7NMU7sWPvn5EWhJryl15BqfHYHWnxDIAQAecdxt6khImMbsK1dd5EBNfe9N/dfXJuu4h5cyf/vCdP3z3V2adcOtunDXNm3IHq2W2FjN+9lFnEV+itTUVL344ounvZ6VlaWXX37ZBz0CAPRXpx6B5raC9MeqqVqmu5RcUnza2eXojEAOALCdaVr6YFOlwtuOKbHpsD7IHKmP07MV0XpEB23YW3a26/7+pU2KaTmssNYW/X38VzQwJlzzfnqRQkJ6V2AGAAB07UxHoI2tqvSLQH7oUKMeeug+ffrpPgUHByslJU1z5tyj2NjYXrfN+gEAgO2Ky10KPVinp158QjPWrdQTS59SXPNhHQ0J1fZddR4r+LVld51qdu/Xl4s369qNa7X0mV8pfP9BlVY2eOR6AADgxBFoW+R0tEvSKUegpXm1H6ZlqqSuVP+oWK2SulKZlj372B0Oh6ZNu0F/+cv/6oUX/ltDh6bo979/ypa2mSEHANiusrZJEz/Z1uks8HF7P9H7mTk61NKi4nJXt/aRnw/TtPTqylKFtrToeFCQ/vyVr6sof4LGlRWrqna87dcDAAAdIvLylTpyjZbpLq2tHadLkj5S6sgYReTle60PpmXq8ZI/aXt7jSoGB2tY5XHlVifr1rwbZTh6Nw8dHT1Q48cXnvx69OgxeuWVv/W2y5II5AAAD0hLitJrI8do+rtvnDwL/IPMXB0JCVVYa2u3C7udj+Jyl5w1B/T40qcUZJq6fv0q3f6Dm7R3SJquS+qD57sCAOAnHIah7DtuUXJJscZWVSo09buKyMv3akG3ba4ybW+v0etXJskyHCrJs6Q3qrXNVaa8hFG2Xcc0Tb3yyt/01a9ebEt7LFkHANguPzNesTlpmvWj27Tkq5N1+w9u0uBDLv3h+YUKdrvV7rZ3ybppWtqwdb++tGNrp1n5gspdciTGKj8z3tbrAQCAzk49Ai1ybIHXq6vva6pWxeBgWZ8VcLUMhyqSQ7SvqcbW6zz22AKFhw/Qv/zL921pj0AOALCdYTg0a/oFGvqVUdo+JE3Xr1+te15fqlC3WxN3l2pTSbVt+8hN09KTL2xU6eYKvTlqvN7LypXb4VC7YWhj1igV5g2hujoAICBYpqnmj7fYdha43e15UkrUEA3bf1yOz/5/4TAtDatpU0pUsm3XePrpx7VvX6UefPBhGTY9cGDJOgDAIwzDoQtHD9ZrG6M1fu9OOS1L7Yahj9Ky1dB4RL94ep1y0mL1k2/l9qoC+pbdddpTcVBJTY0q2PuJXvjqZL3w1UkyHYaOhoQqyEkYBwD4P7vPAu9vZ4uPjs9RbnWy9Ea1KpJDNKymTbnBQzQ6PseW9v/wh2e0Y8d2LVjwhEJCQmxpUyKQAwA8KD8zXv+bPEizp9+iC8q368P04aqNiVPC4QZduPldbcgepV8UV2nhnVcqLKxnf5I2bT+gmJYmLfzLswoyTU1fv0r/8cPZanMG6UjYAKUNjrZ5VAAA9D12nwXe384WNxyGbs27UdtcZdrXVKOU9GSNjs/pdUE3SSov360XX3xeqalp+vnPfyJJSk4eoocfXtjrtgnkAACPMQyHvjt5lF5e2qiQ9uMa0HZMsS3NevqFJ06G55tvuFV3/26dFs2+pMdLyyeU7+i0d3zi7u36v7EXKCZmAPvHAQABwe6zwPvj2eKGw1Bewihbi7hJUmZmltat22Rrmyf0vbUGAAC/UpCVoOSswXovv1C7k4bqwl2lncLzl3eVqunocRWXu87ajmla2rKrTq+/W6Etp5xlPiFnkDaOGK32z5bPtRuG3sseJUdIiB786UXsHwcABAS7zwLvK2eL+ztmyAEAHnWiwFtxeZae//t2fZA5UtPXn3ocWo4iW4+qqrZJBdkJam5u0/3/9YEONbdpYGSIHvzRBIWHB+upFzdqf3mtQlqOqChqoIIGhOnhWV/T2OwE/XNUum79ye0q3FGiDcNHyzFkkB79+dd6tTcdAID+xO6zwPvC2eKBgEAOAPA4w3CoIDtBP5w0Qkv/3KDbf3CTxu/9RJvTh6sxPEIhDik1KUrNzW26a9FqxTcf1uW7S7Uxa5TuWnRI1/3rWO2pOKjoI0d0QXmZPsgcqUZ3pO5YuFqP3nnlycBfVfsl/UtSlPIz45kZBwAEFLvPAu8LZ4sHAgI5AMBrxo8YpHWZidq3y63SIek6NCBCMhwaOixR+ZnxmvO79YpvPqynXvx8j/msG2Zr2T92anBzs55c+uRnr7+h239wkxrDI/XYXz/W3dO/pILsBBVkJ/h6iAAA+MyJs8Dt2uNtd3s4HYEcAOA1huHQLTdcqI931emDHQcUbUmFuYNUkJUgw3DoUHObLt/deY/5hbtK9be4QZpQUdbp9fF7P1HpkHTtOUjRNgAA0D8RyAEAXmUYDo0bkahxIxJPe29gZIg2Zo3S9PWrTu4x35A9ShEDgrQxa5R++O7ne89PLHcfmhjhg1EAAAD0HoEcANBnPPijCbpr0SHNumG2LtxVqg3Zo1QfEa2HfzxRi//3I918w6368q5SfZCZo8bwCB13Bum2fx3r624DAAD0CIEcANBnREaGaP7tX9f9//WBXolP0sDIEM3/0QRFRobolhsm6sOyYfqfNSlqPnJcqUmR+sW1BQoL408ZAACQLNNUS0mxjlXuVWhauq1F6O6++3ZVV1fLMBwaMCBct902R8OHj+x1u/wvBgDQp0RGhmjRzRed9rphODRhVJImjEryQa8AAEBfZpmmdi18UlU7DmltbYEuSXpNqSPXKPuOW2wJ5ffe+6AiIyMlSf/85xo9/PCvtHjxsl63SyAHAAAAAPRrLSXFqtpxSNdvmie3FaQ/Vk3VMt2l5JJiW6rEnwjjktTc3CyHw56ZdwI5AAAAAKBfO1a5V2trC+S2OiKu2wrS2tpxGltVaduxbfPmPaT3398gSVq48Elb2uRUdwAAAABAvxaalq5LkrbI6WiXJDkd7bok6SOFpqbZdo25c3+p//3fv+unP71Jzz77hC1tEsgBAAAAAP1aRF6+UkcO1LLCu/TvaUu1rPAupY6MUURevu3Xmjz529q8+UMdOtTY67ZYsg4AAAAA6NcchqHsO25RckmxxlZVKjT1u7ZVWT9y5Iiamg4rKWmwJGnduncUHR2t6OiBvW6bQA4AAAAA6PcchqHIsQW27Rk/obX1qH75y7lqbT0qw3AqOjpa8+c/JofD0eu2CeQAAAAAAJxBXFy8/vjHJR5pmz3kAAAAAAD4AIEcAAAAAAAfsC2QV1RU6LrrrtOkSZN03XXXac+ePXY1DQAAAACA37EtkN9///2aNm2aioqKNG3aNN133312NQ0AAAAAgN+xJZC7XC6VlpZqypQpkqQpU6aotLRU9fX1djQPAAAAAIDfsaXKek1NjZKSkuR0OiVJTqdTgwYNUk1NjeLi4rrVRnx8ZJevJyZG2dHFfiPQxisF3pgZr39jvP4t0MYLAAA8q88ce+ZyNcs0rU6vJSZG6eDBJh/1yPsCbbxS4I2Z8fo3xuvfvDlew3Cc8UE1AADwncWL/6jFi/+oF154SZmZ2b1uz5ZAnpycrNraWrndbjmdTrndbh04cEDJycl2NA8AAAAAwFmZpqXK8nrV1TYrISlSaZlxMgyHbe3v2FGmbdu2avBg+3KuLXvI4+PjlZubqxUrVkiSVqxYodzc3G4vVwcAAAAAoKdM01LR0hJtXlKm4Mc+1eYlZSpaWnLaKuyeamtr06OPztcdd8y1pb0TbFuy/sADD2ju3Ll69tlnFR0drfnz59vVNAAAAAAAZ1RZXq+jO5s087lQOU2HLltn6bmZTaosr1dGdnyv23/uud/rG9/4ppKTh9jQ28/ZduxZVlaWXn75ZRUVFenll19WZmamXU0DAAAPefrppzVy5Ejt3LlTkrRlyxZdddVVmjRpkn7yk5/I5XL5uIcAAJxbXW2zssoccpodS9SdpkNZZQ65apt73fbWrcXasWO7vve9a3vd1hfZFsgBAED/sm3bNm3ZskVDhw6VJJmmqTlz5ui+++5TUVGRCgsLtXDhQh/3EgCAc0tIitTuHEtuo2OJutuwtDvHUnxS74ukfvTRZu3ZU6Frr71K//qv39HBgwf0i1/8h95/f0Ov2yaQAwAQgNra2vSrX/1KDzzwwMnXtm7dqtDQUBUWFkqSpk6dqpUrV/qohwAAdF9aZpwGjIjSczOPafXFx/TczGMaMCJKaZm9r2v2wx/O0GuvrdRf/7pcf/3rciUmDtKjjz6lCy64sNdt95ljzwAAgPc88cQTuuqqq5SSknLytZqaGg0Z8vneuLi4OJmmqcbGRsXExPiimwAAdIthODRpep4qy+vlqm3WeA9UWfcEAjkAAAHmo48+0tatW3XHHXd4pH1/PkM9MTHK110IONxz7+Oeex/3vLMDBwwFBfVsMXd2TqKycxLP+X09bV+SXn3172d8zzCM8/p5EsgBAAgwH3zwgXbv3q0rrrhCkrR//37deOON+uEPf6jq6uqT31dfXy/DMM57dtzlarbtmJm+JDExSgcPNvm6GwGFe+593HPv456fzjRNtbebHms/KMjwWPumaSbvz5UAACAASURBVHb6eRqG46wPqtlDDgBAgPnpT3+qdevW6a233tJbb72lwYMH609/+pNmzpyp1tZWbdq0SZL00ksvafLkyT7uLQAA/osZcgAAIKljmd0jjzyi+++/X8eOHdPQoUO1YMECX3cLAAC/RSAHACDAvfXWWyf/PX78eC1fvtyHvQEAQLIsSw5H3y7I9kWWdf7btViyDgAAAADoM4KCQtTScrhHAddXLMtSS8thBQWFnNfnmCEHAAAAAPQZsbGJamg4qObmRo+0bxiGTNP+om5BQSGKjT13hfdOn7G9FwAAAAAA9JDTGaSEhGSPtd+XKtuzZB0AAAAAAB8gkAMAAAAA4AMEcgAAAAAAfIBADgAAAACADxDIAQAAAADwAQI5AAAAAAA+QCAHAAAAAMAHCOQAAAAAAPgAgRwAAAAAAB8gkAMAAAAA4AMEcgAAAAAAfIBADgAAAACADxDIAQAAAADwAQI5AAAAAAA+QCAHAAAAAMAHgnzdAQAAAKC/Mk1LleX1qqttVkJSpNIy42QYDl93C0A/QSAHAAAAesA0LRUtLdHRnU3KKnNoc46l7SOiNGl6HqEcQLewZB0AAADogcryeh3d2aSZz4Xq6++EauZzoTq6s0mV5fW+7hqAfoJADgAAAPRAXW2zssoccpods+FO06GsModctc0+7hmA/oJADgAAAPRAQlKkdudYchuWJMltWNqdYyk+KdLHPQPQX7CHHAAAAOiBtMw4bR8Rpedmduwh351jacCIKKVlxvm6awD6CQI5AAAA0AOG4dCk6XmqLK+Xq7ZZ46myDuA8EcgBAACAHjIMhzKy45WRHe/rrgDoh9hDDgAAAACADxDIAQAAAADwAQI5AAAAAAA+QCAHAAAAAMAHCOQAAAAAAPgAgRwAAAAAAB8gkAMAAAAA4AMEcgAAAAAAfIBADgAAAACADwT5ugMAAMC7GhoadOedd6qyslIhISFKT0/Xr371K8XFxWnLli267777dOzYMQ0dOlQLFixQfHy8r7sMAIBfYoYcAIAA43A4NHPmTBUVFWn58uVKTU3VwoULZZqm5syZo/vuu09FRUUqLCzUwoULfd1dAAD8FoEcAIAAExMTo4kTJ578uqCgQNXV1dq6datCQ0NVWFgoSZo6dapWrlzpq24C6INM09KeXS5tenev9uxyyTQtX3cJ6NdYsg4AQAAzTVN/+ctfdPnll6umpkZDhgw5+V5cXJxM01RjY6NiYmJ82EsAfYFpWipaWqKjO5uUVebQ5hxL20dEadL0PBmGw9fdA/olAjkAAAHsoYceUnh4uKZPn65Vq1bZ0mZ8fKQt7fRFiYlRvu5CwOGe28c0Le0qO6D9nx7S4KEDlZ0zqMsgfaZ7vrO0Vsc+adbM50LlNB26bJ2lP/1bsw65jmrEqCRPd9+v8XvufX3lnhPIAQAIUPPnz9fevXv1+9//XoZhKDk5WdXV1Sffr6+vl2EY5z077nI1++Uy1sTEKB082OTrbgQU7rl9vji7/XaOpQ1dzG6f7Z7v3nlQw7ZLTrPj+52mQ5nbpfKdBxWbGO6Vcfgjfs+9z5v33DAcZ31QzR5yAAAC0KOPPqqtW7fqmWeeUUhIiCRpzJgxam1t1aZNmyRJL730kiZPnuzLbgKwSWV5vY7ubNLM50L19XdCNfO5UB3d2aTK8vput5GQFKndOZbcRscDN7dhaXeOpfgk/10VA3gaM+QAAASYTz75RH/4wx+UkZGhqVOnSpJSUlL0zDPP6JFHHtH999/f6dgzAP1fXW2zssocnWa3s8occtU2KyO7e0cbpmXGafuIKD03s2OWfXeOpQEjopSWGefJrgN+rdeB/MEHH9R7772nkJAQhYeH695771VeXp4dfQMAAB4wfPhw7dixo8v3xo8fr+XLl3u5RwA8LSEpUptzLF22zpLTdJyc3R5/HrPbhuHQpOl5qiyvl6u2WeOTIpWWGUdBN6AXeh3IL774Yt1zzz0KDg7W22+/rdtuu02rV6+2o28AAAAAbGDX7LZhOJSRHd/tWXUAZ9frQH7ZZZed/HdBQYH2798v0zRlGGxPBwAAAPoCZreBvsnWPeTLli3TpZdeShgHAAAA+hhmt4G+55yB/Jprrul0BMqp1q9fL6fTKUn6+9//ruXLl2vZsmU96siZSsH3lfPhvCXQxisF3pgZr39jvP4t0MYLAAA865yB/JVXXjlnI6tWrdJjjz2mJUuWKCEhoUcd6erM0kA7ky/QxisF3pgZr39jvP6tL51ZCgAA/EOvl6y//fbbevjhh/X8888rJSXFjj4BAAAAAOD3eh3I7777bgUHB+uWW245+dqSJUsUGxvb26YBAAAAAPBbvQ7kGzZssKMfAAAAAAAEFMqhAwAAAADgAwRyAAAAAAB8gEAOAAAAAIAPEMgBAAAAAPABAjkAAAAAAD5AIAcAAAAAwAcI5AAAAAAA+ECvzyEHAAAAAAQOyzTlriqW27VXRlyqJMmsr5IzPl3O1Hw5DOZ9u4tADgAAAADoFss0dWTVPLW3blPbsD0KWZcha0Cbjo+oVsiWDAWVjVb4lXMJ5d1EIAcAAAAAdIu7qljtrdt0+McrFFSepKA9CWqesUZyWmq9ZKuiF3d8T1B6ga+72i/w2AIAAAAA0C1u1161Ze6RnJac+2PUnnlAclodbzottWXtkdtV6dM+9icEcgAAAABAtzjj0xVSniG5HXIPblRQ+SDJ7eh40+1QyO4MOePTfNrH/oQl6wAAAACAbnGm5iuobLSiF0ttmXtkHI5U1H9+o2MP+e4MBQ0YLWdqvq+72W8QyAEAAAAA3eIwDIVfOVfuqmKFuSplfDVFkmTW75NzXJpXqqyfWuW9v1d2J5ADAAAAALrNYRgKSi/oXLgtY7xXrt2pynvmnn5f2Z1ADgAAAACQ1Pdnn0+t8u4Pld0J5AAAAACAfjH7fGqVd0knK7uHuSr7ZSDvG3cVAAAAAOBTp84+t15eosM/XqH2o9vkrir2dddOOrXKu6R+X9mdGXIAAAAA8HPdWYreH2afO1V5z9rT7yu7E8gBAAAAwI91dym6Mz5dIVsy1HrJ1o5QfmL2eVzfmX3+YpV3b1V29xQCOQAAAAD4se4WQusvs89dVnnvpwjkAAAAAODHursU3d9mn/sD7iwAAAAA+LHzKYR2YvY5dPxVCkovIIx7GDPkAAAAAODH+stSdE86tahdS2aOrOjhfeJhA4EcAAAAAPyYvyxF706l+DN97tSidsfeGSZn6Kg+cb46gRwAAAAA/Fx/L4TW3UrxXTmtqJ17q6IXW6cVtfMFAjkAAOiTfv27t1R+6POvMwdK/+/fL/ddhwAAPtPdSvFdfrYPn6/ev9YoAAAAj6uoqNB1112nSZMm6brrrtOePXu83odf/+4t1RxoVYrrgP7l/TVKcR1QzYFW/fp3b3m9LwAA3ztTqHa7Ks/52fMpaudtBHIAANDJ/fffr2nTpqmoqEjTpk3Tfffd5/U+lB+S4psP66kXn9CMdUV66sUnFNdyuNOMOQAgcPQmVDtT8xUUNlrRi6co7K08DXz+O32mqB1L1gEAwEkul0ulpaV6/vnnJUlTpkzRQw89pPr6esXFxXm1LxN3lyrINCVJQaapC3eV6m8XDPJqHwAAfUNvKsV/sahd7CUj1UKVdQAA0NfU1NQoKSlJTqdTkuR0OjVo0CDV1NR4PZBvzBql6etXKcg01W4Y2pA9yqvXBwB0X08roHfX2SrFd+fapxa1i0iM0pGDTbb1rTcI5AAAwFbx8ZG9bmP0EKn8WLRm3TBbF+4q1YbsUaqPiNboIVJiYpQNvewZX147UHHPvY977n29veemaeqj/dtU0VClYbGpGjd4tAwvzv5apls1f31AR5uKdSyzQqEfD9OA8nwl/+sDchhOey+W9DVbrt1Xfs8J5AAA4KTk5GTV1tbK7XbL6XTK7XbrwIEDSk5O7nYbLlezTNPqVT9uv+Hyz6qsh51cpp45sOP1gz6a1UhMjPLZtQMV99z7uOfe19t7blqmHi/5k7a316hicLCGlRxX7vZk3Zp3owyHd0J5+94tOnL4488roF+8VdZiS/s3r/d4FfOeXNubv+eG4Tjrg2oCOQAAOCk+Pl65ublasWKFrr76aq1YsUK5ubleX64uccQZAHTHNleZtrfX6PUrk2QZDpXkWdIb1drmKlNegne2+vjyWLG+fKRZd/h+FzsAAOhTHnjgAS1dulSTJk3S0qVL9eCDD/q6SwCAM9jXVK2KwcGyjI7q45bhUEVyiPY11XitD748VqwvH2nWHcyQAwCATrKysvTyyy/7uhsAgG5IiRqiYZXHVZJnyTIccpiWhtW0KSW9+1uNeqs7FdA9VfStN9XX+wICOQAAAAD0U6Pjc5RbnSy9Ua2K5BANq2lTbvAQjY7P8VofvlgB3ShIkSS1bVkuZ3y6jKFjdPTNR9Teuk1tmXsUsiVDQWWjFTJyssz6ql4F9LNVX+8PCOQAAAAA0E8ZDkO35t2oba4y7WuqUUp6skbH53itoNsJJ44Vc6bm68iqeZ3Ct3NzutzG3s8Lr12yVVH/2ab290vVlltxMqCHXzm320G6qxn33u4Z9/TRbV0hkAMAAABAP2Y4DOUljPJaEbezcVcVq711W6fwHf3UVWrLr+hUeO34iH2ygtw6dnFZx/cs7vhsd0K1ZZqnhf7zDfTeaLM7+sc8PgAAAACgz+uq6nl7aq2CP0ntVHgt+JNkuZMbT35PW9YeuV2V3bvGKaG/9fISHf7xCrUf3SZ3VXHP++2BNruDQA4AAAAAsEVXVc+DXIkKcmYpevEUhb2Vp+g/fUuOIwPUnlF78nvOpzL6mY46626g91ab3cGSdQAAAACALbqseh4+WgOuuFPmp1s7ir6NS9Gxsn8oeknPKqMbcakKeX+YrKDjcic3qj2jtiPQj+v5UWfO+HSFbMlQ6yVbO0L5iYcEvWizOwjkAAAAAABbdFX13Bg6RuanWzsXYEsr6FFldMs01bZjpSznMTnanRrw9mg5WibImTCqV0ed+er4NAI5AAAAAMA2JyquB6UXnLVY2onvOR8n9no3/dsbnxWNK1X0n76l0Jxv9qr4mq+OTyOQAwAAAAA8osuq6+dRUf209rra651dqbD6fVLG+LN+9sSxZg1l+9U+YPBpgfvUBwneQlE3AAAAAAhQpmWqpK5U/6hYrZK6UpmWaWv7dhdL66poXHcKwp2YqW/ZskA17Q+pZcsCHVk1T5Zp73jPFzPkAAAAABCATMvU4yV/0vb2GlUMDtawyuPKrU7WrXk3ynDYM3drd7G0nu71Pm2m/uLezdTbhUAOAAAAAAFom6tM29tr9PqVSbIMh0ryLOmNam1zlSkvYZQt17C7WFpP93qfaaY+zFVJIAcAAAAAeNe+pmpVDA6WZXQs/7YMhyqSQ7Svqca2QO6JYmk92evtq2PNzoVADgAAAAABKCVqiIZVHldJniXLcMhhWhpW06aU9GRbr+OLYmlf1GmmPnuPQnZ551izcyGQAwAAAEAAGh2fo9zqZOmNalUkh2hYTZtyg4dodHyOr7tmu1Nn6uNba9U6Lskrx5qdi22BfOPGjZoxY4buvfdeTZ8+3a5mAQAAAAAeYDgM3Zp3o7a5yrSvqUYp6ckaHZ9jW0G3vubETH1sYpQOHmzydXck2RTIm5ubtXDhQl188cV2NAcAAAAA6AXTMj8L2tVKiRpyxqBtOAzlJYyybc84zo8tgXzevHm68cYbtWbNGjuaAwAAAAD0UHePM+tuaIfn9DqQr127Vk1NTZo8eTKBHAAAAECfE2jBszvHmXnjDHKc2zkD+TXXXKPq6uou31u5cqUWLVqk559/vtcdiY+P7PL1xMSoXrfdnwTaeKXAGzPj9W+M178F2ngBwB8EYvDsznFm3Q3tgfQgwxfOGchfeeWVM763adMmHTx4UNdee60kqaGhQW+//bYaGxs1a9as8+qIy9Us07Q6vZbYhzbbe0OgjVcKvDEzXv/GeP2bN8drGI4zPqgGAJyf7gRPf9Od48zOFdoD8UGGL/RqyXphYaHee++9k1/PnTtXY8aMoco6AAAAgD6hO7PF/qY7x5mdK7QH4oMMX+AccgAAAAB+qzuzxf6mO8eZnSu0B+KDDF+wNZDPmzfPzuYAAAAAoFe6M1vsTV/cl31p/ASPXOdcx5mdK7QH4oMMX2CGHAAAAIDf6s5ssbd0tS97bd1G3TTyRz7pz9lCe197kOGvCOQAAAAA/Nq5Zou9pat92Y5VVX1yX3ZfepDhzwjkAAAAAOAFXe3LLk8O7rP7svvKgwx/xuMNAAAAAPCClKghGrb/uByfHffsMC1l1hxXSlTf3pdtWqZK6kr1j4rVKqkrlWmZvu6S32CGHAAAAAC8oKt92fkRaX16XzbnkXsWgRwAAAAAvKCrfdmXjpwgl6vF1107I84j9ywCOQAAAAB4yRf3ZRtG355l5jxyz+rbP30AAAAAgM90te99WE1bn9/33l8wQw4AAAAA/YxpmZ8tfa9WStQQjx1JxnnknkUgBwAAAIB+xJuF1jiP3LMI5AAAAADQB3R31runhdZ6OqvOeeSeQyAHACCAPPjgg3rvvfcUEhKi8PBw3XvvvcrLy5Mk1dXV6c4779Snn36q0NBQPfTQQxo7dqyPewwAgeF8Zr17UmitO+17axk8PkcgBwAggFx88cW65557FBwcrLffflu33XabVq9eLUlatGiRCgsLtXjxYm3atElz5sxRUVGRHA6Hj3sNAP7vfGa9U6KGaFjlcZXkWbIMhxympfTqVtUOOKCSutIug/S52ue8cd8gkAMAEEAuu+yyk/8uKCjQ/v37ZZqmDMPQypUr9eabb0qSCgsLFRISopKSEuXn5/uquwAQME7OektKrm5RTMMxHYiSqg5XnxbIv1hoLeXTIzLa3FqaXKF3Kz/pMkifa1ad88Z9g0cdAAAEqGXLlunSSy+VYRhqaGiQZVmKi4s7+X5ycrL279/vwx4CQOBIiRqiYTVtumhdjUZvrZez3VT0oTZtatgq0zI7fe+JQmu3pF+r6Q0ZCjEdev07aSouSNDrVyZp+/GOIH1a+2c5vuxsgR2ewww5AAB+5JprrlF1dXWX761fv15Op1OS9Pe//13Lly/XsmXLbO9DfHyk7W32FYmJUb7uQsDhnnsf99z7EhOjdGn8BK3Yt1qtzbV6Y3KaLMOhbXnxGrCqVvvaK/WlIXmnfS5p0ETVmy4tjdsjy9kx12oZDlUMCVGD6er0s7w0foLW1m2UY1WVypODlVlzXPkRabp05AQZhqHRx7OVWfKu6uKbNfBQmw4NDFFmTZtG52f55e9EXxkTgRwAAD/yyiuvnPN7Vq1apccee0xLlixRQkKCJCk2NlaSVF9ff3KWvKamRoMHDz7vPrhczTI/m4HxJ4mJUTp4sMnX3Qgo3HPv455736n3fOzAXL0Z2tJplrp8cLC27duttOCMLj8fZ8Rr2L7jKhnz+X7yYdVtOhx7RC+8/0qn4mw3jfzR58eXpXUcX+ZytUiShjhTFN5qKa/YpU+HRiiv2KXw48Ea4kzxu98Jb/6eG4bjrA+qCeQAAASQt99+Ww8//LCef/55paSkdHpv8uTJeumll3TTTTdp06ZNam1t1ZgxY3zUUwAIPKlRQzWs8r3TirUNTT/zw9Ev7icfVtOmiGOWXmvY0PH1F4qznen4su31O9US5tAbV34+O3/VG/u1vX4ne8g9iEAOAEAAufvuuxUcHKxbbrnl5GtLlixRbGysbr/9ds2ZM0evvvqqQkND9cgjj8gwKDcDAN5yIlwfX1mpqqEDlFx9RMYxU6uq39WYhNwuq52f2E9+YubbHduu1xo26PVvDD6v4mwde8hDzusoNfQegRwAgACyYcOGM76XmJioJUuWeK8zAIBODIehK5K/rLLyKrU7DZWMjdf+pAHSqpqzBupTZ77/UbFaFcnnH6y7OkptWE2bUtKTPTJWdCCQAwAAAIAk0zI/m2mu7rT32puqm/erPHWAto/5/NSL85mp7mmw7mrpe25wxz2A5xDIAQAAAAQ80zL1eMmftL29RhWDg0/be+0tvZ2p7mmw/uLS95T0ZJ88kAg0BHIAAAAAAW+bq0zb22v0+pVJ57X32m69nanuTbA+W9E3eAaBHAAAAEDA6yhqFuzxomZfXBZ/afyETu+fb6A+0zJ7gnX/QCAHAAAAEPC8UdSsq2Xxa+s26qaRP+oUuLsbqO1eZt8X9tAHGgI5AAAAgIDnjaJmXS2Ld6yq6vGyeDuX2feVPfSBhkAOAAAAIOB5o6hZV8viy5ODe7ws3s5l9n1lD32g4VEHAAAAAOjzpeLfHHaF8hJG2T4znBI1RMP2H5fDtCRJDtNSZs1xpUT1bFl8V+0Nq2nrUXtnC/fwHGbIAQAAAMALRsfnKOfTwXL8vUqHwh0aeMRS3sBhPV4Wb+cye2/socfpCOQAAAAA4CUOh0PuYEOuhFBF1hw76/eeq8iancvsvbGHHqcjkAMAAACAF5zYp73iG0NO7tN2rtrX5T7t7hZZs+uIM2/socfpCOQAAAAA4AXnU9TNF0XWOL/c+3jcAQAAAABecD5F3SiyFhiYIQcAAAAAL+hqn3Z+RFqX+7TPVGTNHduuf1Ss7nJPOfofAjkAAAAAeNiJAm05kRkaoTQZxwylpg/VpSMnyOVqOe37uwrvEccsvdawoePrM+wpR/9CIAcAAAAADzqtQNv+48oNStbkjCtkGF2H6S8WWXPHtuu1hg16/RuDvbanHJ7HoxQAAAAA8KBTC7QVj43X61cmafvxjjB9NieKrH1z2BVyOpyqSA5hT7mfIZADAAAAgAfZUaCtq4Jww2rauiwIh/6DJesAAAAA4EFnKtCWkt79MN3VnvLc4CFdFoRD/0EgBwAAAAAPsiNMf3FPeUp6MlXW/QCBHAAAAAA8yK4wfWJPOUXc/AeBHAAAAAA8jDCNrrC+AQAAAAAAH2CGPMCZpqXK8nrV1TYrISlSaZlxMj6r/ggAAAAA8BwCeQAzTUtFS0t0dGeTssoc2pxjafuIKE2ankcoBwAAAAAPY8l6AKssr9fRnU2a+Vyovv5OqGY+F6qjO5tUWV7v664BAAAAgN8jkAewutpmZZU55DQ7ZsOdpkNZZQ65apt93DMAAAAA8H8E8gBjmpb27HJp07t7ZbpN7cox5TYsSZLbsLQ7x1J8UqSPewkAAAAA/o895AHki3vGd+dYOhrt0H/ObFV2maHdOZYGjIhSWmacr7sKAAAAAH6PQB5ATt0z7jQdumydpedmHlPKN4aq/ZuGxlNlHQAAAAC8hkAeQM60Z7z9m4a+dFG6j3sHAAAAAIGFPeQBJCEpUrtzLPaMAwAAAEAfYMsM+Ysvvqhly5YpODhYhmHotddes6NZ9JJpWqosr1ddbbMSkiKVkhGr7SOi9NzMz/eQs2ccAAAAAHyj14H8jTfe0MqVK/XXv/5VkZGRqqurs6Nf6KUvFnDbnGNp+4goXTltjPbtaZCrtpk94wAAAADgQ70O5IsXL9bs2bMVGdmx7DkhIaHXnULvdV3ArUn79jQoIzteGdnxvu4iAAAAAAS0Xgfy3bt36+OPP9YTTzyhtrY2TZ06Vd///vfPu534+K73MScmRvW2i/2KXePdvqVG2WVGpwJu2WWGjjYf73P3tK/1x9MYr39jvP7Nn8a7ceNGzZgxQ/fee6+mT58uSaqrq9Odd96pTz/9VKGhoXrooYc0duxYH/cUAAD/dc5Afs0116i6urrL99avXy+3262amhr9+c9/VkNDg37wgx9o2LBhmjBhwnl1xOVqlmlanV5LTIzSwYNN59VOf2bneAdEhmh7jqlL11lymg65DUu7ckyNjwzuU/eUn7F/Y7z+jfF6jmE4zvig2g7Nzc1auHChLr744k6vL1q0SIWFhVq8eLE2bdqkOXPmqKioSA4HW5sAAPCEcwbyV1555azvDxkyRFOmTJFhGIqPj9dXvvIVFRcXn3cgh73SMuMo4AYA6NK8efN04403as2aNZ1eX7lypd58801JUmFhoUJCQlRSUqL8/Hwf9BIAAP/X62PPpkyZon/+85+SpCNHjujDDz9UTk5OrzuG3jEMhyZNz9P4GTlqv22oxs/I0aTpeRRwA4AAt3btWjU1NWny5MmdXm9oaJBlWYqL+/zBbXJysvbv3+/tLgIAEDB6vYd8xowZ+uUvf6lvf/vbkqSrr75aF110Ua87ht4zDAcF3AAgwJxtq9nKlSu1aNEiPf/88x7tgyeX2/uaP9UR6C+4597HPfc+7rn39ZV73utAHhYWpgULFtjRFwAA0Etn22q2adMmHTx4UNdee62kjlnxt99+W42NjZo1a5Ykqb6+/uQseU1NjQYPHnzefeiqLow/CLS6CX0B99z7uOfexz33vr5UF6bXgRwAAPQPhYWFeu+9905+PXfuXI0ZM+ZklfXJkyfrpZde0k033aRNmzaptbVVY8aM8VV3AQDwewRyAAAgSbr99ts1Z84cvfrqqwoNDdUjjzwiw+h1uRkAAHAGBHIAAALUvHnzOn2dmJioJUuW+KYzAAAEIB57AwAAAADgAwRyAAAAAAB8gEAOAAAAAIAPEMgBAAAAAPABAjkAAAAAAD4Q0FXWLdOUu6pY7XV75DBNyTDkTMiQMzVfDo55AQAAAAB4UMAGcss0dWTVPLUf3SbTfVQOOXR8RI1CtgxTUNlohV85l1AOAAAAAPCYgA3k7qpitbdu05GLNylsXY6aZqyRnJZaL9mmqOfcOrL8YVlHGuRMzFTIxTPlDAnxdZeB/9/evYdHVd37H3/PnswkhARCLoRcgICIXMKlFLQHT0AgSIqhEHv4iVU8iODTWvE57cMlCMUKtIhUPdVyfj5WLU8Vb6jEI0RuWoUDKjeRhJv8uJiQSQK5QBKSEDKzf39QcowJMZBkdjL5vP6azF7ZUqzEJAAAFw1JREFU811rr1l7vrPW3iMiIiIiIj6k3U4Buwu/par3aexnO1Pd6yzYzSsbbCamWcXly/upiN/JpQvbuPjmTC6d3I3p8TRrDB7TQ0bBYT46tY2MgsN4mnn/IiIiIiIi0nq12xlye1hPnAfiKE/YS8D2/jD6MNhN/I5HYQNKH972zxnzwwS/lEjl9heoPt7/upeye0wPmQVH2H/2IABDI+IxMTlwNpPDpScpcl7m26gAemVd5rOCL3nkln/HsLXb70lERERERETajfabkHcffOVa8c/ArKgm+K/j/nkNeRxVQ07/74y53eTyLS4cB3twuewrqrMO4Igb1qjX8Jge/jPjFb6u/JbiEAcR5yrZVfg1punhssNOtcMgMz6Mzheq2DMwCFtmFocKjzIofEDLVVxERERERERahXY7FWszDALHp9Jx2DyckWOwlXTAcaAnJiaOE93AbbtS0G3DcSwaM/ASl/ueofrknka/xqHCoxyqyqYk2I+gi9Wc6hVMRQc7pmFQEObA7jaJzyzCXu1hwOEiKswqsktcLVRjERERERERaU3abUIOV5Jyv55D6TDmYWxuOwRWUTrnIzwh5QT9bQwBHw8k+KVEbGX+VP7rERzHo65r/2dKXRR0stOh0s3HibFkDglnS1IPLgXY6ZZ/CY/dxtY7u5M5JJyPE7tjM8GDu4VqKyIiIiIiIq1Ju07Ir7IZBjZHJy7fnAsOk4v/9jmVow9jPxOKrSgQT8dKAnb2x1beAb/eIxq939jgaCLPXSIvsgOmcWXG3TRsuGI6YpiQE9Ox1vM5MR11/biIiIiIiEg7oezvn/z6jcLxTfSVpeoGVPfOxygPwPTzYHaswrgUhD18AH49hjZ6nwPD+tHdP4KYnIvYPFeuSbd5TGLOXOR8iJNu+RW1nu/pqqR7cEyL1E9ERERERERal3Z7U7fv8//x3Vw+sZXglxK53NeF45tojIrO+I/+FVzIxT6wB/bug6/rDuuGzWDhsDn88au/YN90huyYDvRwVdK5yo9iTxWVAX6M35yNKzqQ2JyL9HF2Y2BYv5r/95geDhUe5Uypi9jgaAaG9dMMuoiIiIiIiI9QQv5Php8fQf/n/3L5q//GmfX/sPfsg+NHP8Pwa1oT+Rl+LB72GJkFR1h3YgP5psl52yWcVeAx3FwI8afXyRIc1SZBDidfn8tkSEQ8AP+Z8QpHqnM51c1Br6zL9HdF8R+DHlJSLiIiIiIi4gOUkH+H4eeH/4i7m3+/NgObzUaeo5JSAzpUGlwMtPNxYndMw4bNYzJ+czZfVZwm49gpbnH14s6Yf+VIdS7/PT4S07CRMciELS79LJqIiIiIiIiP0FSrl5wpdXE2CALLq7nY0UFet8Dv3egtkJO9O1MZYOdY2Wn25n/NqW6OWmVORTk5U5prZTVERERERESkmSgh95LooG50y6ugICKADhXVdMsrr3VDt265FZwP9ScnpiMem8m+c1/T3VX7pm+9cquIDb6+n14TERERERGR1klL1r3Eho3LToOgsipKgh10Ka7izk1ZuGI6EplXTkWgH3mRHRh8oACPYeNo32DiTpXWlOmeU0F//x61bvomIiIiIiIibZdmyL3kTJmLrB4dqQh00KHCTUG4PwHll7n5m/P4X3JzIdjBnZuzcV5yk35XTzKGRrDhZ3EYHpMO5dU43TAu6l90QzcREREREREfoezOCzymh32FmUS5ytk1shuHBodxISSAqgA/XJEBOC+5ufn4BQy3yalewZj2K4fFtBtk9wiitJOTkz0CcZXlW1wTERERERERaS5KyL3gUOFRsmwlVDkM7tycTdi5CmJyLlLSyUlYmcltYUNw+vljmCbRuRV1ri2/0Nmp68dFRERERER8jK4h94IzpS5ORTk5GB/J2E9yiDtdSkF4AOEXqon378GM+Ht5wPTwWf4ONpz8jImbc8iKDiAm5yImMCKjhP7OGF0/LiIiIiIi4kOUkHtBbHA0vbIukzHIxifjYol2XeS2vYVMihrFxF7jMWwGhs1g2uCfMabbaA4VHiW7NAdPmAcDO907RTMwrJ+uHxcREREREfEhSsi9YGBYP/q7omDLlZnyXrlV3BIcV5OMf5dhMxgUPoBB4QMsilZERERERES8QQm5Fxg2g/8Y9BCHCo9ypjSX2J5RmvEWERERERFp55SQe4lmvkVEREREROS7NEUrIiIiIiIiYgEl5CIiIiIiIiIWUEIuIiIiIiIiYgEl5CIiIiIiIiIWUEIuIiIiIiIiYgEl5CIiIiIiIiIW8MmfPTM9Hi5mHORS1rf49+hJx0GDsRn67kFERATgtddeY+3atTgcDgzD4IMPPgCgoqKChQsXcujQIex2OwsWLGDMmDEWRysiIuK7fC4hryor49jcheSXBrP9/AhGR7xPjwGf0mfuY0rKRUSk3duyZQubNm3i3XffJSgoiIKCgpptr7zyCkFBQWzdupXTp09z3333sWXLFjp27GhhxL7F4zE5eLKQrPxSekQGM7h3GIZhszosERGxiE9lqJfLyzk657fklXZieuZzvJj9APd/tYqsjHOUHTxgdXgiIiKWe/XVV3n00UcJCgoCIDw8vGbbRx99xD333ANAXFwc8fHxbN++3ZI4fZHHY/KX13ezYc2n2J9bw4Y1n/KX13fj8ZhWhyYiIhbxqYT8zIplVHr82V58K27zyuS/2/Tjs8LhlO3dY3F0IiIi1jtx4gRff/0106ZN4+677+add96p2eZyuYiJian5Oyoqiry8PCvC9EkHTxZS8k02z7z8DDO2b+KZl5/hwjdnOHiy0OrQRETEIj61ZL26oICvSn7MrZ2/5uWcabhNP+y2ahK67AF6Wh2eiIhIi0tJScHlctW7bdeuXbjdbnJzc3njjTcoLi7m3nvvpVevXowYMaLZYggLC2q2fbU2ERHBN/y/hQdcDDuaiZ/HA4Cfx8OPj2ZQVPYvTdqvr1PbeJ/a3PvU5t7XWtrcpxJyv/BwepdkcaYyipcGpLL7wlBGdfmSUMd5gn78b1aHJyIi0uLWr1/f4Pbo6GiSk5MxDIOwsDBGjhzJwYMHGTFiBNHR0eTk5BAaGgpAbm4ut91223XHUFhY5pPLsCMigjl3rvSG/z8syMmGfvHc9z+b8fN4qDYM9vUbxKQgZ5P268ua2uZy/dTm3qc29z5vtrlh2Br8otqnlqzHLvwd4Y5iYgNcuCojmRSxjQhnIcF9exM0ZKjV4YmIiFguOTmZHTt2AFBeXs6+ffvo168fAElJSbz99tsAnD59moyMDBISEiyL1dcM7h1Gp77d+e2suawZlcRvZ82lc99YBvcOszo0ERGxiE/NkDsCA4n/r2fIXrGMnmf3YHToQPi9D9J5xK26w7qIiAgwY8YMfve733HXXXcBMHnyZG6//XYAHnroIVJTUxk/fjyGYbB06dKam79J0xmGjUfvv5WDJ28iO38Yk3SXdRGRds+nEnK4kpT3XrbC6jBERERapYCAAFatWlXvtsDAQJ5//nkvR9S+GIaNoX3CGdon/IcLi4iIz9O0sYiIiIiIiIgFlJCLiIiIiIiIWEAJuYiIiIiIiIgFlJCLiIiIiIiIWKDJN3U7deoUS5YsoaSkhKqqKiZOnMicOXOaIzYRERERERERn9XkhHzVqlVMmDCB+++/n4sXL5KcnMzo0aMZPHhwc8QnIiIiIiIi4pOavGTdZrNRWloKQGVlJTabjdDQ0CYHJiIiIiIiIuLLmpyQP/7446Snp5OQkMDYsWN56KGHiI2NbY7YRERERERERHzWDy5ZT0lJweVy1btt165dvP3220yePJlZs2Zx9uxZpk+fTnx8PEOGDLmuQMLCgup9PiIi+Lr209a1t/pC+6uz6uvbVF/f1t7qe6MMw2Z1CC3Gl+vWWqnNvU9t7n1qc+/zVpv/0OvYTNM0m/ICP/rRj9i2bRthYWEAPPHEE3Tv3p1Zs2Y1ZbciIiIiIiIiPq3JS9ZjY2PZsWMHAGVlZezbt4+bb765yYGJiIiIiIiI+LImz5BnZmayfPlyysvLqa6uZuLEiTz66KPNFZ+IiIiIiIiIT2pyQi4iIiIiIiIi16/JS9ZFRERERERE5PopIRcRERERERGxgBJyEREREREREQsoIRcRERERERGxgBJyEREREREREQsoIRcRERERERGxgJ/VAXzwwQe8/PLLnDhxgscff5z777+/ZltFRQULFy7k0KFD2O12FixYwJgxY+rdzzvvvMNf//pXTNNk1KhRLF68GMNo3d83zJgxg+LiYgDcbjfHjx/ngw8+oF+/frXKffnllzz88MPExcUB4HQ6WbdunbfDbbLU1FR27dpFly5dAEhKSuJXv/pVvWVXr17N+vXrAUhJSeHXv/611+JsTk8++SSff/45TqeTwMBAFi1axKBBg+qUe//99/njH/9ITEwMALGxsaxevdrb4d6QU6dOkZqayvnz5wkJCWHlypU1ffUqt9vN8uXL2bFjBzabjYcffpipU6daE3ATFBcXM3/+fLKysnA6nfTs2ZOlS5cSGhpaq9z19PXWbuzYsTidTvz9/QGYO3cuCQkJtcpcz1jd2p05c6bWeFNaWkpZWRm7d++uVe6FF17gjTfeoGvXrgAMGzaMJ554wquxivc09J4uKChg/vz55OTk4O/vz7JlyxgyZIiV4fqExpxbpOmuNcYfOHCAJUuWcOnSJWJiYli1ahVhYWEWR9s2rVy5ks2bN5OTk8OHH35I3759gYb7uPp/01yrzRv6TGNpnzctduzYMfP48ePmvHnzzNdee63WthdeeMFctGiRaZqmeerUKXPkyJFmWVlZnX1kZWWZCQkJZmFhoel2u82ZM2ea69ev90r8zWXr1q3mXXfdVe+2L774wkxJSfFyRM1vwYIFdY5xfXbv3m0mJyebFRUVZkVFhZmcnGzu3r3bCxE2v08++cSsqqqqeTxu3Lh6y7333nvmnDlzvBlas5k+fbqZlpZmmqZppqWlmdOnT69TZv369ebMmTNNt9ttFhYWmgkJCWZ2dra3Q22y4uJi84svvqj5+6mnnjIXLlxYp1xj+3pbMGbMGPPYsWMNlmnsWN0WLV++3HzyySfrPP/888+bTz31lAURiRUaek+npqaaq1evNk3TNPfs2WOOHz/e9Hg83gzPJzXm3CJNV98Y73a7zcTERHPPnj2maZrm6tWrzdTUVCvC8wl79uwxXS5XnbZuqI+r/zfNtdr8Wp9prO7zlk8h9+3blz59+tQ7m/3RRx9xzz33ABAXF0d8fDzbt2+vU27z5s0kJiYSGhqKYRhMnTqV9PT0Fo+9Ob377rv8/Oc/tzqMViE9PZ0pU6YQEBBAQEAAU6ZMaXPH86oxY8bgcDgAGDp0KHl5eXg8Houjaj6FhYUcPnyY5ORkAJKTkzl8+DBFRUW1yqWnpzN16lQMwyA0NJTExEQ2bdpkRchNEhISwm233Vbz99ChQ3G5XBZG1Do0dqxua6qqqvjwww81NkuDNm3axLRp0wAYPnw4TqeTjIwMi6Nq2xp7bpGWkZmZib+/P8OHDwdg2rRpbfKc3VoMHz6cqKioWs811MfV/5uuvjZviNV93vKEvCEul6tmCS9AVFQUeXl5dcrl5uYSHR1d83d0dDS5ubleibE5nDt3js8//5zJkydfs8zp06dJSUlh6tSpNUu526K//e1vTJo0iUceeYQTJ07UW+b7xzMqKqpNHc9rWbt2LXfcccc1L6XYvXs3kydP5r777uPTTz/1bnA3KDc3l8jISOx2OwB2u52uXbvWOV71HdP63stticfj4c0332Ts2LH1bm9MX28r5s6dy6RJk/j9739PSUlJne2NHavbmk8++YTIyEgGDhxY7/aNGzcyadIkZs6cyVdffeXl6MTb6ntPFxcXY5pmrctWfKX/W6mx5xZpHt8f479/zg4NDcXj8XD+/HkLo/QtDfVx9f+WVd9nGqv7fItfQ56SknLNGaRdu3bVdDZf1Ni6p6WlkZCQUOc61KsGDhzIZ599RnBwMNnZ2Tz44INERkYycuTIFov9RvxQfX/zm98QERGBYRikpaUxa9Ystm3b1qb7QGOP8caNG/nwww9Zu3ZtvWXvuOMOJk6cSEBAAIcPH2b27Nn8/e9/56abbmqx2KVpli1bRmBgYK37XlzlS3197dq1REVFUVVVxR/+8AeWLl3Kn/70J6vD8or33nvvmrPj06ZN45e//CUOh4OdO3fyyCOPkJ6eXnONsbQtN3r+Emnr6hvjx48fb3VYIi2itX6mafGEvCmzudHR0eTk5NQkqrm5ubWWi14VFRVV60Tqcrmua5lCS2ls3d9//33mz59/ze1BQUE1j7t3705iYiL79+9vdQn5D9U3MjKy5vGUKVNYsWIFeXl5tWbWoO7xzM3NbRXHsz6NOcZbt27lueeeY82aNYSHh9db5rtfxgwYMIBhw4Zx8ODBVp+QR0VFkZ+fj9vtxm6343a7OXv2bJ3jdfWYDh48GKj7TWRbs3LlSr799ltefPHFelc8NLavtwVXj6XT6eQXv/hFvTena+xY3Zbk5+ezZ88enn766Xq3R0RE1Dy+/fbbiYqK4vjx49x6663eClGaUVPPX0VFRbX6f7du3Vou2HagsecWabr6xvgHHnig1uewoqIiDMMgJCTEqjB9TkN93DRN9f8Wcq3PNN/PPbzd51v1kvWkpCTefvtt4MqS7YyMjDp39wWYMGEC27Zto6ioCI/Hw7p16/jpT3/q7XBvyP79+yktLWXUqFHXLHP27FlM0wTg/Pnz7Ny5s86d2NuC/Pz8msc7duzAMIxaH3KuSkpKIi0tjcrKSiorK0lLS2szx/P7/vGPf7BixQpeeeUVYmNjr1nuu22Tk5PDgQMHuOWWW7wRYpOEhYXRv39/NmzYAMCGDRvo379/ndUeSUlJrFu3Do/HQ1FREdu2bWPChAlWhNxkzz77LJmZmaxevRqn01lvmcb29dauvLyc0tJSAEzTJD09nf79+9cp19ixui1Zv349o0ePvuaM93eP8ZEjR8jJyaFXr17eCk+8rKH3dFJSEm+99RYAe/fupbKykvj4eEvi9BWNPbdI01xrjI+Pj6eyspK9e/cC8NZbb5GUlGRlqD6noT6u/t8yGvpMY3Wft5lXMz2LbNiwgaeffpqSkhIcDgcdOnTg1VdfpU+fPpSXl5OamsqRI0cwDIN58+aRmJgIwJ///Ge6du3KvffeC1xpuJdffhm4MluxZMmSNrE8dPHixYSEhDB37txaz3+3fq+//jpvvvkmfn5+uN1upkyZwqxZsyyK+MbNmDGDwsJCbDYbQUFBzJ8/n6FDhwKwaNEixo4dy7hx44ArPymUlpYGXJmNmDNnjmVxN8VPfvITHA5HrUF0zZo1dOnSpVadn332WT7++OOaPvvggw+SkpJiVdjX5cSJE6SmplJSUkKnTp1YuXIlvXv3Zvbs2Tz22GMMGjQIt9vN0qVL2blzJwCzZ8+uuQlYW3L8+HGSk5OJi4sjICAA+N+fqJs8eTIvvfQSkZGRDfb1tiQ7O5s5c+bgdrvxeDzcdNNNLF68mK5du9aqb0NjdVs1YcIEFi1aVOvL0u/26QULFnDo0CEMw8DhcPDYY48xevRoCyOWltTQe/rcuXPMmzcPl8uFv78/Tz75JMOGDbM44rbvWucWaT4NjfH79+/niSeeqPUTUNda5ScNW758OVu2bKGgoIAuXboQEhLCxo0bG+zj6v9NU1+bv/jii9fs74Clfd7yhFxERERERESkPWrVS9ZFREREREREfJUSchERERERERELKCEXERERERERsYASchERERERERELKCEXERERERERsYASchERERERERELKCEXERERERERsYASchEREREREREL/H+VIYVuc6IKVgAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"code","source":["df_check = df_store_info.copy()\n","\n","df_check['0_kmeans'] = KMeans(n_clusters=5).fit(df_clust_0).labels_\n","df_check['1_kmeans'] = KMeans(n_clusters=5).fit(df_clust_1).labels_\n","df_check['2_kmeans'] = KMeans(n_clusters=5).fit(df_clust_2).labels_\n","df_check['3_kmeans'] = KMeans(n_clusters=5).fit(df_clust_3).labels_\n","df_check['4_kmeans'] = KMeans(n_clusters=5).fit(df_clust_4).labels_\n","df_check['5_kmeans'] = KMeans(n_clusters=5).fit(df_clust_5).labels_\n","df_check.head()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":237},"id":"5zAAWuSFp-vO","executionInfo":{"status":"ok","timestamp":1653297537674,"user_tz":-180,"elapsed":1671,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}},"outputId":"f0a9ef37-3183-4565-d172-3522b2a70db9"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" StoreName StoreType StoreArea 0_kmeans 1_kmeans \\\n","StoreID \n","21 БМ Тмн, 50 Лет Октября, 109 БИГ 676.80 3 3 \n","22 БМ Тмн, Панфиловцев 86/1 БИГ 689.44 0 2 \n","23 БМ Тмн, Пермякова, 2 к1 БИГ 417.89 0 2 \n","24 БМ Тмн, Щербакова, 99 БИГ 421.84 3 3 \n","25 БМ Тмн, Домостроителей, 32 БИГ 662.63 0 2 \n","\n"," 2_kmeans 3_kmeans 4_kmeans 5_kmeans \n","StoreID \n","21 4 0 1 0 \n","22 2 3 1 0 \n","23 2 3 1 0 \n","24 2 3 1 0 \n","25 2 3 1 0 "],"text/html":["\n"," <div id=\"df-f87efc74-c3fe-48fb-8936-b8dd17489559\">\n"," <div class=\"colab-df-container\">\n"," <div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>StoreName</th>\n"," <th>StoreType</th>\n"," <th>StoreArea</th>\n"," <th>0_kmeans</th>\n"," <th>1_kmeans</th>\n"," <th>2_kmeans</th>\n"," <th>3_kmeans</th>\n"," <th>4_kmeans</th>\n"," <th>5_kmeans</th>\n"," </tr>\n"," <tr>\n"," <th>StoreID</th>\n"," <th></th>\n"," <th></th>\n"," <th></th>\n"," <th></th>\n"," <th></th>\n"," <th></th>\n"," <th></th>\n"," <th></th>\n"," <th></th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>21</th>\n"," <td>БМ Тмн, 50 Лет Октября, 109</td>\n"," <td>БИГ</td>\n"," <td>676.80</td>\n"," <td>3</td>\n"," <td>3</td>\n"," <td>4</td>\n"," <td>0</td>\n"," <td>1</td>\n"," <td>0</td>\n"," </tr>\n"," <tr>\n"," <th>22</th>\n"," <td>БМ Тмн, Панфиловцев 86/1</td>\n"," <td>БИГ</td>\n"," <td>689.44</td>\n"," <td>0</td>\n"," <td>2</td>\n"," <td>2</td>\n"," <td>3</td>\n"," <td>1</td>\n"," <td>0</td>\n"," </tr>\n"," <tr>\n"," <th>23</th>\n"," <td>БМ Тмн, Пермякова, 2 к1</td>\n"," <td>БИГ</td>\n"," <td>417.89</td>\n"," <td>0</td>\n"," <td>2</td>\n"," <td>2</td>\n"," <td>3</td>\n"," <td>1</td>\n"," <td>0</td>\n"," </tr>\n"," <tr>\n"," <th>24</th>\n"," <td>БМ Тмн, Щербакова, 99</td>\n"," <td>БИГ</td>\n"," <td>421.84</td>\n"," <td>3</td>\n"," <td>3</td>\n"," <td>2</td>\n"," <td>3</td>\n"," <td>1</td>\n"," <td>0</td>\n"," </tr>\n"," <tr>\n"," <th>25</th>\n"," <td>БМ Тмн, Домостроителей, 32</td>\n"," <td>БИГ</td>\n"," <td>662.63</td>\n"," <td>0</td>\n"," <td>2</td>\n"," <td>2</td>\n"," <td>3</td>\n"," <td>1</td>\n"," <td>0</td>\n"," </tr>\n"," </tbody>\n","</table>\n","</div>\n"," <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-f87efc74-c3fe-48fb-8936-b8dd17489559')\"\n"," title=\"Convert this dataframe to an interactive table.\"\n"," style=\"display:none;\">\n"," \n"," <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n"," width=\"24px\">\n"," <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n"," <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n"," </svg>\n"," </button>\n"," \n"," <style>\n"," .colab-df-container {\n"," display:flex;\n"," flex-wrap:wrap;\n"," gap: 12px;\n"," }\n","\n"," .colab-df-convert {\n"," background-color: #E8F0FE;\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: #1967D2;\n"," height: 32px;\n"," padding: 0 0 0 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-convert:hover {\n"," background-color: #E2EBFA;\n"," box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: #174EA6;\n"," }\n","\n"," [theme=dark] .colab-df-convert {\n"," background-color: #3B4455;\n"," fill: #D2E3FC;\n"," }\n","\n"," [theme=dark] .colab-df-convert:hover {\n"," background-color: #434B5C;\n"," box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n"," filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n"," fill: #FFFFFF;\n"," }\n"," </style>\n","\n"," <script>\n"," const buttonEl =\n"," document.querySelector('#df-f87efc74-c3fe-48fb-8936-b8dd17489559 button.colab-df-convert');\n"," buttonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n"," async function convertToInteractive(key) {\n"," const element = document.querySelector('#df-f87efc74-c3fe-48fb-8936-b8dd17489559');\n"," const dataTable =\n"," await google.colab.kernel.invokeFunction('convertToInteractive',\n"," [key], {});\n"," if (!dataTable) return;\n","\n"," const docLinkHtml = 'Like what you see? Visit the ' +\n"," '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n"," + ' to learn more about interactive tables.';\n"," element.innerHTML = '';\n"," dataTable['output_type'] = 'display_data';\n"," await google.colab.output.renderOutput(dataTable, element);\n"," const docLink = document.createElement('div');\n"," docLink.innerHTML = docLinkHtml;\n"," element.appendChild(docLink);\n"," }\n"," </script>\n"," </div>\n"," </div>\n"," "]},"metadata":{},"execution_count":13}]},{"cell_type":"code","source":["fig, ax = plt.subplots(3, 2, figsize=(12, 12))\n","\n","draw_clustering(items=PCA(n_components=2).fit_transform(df_clust_0), labels=df_check['0_kmeans'], ax=ax[0, 0], comments=False)\n","draw_clustering(items=PCA(n_components=2).fit_transform(df_clust_1), labels=df_check['1_kmeans'], ax=ax[0, 1], comments=False)\n","draw_clustering(items=PCA(n_components=2).fit_transform(df_clust_2), labels=df_check['2_kmeans'], ax=ax[1, 0], comments=False)\n","draw_clustering(items=PCA(n_components=2).fit_transform(df_clust_3), labels=df_check['3_kmeans'], ax=ax[1, 1], comments=False)\n","draw_clustering(items=PCA(n_components=2).fit_transform(df_clust_4), labels=df_check['4_kmeans'], ax=ax[2, 0], comments=False)\n","draw_clustering(items=PCA(n_components=2).fit_transform(df_clust_5), labels=df_check['5_kmeans'], ax=ax[2, 1], comments=False)\n","\n","plt.tight_layout()\n","plt.legend()\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":869},"id":"PZ2rjOXWN1wc","executionInfo":{"status":"ok","timestamp":1653297920749,"user_tz":-180,"elapsed":8274,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}},"outputId":"82d00cd7-7722-4e0a-8824-e55e3986287e"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["<Figure size 864x864 with 6 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA1QAAANUCAYAAAC0YWxdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde3yU5Z3///fckwNCEiEHkkAScqAhARJDGnXbbrWiGPoth/rYtrKW9muVdruura2K0u4WRXsQlN3qak8/RL+Ku3bb71cotOWgtFLFWhAhgRCjJJBgDpIJSAIkgbnv3x+BmEAOM5OZ3HN4PR+PPh6QycxcuZjm9n1fn+tzOSzLsgQAAAAA8Jph9wAAAAAAIFQRqAAAAADARwQqAAAAAPARgQoAAAAAfESgAgAAAAAfEagAAAAAwEcEKgAAAADwUZTdA/DE8eOnZJqhdVxWUlKcXK4Ou4cRcpg37zFnvmHevBfIOTMMhyZMGBeQ1w60ULxGDYT/T3iOufIM8+QZ5skzds7TcNeokAhUpmmF5MUqFMccDJg37zFnvmHevMecXSpUr1EDCZefYzQwV55hnjzDPHkmWOeJkj8AAAAA8BGBCgAAAAB8RKACAAAAAB8RqAAAAADARwQqAAAAAPBRSHT5A4BIZ5mmTlVWqKv+iGKzpmhcUbEcBvfEAADBLRKuXwQqAAhylmnqvceeUMM7H+rVlhJdm7pBmdP+rKn3fjvsLkoAgPARKdcvAhUABLlTlRVqeOdDfXn3I3JbUfpVwyK9oPuVXlmhuCtK7B4eAAADipTrV/hEQwAIU131R/RqS4ncVs89MLcVpVdbZqmrod7mkQEAMLhIuX4RqAAgyMVmTdG1qXvldJyTJDkd53Rt6tuKzcyyeWQAAAwuUq5flPwBQJAbV1SszGl/1gu6X6+2zNK1qW8rc9p4jSsqtntoAAAMKlKuXwQqAAhyDsPQ1Hu/rfTKCl3RUK/YzM+HZZckAEB4iZTrF4EKAEKAwzAUd0VJWG3iBQCEv0i4foVXPAQAAACAUcQKFQAAAIBhRcIhvb4gUAEAAAC4RN8AFZORqeZtO8L+kF5fEKgAIEhw5w8AECws09R7jz3RG6DKU3+t093R+krF6rA+pNcXBCoACAIXX7i48wcAsNOpygo1vPOhvrz7EbmtKHWei1ass/uSQ3qvaKiP+EDFVRoAgkDfC9fP6xfry7sfUcM7J3SqssLuoQEAIlBX/RG92lLSG6DeOZ2nT17+Vtgf0usLAhUAjCLLNNWxb69cGzeoY99eWaYp6dIL14U7f10N9XYOFwAQoWKzpuja1L29AWrXh8VKjD2pF0qX6o6s5/V/y76ljOROWZbZey2LVJT8AcAoGaqsr+fCtUG/algktxXV587f5+0eNgAgAo0rKlbmtD/rBd2vV1tm6drUtzU+P1sFcz6ttBfXq+nYZXrhQKmu/c+Nypy2I6JL1AlUADBKLq5H77uht++Fa0dLiW5M3ankZKP3zl+kXqQAAPZwGIam3vttpVdW6IqGesVmfl7jiop1qrJCza5oLd5z6bUsUvdS+e0K3dXVpQceeEA33nij5s+frx/84AeSpLq6Ot18880qLy/XzTffrMOHD/vrLQEgpAxV1nfhwnXlnQv0pem7dca8TC8c+IR2/edGvffYExFfTgEAGH0Ow1DcFSVKmrdAcVeUyGEYlKgPwG+B6tFHH1VsbKy2bNmijRs36q677pIkPfDAA7rlllu0ZcsW3XLLLVq+fLm/3hIAQsrF9egXb+h1GIYchnH+zt8qmlMAAILOcNeySOSXkr9Tp05p/fr1evXVV+VwOCRJycnJcrlcqqqq0jPPPCNJmjdvnh5++GG1tbUpMTHRH28NACFjoHr0zGnjNa6ouPd7BrvzR1vakevq6tKPf/xjvfHGG4qNjVVJSYkefvhh1dXVadmyZTpx4oTGjx+vlStXKjs72+7hAkBQ8uRaFmn8EqgaGho0fvx4Pfnkk3rzzTc1btw43XXXXRozZoxSU1PldDolSU6nUxMnTlRTU5NXgSopKc4fwxx1KSnxdg8hJDFv3mPOfGPHvKU88n0V7Hlbn6w7rHE5/6gJpbPkOP87UpKcRQX6TNqv+zWn+EzaXk2cuUiJQfDvHMqftb6VFA6HQ62trZI+qqRYuHChNmzYoOXLl+u5556zebQAEJwG21sVyXt9/RKo3G63GhoaNH36dN1///3at2+fvvnNb+rxxx/3x8vL5eqQaVp+ea3RkpISr2PH2u0eRshh3rzHnPnG1nnLnqYx2dPkltTadrrfQ1bWx5SRn6AXrI/u/GXkj9e5rI/Z/u8cyDkzDEdAb55RSQEA/nNhbxWVEz38EqjS09MVFRWlefPmSZKuuOIKTZgwQWPGjFFLS4vcbrecTqfcbrc++OADpaen++NtASDs9LvzV39ElrtYMgydOt8JMJLvAI5EoCspAACRyy+BKjExUVdffbVef/11/f3f/73q6urkcrmUnZ2twsJCbdq0SQsXLtSmTZtUWFjIRQoAhuAwDI0rKlbTlj8PeGYVocp7gaykCNWy9IGEcknnaGOuPMM8eSbY5slyu3V8z9s6VVuncbk5l5Sn2yXY5ukCv51DtWLFCn3/+9/XypUrFRUVpVWrVikhIUEPPvigli1bpp/97GdKSEjQypUr/fWWABC2hjqzihIL7wWykiIUy9IHQvmw55grzzBPngm2ebr0EPoXlTntj7bf0LNznoYrS/dboMrMzNTzzz9/ydfz8vL0m9/8xl9vAwARgW5//kUlBQB4ZiQ39CzT1KnKCnXVH1Fs1pSIKVUP/58QAEIQ53z434oVK/TLX/5S8+fP1913392vkmLdunUqLy/XunXrtGLFCruHCgC28fXg3gsrW397YoOe+KX0tyc2RMzB9H5boQIA+A/nfPgflRQAMLyeG3ob+h3f0XND7/NDPi+SS9UJVADgJX+UNAz3GpzzAQCwg6839CK5VJ1ABQBeuHSzrvfd9zx9Dc75AACMNl9v6Pm6shUOCFQA4AV/lDREclkEACD4+XJDL5JL1QlUAOAFf5Q0RHJZBAAgPEVyqXr4/4QA4Ef+6L5HBz8AQDi6sLKVNG+B4q4oiYgwJbFCBQBe8UdJQySXRQAAEG4IVADgBX+UNERyWQQAAOGGQAUAXvJH9z06+AEARps/jv3ApQhUAAAAQJjzx7EfGBiBCgAAAAhzHNkROMRRAAAAIMwNdmRHV0O9zSMLfQQqAAAAIMxxZEfgUPIHAAAAhDmO7AgcAhUAAAAQ5jiyI3AIVAAAAEAE4MiOwCCSAgAAAICPCFQAAAAA4CMCFQAAAAD4iEAFAAAAAD4iUAEAAACAjwhUAAAAAOAjAhUAAAAA+IhABQAAAAA+IlABAAAAgI/8HqiefPJJTZs2TTU1NZKkvXv3asGCBSovL9dtt90ml8vl77cEAAAAAFv4NVAdOHBAe/fu1eTJkyVJpmlq6dKlWr58ubZs2aKysjI99thj/nxLAAC8wo0/AIA/+S1QdXd366GHHtKDDz7Y+7X9+/crNjZWZWVlkqRFixZp8+bN/npLAAC8wo0/AIC/+S1QPf7441qwYIEyMjJ6v9bU1KRJkyb1/j0xMVGmaerEiRP+elsAADzCjT8AQCBE+eNF3n77be3fv1/33nuvP17uEklJcQF53UBLSYm3ewghiXnzHnPmG+bNe6E8Z97e+Bs/frxHrxuq16iBhPK/72hjrjzDPHmGefJMsM6TXwLVrl27dOjQIV1//fWSpObmZt1+++36yle+osbGxt7va2trk2EYHl+kLnC5OmSalj+GOmpSUuJ17Fi73cMIOcyb95gz3zBv3gvknBmGI6DBJJA3/kLxGjUQ/j/hOebKM8yTZ5gnz9g5T8Ndo/xS8veNb3xDr732mrZv367t27crLS1NTz/9tJYsWaLOzk7t3r1bkvTiiy9q7ty5/nhLAAA81vfG3+zZs3tv/B05csQvN/4AAJHLLytUgzEMQ6tWrdIDDzygrq4uTZ48WY8++mgg3xIAgEt84xvf0De+8Y3ev8+ePVu/+MUvNHXqVP3P//yPdu/erbKyMm78AQC8FpBAtX379t4/l5aWauPGjYF4GwAARoQbfwCAkQroChUAAMGIG38AAH/x68G+AAAAABBJCFQAAAAA4CMCFQAAAAD4iEAFAAAAAD4iUAEAAACAjwhUAAAAAOAjAhUAAAAA+IhABQAAAAA+IlABAAAAgI+i7B4AAAAAgoNpWqqvbVNrS4eSU+OUlZsow3DYPSwgqBGoAAAAINO0tGVdpc7UtCuv2qE9BZYO5serfHERoQoYAiV/AAAAUH1tm87UtGvJmljdsCNWS9bE6kxNu+pr2+weGhDUCFTARUzT0uH3XNr9+hEdfs8l07TsHhIAAAHX2tKhvGqHnGbPapTTdCiv2iFXS4fNIwOCGyV/QB+UOwAAIlVyapz2FFi67jVLTtMht2HpUIGl0tQ4u4cGBDUCFdBH33IHp+nQda9ZWrOkp9whe2qS3cMDACBgsnITdTA/XmuW9NxUPFRg6bL8eGXlJto9NCCoEaiAPoYqdyBQAQDCmWE4VL64SPW1bXK1dKiULn+AR9hDBfSRnBqnQwWW3EbPvqkL5Q5JlDsAACKAYTiUPTVJH//UFGVPTSJMAR5ghQrog3IHAAAAeINABfRBuQMAAAC8QaACLnKh3IE9UwAAABgOe6gAAAAAwEcEKgAAAADwEYEKAAAAAHzEHioAAIAgY5qW6mvb1NrSoWQaJAFBjUAFAAh7x48f13333af6+nrFxMRoypQpeuihh5SYmKi9e/dq+fLl6urq0uTJk/Xoo48qKYmmNLCPaVrasq5SZ2p6jvDYU2DpYH68yhcXEaqAIOSXkr/jx4/r61//usrLyzV//nzdeeedamtrkyTt3btXCxYsUHl5uW677Ta5XC5/vCUAAB5zOBxasmSJtmzZoo0bNyozM1OPPfaYTNPU0qVLtXz5cm3ZskVlZWV67LHH7B4uIlx9bZvO1LRryZpY3bAjVkvWxOpMTbvqa9vsHhqAAfglUHGhAgAEs/Hjx+vqq6/u/XtJSYkaGxu1f/9+xcbGqqysTJK0aNEibd682a5hApKk1pYO5VU75DR7VqOcpkN51Q65WjpsHhmAgfglUHGhAoKTaVo6/J5Lu18/osPvuWSalt1DAmxnmqb++7//W7Nnz1ZTU5MmTZrU+1hiYqJM09SJEydsHCEiXXJqnA4VWHIbPb+z3YalQwWWklLjbB4ZgIH4fQ+Vpxeq8ePH+/utgbDly+ZkavCBgT388MMaO3asFi9erG3bto349ZKSwuc/clNS4u0eQsgI5FwlJcXp0O5mPf31D5V30KFDhZYunzFeH796Ssj9/uYz5RnmyTPBOk9+D1T+vlBJoXuxCtZ/9GDHvPVnmpb+56k31X7gQ+UedGhvoaVDMy7Xl/7l6t4L60BzVlPVoq53O7RkTaycpkPXvWbp6a936EPXGeVPTx3tHyMo8VnzXqjP2cqVK3XkyBH94he/kGEYSk9PV2NjY+/jbW1tMgzDq5t+LldHWKz+pqTE69ixdruHERJGY66u+9J01de2ydXSoVnnb6S5XKFV8sdnyjPMk2fsnCfDcAyZR/waqAJxoZJC82LF/zl8w7xd6vB7Ln24/0RvMPrMa5bWLDmht948ouypSYPO2aGaY8o5qH41+LkHpdqaY5qQMna0f4ygw2fNe4Gcs+EuVv7w7//+79q/f79+9atfKSYmRpI0c+ZMdXZ2avfu3SorK9OLL76ouXPnBnQcgCcMw6HsqUnKnkrHSSDY+e1g3wsXqqeeemrAC5UkLlSAD3zdnEwNPvCRd999V7/85S/1wQcfaNGiRVq4cKH+5V/+RYZhaNWqVVqxYoVuvPFG7dq1S/fcc4/dwwUAhBC/rFBduFBlZ2dr0aJFkqSMjAw99dRTWrVqlR544IF+53sA8Fxyapz2FFi67jVLTtPRG4xKhwlGWbmJOpgfrzVLevZQHSqwdFl+vLJyE0dp5EDw+NjHPqZ33nlnwMdKS0u1cePGUR4RACBc+CVQcaECAsfXYGQYDpUvLuqtwS/1sJkFAAAAPOf3phQA/GskwYgafAAAgMAiUAEhgGAEAAAQnPzWlAIAAAAAIg2BCgAAAAB8RKACAAAAAB8RqAAAAADARzSlAAAAQEgxTUv1tW1qbelQMseCwGYEKgAAAIQM07S0ZV2lztT0nM+4p8DSwfx4lS8uIlTBFpT8AQAAIGTU17bpTE27lqyJ1Q07YrVkTazO1LSrvrbN7qEhQhGoAAAAEDJaWzqUV+2Q0+xZjXKaDuVVO+Rq6bB5ZIhUlPwBQJAwTUsVtS7Vt7QrY2KcHJbUcKxDWanxKs5NopQFACQlp8ZpT4Gl616z5DQdchuWDhVYKk2Ns3toiFAEKgAIAqZp6cl1f9PJmgaVVFdq3cwyxXWe0dXvHdCmgiLtyM/UnYuvIlQBiHhZuYk6mB+vNUt69lAdKrB0WX68snIT7R4aIhSBCgCCQEWtSydrGrR6zWrtmZKvfZlT9dh//0xRpqnFr23V3UvuVUVtnkqmJts9VACwlWE4VL64SPW1bXK1dKiULn+wGYEKAIJAfUu7ZlVXKso0VTtxkmYdeVdRpilJijJNlVZXqKGllEAFAOoJVdlTk5Q9NcnuoQA0pQCAYJCVGq+3C4p0zjCU+0Gj3p7yMZ0zen5FnzMM7SkoVmZqvM2jBAAAF2OFCgCCQHFuknbkZ+ruJfdqVnWFWi8fr2/d+l1d/d4B7Sko1uX5GSrO9c+d2L7NL2h4AQDAyBCoACAIGIZDdy6+ShW1eWpoKdVXznf5O3rsSs33Y+jp2/xiVnUlDS8AAD4xLVMHXNU62t6ojPhJmpFUIMMRmcVvBCoAGCXDrQwZhkMlU5P77ZOalZ/i1zH0bX5BwwsAgC9My9RPK5/WwXNNqkuLVk79WRU2pus7RbdHZKgiUAHAKAiWlaG+zS8kGl4AALxfbTrgqtbBc4363Zw0WYZDlUWWtLVRB1zVKkqePoojDw6RFyEBIEBM09Le91r1u9frtPe9Vpmm1ftY35WhW3ds1uo1q/VhzVFV1LpGdYx9m19INLwAgEh3YbXpifrfanXsLj1R/1v9tPJpmZY56HMa2t9XbVq0rPM3BC3Dodr0aDW0v++3MVW2VumPdS+rsrVqyLEEA1aoAMAPhluBCpaVob7NL0qrK/ze8AIAEFp6Vpua9Ls5qR6vNpmWqUnvn9L+oiRZhkMO09Lk90/JTBp58BmsnPBH131nxK8dKAQqAPCD4fYmZaXGa1NBkRa/tlVRptm7MjR/lFeGLm5+4c+GFwCA0HO0vVF1F6021aXH6Gh706CByjhf5Hb9tqNqTr9MaU1nZEky5BzxeAYLeG83H1BWdPaIXz8QKPkDAD8YfAWqXVLPylDC+ZWhZ6+Zq7uX3GvbytCF5hfzP5WjkqnJhCkAiGAZ8ZOU03xWjvNl6g7TUk5TtzLi0wd9TmbCZI0xYlQ1Y4LcTkNVMyZojCNamQmTRjyewQLe4eMNI37tQGGFCgD8YLgVqFBeGbrQndC1t1FJcTEhM+5Q8MOfb1fthx/9Pfdy6d/+ebZ9AwIQESzT1Nn6vdrfsk+N0U5lmglasLVZdekxymnqVmF0T2OKwcxIKlBh4yRpf6Pq0mN05f52FcZMHvI5nsqIn6Sc+rOqLLJ6ywlzmrqVXZw54tcOFAIVAPiBJ3uTBmqLPtq8PdS3796w0ur92lQwMyzPraqrq9OyZct04sQJjR8/XitXrlR2dnZA3/OHP9+upg86ldFxUlcfqtKbedPV1JWgH/58O6EKQMBYpqmObT/Rz6OPqSZ+jA6nJSi74ZSmOJN1U9dMZU6ZPGyXP8Nh6DtFt5/vDNikjCnpPp1DNVB3wZ6wli5tbewX8GalzZDLdWqkP35AEKgAwA9CYQXKl9btF+8N+/JrW8Ly3KoHHnhAt9xyixYuXKgNGzZo+fLleu655wL6nrUfShkdJ/Wfzz/es+9u5zbd+dW7VPvhmIC+L4DI5m6oUNXZWtVMTNLGG3LO71NK0oItjfp8/GSP254bDkNFydN9bpM+1FlWA4Y1I3h3Ko1KoLLjzp8ktT/7sNR96KMvxOQp/tYfBPx9AUSmYFiBGoovh/oGS3fCQHK5XKqqqtIzzzwjSZo3b54efvhhtbW1KTExMaDvffWhqn5z+3fvVen/XjUxoO8JILK5XUfUkNyhw2m5/fcpTYodshGFvw3XXXAkYW20jUqgsuPOX/uzD8tStcykMzqb36TomnQZ7dVqf/ZhQhWAiORLOAqW7oSB1NTUpNTUVDmdPd2pnE6nJk6cqKamJo8CVVJSnM/v/WbedC3eua13bv86tec/HlJS7Jlfu943FDFXnmGePDOa83Qqt0CZr8cpO/ZDVc5M/mifUmOXZlyRN2pjafvApbr0i5pPTIrRcdM16BiC9fMU8EBl252/7kMyk86o/euvSE5LnddWKf5XN8jZdmj45wJAEPB2v9NwfAlHffeGfby6Um8VFHFu1UVcro5+hzh7KvdyqakrQXd+9S793XtV+uvU6Wobl6Dcy6Vjx9oDMNKhpaTE2/K+oYi58gzz5JnRnicr4WOaHpWr/LZjmr+5TocnJyj76GkVjpmijKisURtLopGknKNnVTmzT/OJxm5NmJI04Bjs/DwZhmPIm2cBD1QjvfM3EmfzmyTn+Yuc09LZaY1yvjEtoO8JAP7gy36n4QzWOGNmdqL2vtc6YHDruzesreMTmh+GXf7S09PV0tIit9stp9Mpt9utDz74QOnpg7cM9od/++fZ57v8jekt86PLH4BAcxiG4uZ8T9+p36v9LRVq+iBKmdmzNDOl0OumEiMxWPMJf3QKHG0h0ZTCl3KKdknRNenqvLaqJ1S5HYp+p6c3/mgtFwbrsmSwY968x5z5xtt5M01TbzcfUN3xBuVMyNSstBkB2yT7t6pmtb97tN9+p3u+fq+OuGbqqulpPr/ug9+9Xm9Vt6ju/U9o8eTLVZI/USt/vkOuA4c162Clfl9YpL/OyNb3/+VaOfuEpjmpCf74sYJSUlKSCgsLtWnTJi1cuFCbNm1SYWFhwG/6SYQnAPZwGIZisktVml3q9XMH6sznSxDzV6fAYBDwQOWPO38+lVPE5Mlor1b8r27Q2WmNin5nkoyOMVJM3qgsF7LM7RvmzXvMmW+8nbdLuhFVnlXhwZ5uRIH45V9Z84FKDlb02+8062CF9teUKidl3IheOydlXO9rvLrriFr3113SxW/7m1Mu2VcVyM/acOUUgfbggw9q2bJl+tnPfqaEhAStXLnStrEAQLAaqjPfxddCT4KXN50CTdNUZWvVsEHOX4HPGwEPVHbd+Yu/9Qdqf/ZhOdsOfVTmR5c/AD4arhuRvw2338lf+6sioYufJ/Ly8vSb3/zG7mEAQFDz9FroTfDyhGmZWvH6k9p3umHI1/P3+3pqVEr+7LrzR3gC4C9H2xtVl3ZRN6L0mIC1mB3qoGB/7q+KhC5+AAD/8PRa6O+bkAdc1ao40zDs613yvjNNOf5Qr+eqfq2Pp14RsNWqUQlU3PkDEOoy4icpp/6sKov6dCNq6lbGlMA0Lrj4oODPTYyTw5I2vXFYbrd1yXlS37n9Hq3ZFKerpqd6tFp1YYXrSPNJGZlpAwY3AAD68vRaOFzw8qYsz7RMvdWyT7WpUcMGuX7va1r65M5mnY6ytG5CnV6vfzdgq1Uh0ZQCAOxmRzeiCwcFF+cm9VuRerXoSs0+2L9Mr+xgpQ6e/FCb/nb5sKtVF69wuQuKpKx0ueeWan6a5+WD/m7rDgAIHpZpyt1QIbfriJxJU+TMLPb4WjhU8PJ2H9ZPK59W9ZkGpZ0xB329C+HMbbmV09StyiJLac2nddmZc9pWnhnwUn0CFQB4wM5uRBW1rn4rUtPeP6LnPj1Xi1//qEzv7SlT9eWdL6v0SI3uXnKvKmrzBt0DdfHrLX5tq+5ecq+yZk/zeN9UINq6AwAGN1DAcXjRadab51umqdPbHtG5zgPqzj2smL3ZiqqeobFzlnl0LRwqeHlTDtj7vZ+dpE/ubNb12xrUkjZW2Y1dKozJUGFifv9w1tytcV2WFmxp0skYUy2pY0elVJ9ABQAe8qYbkT9d3DjiqtpqPff35fr21+7WVTX7tSunQGkfuvTxw+/IaVnDNpXwRyOKwULZUEEOAOCboQKOJ6HK2+e7Gyp0rvOATn5tk+S01HntfiWs7fl61JSS3hWpo+2NknRJqBrqJqQ3e5J7v9dp6PVPpSu9+bSmHTyuT19WqK9Ov3nAcLZga7MWTvg7tZ5p01+aqrV/FEr1Q6/ROwBEmKzUeL1dUKRz5y965wxD3WPHaezMPO3/h4XqHDdW9236Lzktq7epROYQTSUyJsbptRml+q+/u15/yylQl9M57HMuNngoo4U/APhb34DTObtSJ7+2SefOHJC7oSIgz3e7jqg793DPWa6S5LTUnXdYbld9bxneE/W/1erYXXqi/rf6aeXTMi2z9/n990j1X8XKiJ+knOazcpw/Eqk36MRfGnT6fa/hUHPaWF1+1qmPp14xZDhzOqL01ek3a0Z0hhZsbVbxPpcWbG0OWKk+K1QAEOT6dvybVV2hV2aWKb7zjGa+tEFvFxTJnXC57r39Hn3cg6YSpmnptTdqFd3Vpe6oaP2fT5frw7gvKDsnxatGFHQHBIDRM1jAGeOqV9SUEr8/35k0RTF7s9V57f6e57gdijmULeesrGFL9obbI+XNnuTCxHxlHY7X539Xr+aUGE08aakwZnLv9w61V2s0S/UJVAAQ5Pp2/PtbVYEm/LVK//Hsf/QrtZt54yyZny3V/GGaQ1wo1fvPC8/f2dMh8JpP5A3ZxKKi1iXX3kYlxcWoODdpyLbuABBpRrq/aThDBZxAPN+ZWayo6hlKWCt15x1WzKFsRV02Q87MYh09sn3Ikr3hApenQce0TD2x/xnVGydVlxOnrKZOZTom6Nszv9b7vcOFs9Eq1SdQAUAA+evE9gsd/+pb2jW5Zv8lpXbmZ0s1/1M5w77OQKV6Ze9U6uixj2tWfsql4+/TfKK0etcTiAoAACAASURBVL82FczsbT7Rt637cEEOAMLVSPc3eWKogBOI5zsMQ2PnLJO7oUJjXPVyzsrqDYnDtU73ZI+UJ0Hno2CW1m9/1MG2mn6vY1fDqL4IVAAQIIE4sX2kpXbePv/i5hNffm1Lv+YTF/4HAJFquAYO/jBUwAnU8x2GoagpJZf8DNMn5KugNk7afFR1k8desirkr3MbPW1eYVfDqL4IVAAQIP4+KV7SiEvtvH2+PzoCAkA4G+n+Jk8NFnBG6/lSz2pc58urdFvnAR2Y/KGO7ctQhpGm4vxZOvv2RjmTpmh6xky/nNvor2A2GghUABAg3rSG9VTf/VS+lNp5+3yaTwDA0Ea6vymUXFiN6/jaJk1xWppy1qGEJ+ep8/RqdU+t7y13vOuG+1R1vGZEZXgX74/KbT6rggB16RspAhUABEig7q5d2E/l6wqRN8/vu6L18epKvVVQRPMJAOhjpPubQsnFq3FRh1NljTut9tu39yt3tI7uV9GUkhGV4V28P2pGUZ4yorJGfX+UJwhUADACQzWd8KY1bLDqu6LV1vEJzT/f5Y/mEwDQY6T7m0LJxatxzqbxOju1OWDljn33R6WkxOvYseA865BABQA+Gq7phOEw9O2ZX9Pmw6+otvmIcidM0dzs64Py7tpQLqxoBfPFDADs5I/9SaHgktW4qhxZUV3qvLYq7Msdh0KgAjCq/NVGPBh4crjhE/uf+ShwNTerZn/9iLr8AQBgl4tX44yrM9T9zmYlrI0J+3LHoRCoAIyaQLQRt9NwTSeGClwzkgrCJlgCACLHxatxUVklEVHuOBQCFYBRE4g24nby9XDDhvb3ta3x9bAJlgCAyBUp5Y5DIVABGDWBaCNup+GaTgwWuMwJZlgFSwBAZLFMU+6GCrldR+RMmhKRq1J9EagAjBo7D+m7eO/WZ5KuHPFrXtzS9eKzNgYLXIaMsAqWAIDg5s8AZJmmTm97ROc6D6g793Dv2VNj5yyL2FBFoAIwauxqIz7Q3q1XW9/UHdP+94hL7Pq2dB3osYEC1wFXtXLq3wiJ098BAKHN3wHowuG+J7+2qd/ZU+6Giogt+yNQARg1w63oBMpAe7cc2xpGpcRuoMAVDudTAQBCg6cByNNVrIsP9/X32VOhiEAFYFQNtaITKAPt3apNj7atxK5vsGw42ShzgluGw+jt/kdjCgCAv3gSgIZbxeobtuR2K6b+o8N9I/Xsqb4IVADC3kB7t3Kbziojy74SO8NhaEZSwUXd/t6g2x8AwK+cSVMUs3foADTUKpYzs7h/2GrIluPMOCU8PU/dUyP37Km+CFQAwt5AJXbF47JsL7ELtzbywWrFihV64403FBMTo7Fjx+pf//VfVVRUJElqbW3Vfffdp/fff1+xsbF6+OGHdcUVV9g8YgDwH2PyTDn3TlH8mrk6+7EGxRzKuSQADbWKJWmAsDVPYyb/g8acjYrYs6f6IlABCHsD7d36zLQr5XKdsnVc4dZGPlhdc801+v73v6/o6Gj96U9/0ne/+129/PLLkqTVq1errKxMa9eu1e7du7V06VJt2bJFDofD5lEDwNA82fNkmabOvLJKbuuI3MnHFVORJ+fYTEXn36juvRt7nzfUKtagYetslGJLF4z+Dx6ECFQAIsLFe7cML+6kXdxy3V/7nOxsIx9Jrrvuut4/l5SUqLm5WaZpyjAMbd68Wa+88ookqaysTDExMaqsrFRxceSWrgAIfp507rNMU91vrdfZU/vUvmRzb1CK//9ulHvXT9VdWNf7vMuuv09R1TOUsFbqzru0jG+4ksFIR6ACgCEM1HLdX/uc6PY3+l544QV95jOfkWEYOn78uCzLUmJiYu/j6enpam5uJlABCGrDde7rDVytB3W2uL7f6tLZ/KOyotzquqa693nm+/s1ds4yuRsqFNt6RI7Jbskw5G6okDF5Zp+wVafodzPldE6RMXmmvZMQREYcqKhNBxDKhlt98naf02CvN9jX7WgjH25uuukmNTY2DvjYzp075XQ6JUm///3vtXHjRr3wwgt+ff+kpDi/vp6dUlLi7R5CyGCuPMM8fcQy3Tp96G11N9cpJi1HY/NmyWH0/H7ydp6OVzfreN7hS8rw4t/fo6gzzbLMc3J3Vun0Z3dpzGsFkruqd3Up+t10nZm9/6PnTT2spM4WTUi9XFbKJ9X02606016hrtw6xe7L0WW1xcr80oNqXHe/HJWGzma0yDheL/df/l0Tv/Bg788wGoL18zTiQEVtOoBQ5cnq08D7nKL1Vsu+S8LPYK/37Zlf0xP7nxn0fUa7jXy4eemll4b9nm3btuk//uM/9Oyzzyo5OVmSNGHCBElSW1tb7ypVU1OT0tLSvHp/l6tDpml5Oergk5ISr2PH2u0eRkhgrjzDPH3kkhK9V7MV9WZPid7E1Mu9nqdzl6X1lOFdc74M76xDMfuy1T5um7rj6xX9boYs66zO5TXJ2petuGeu07ncFkXXZMpxJlrnslt6XsjtUMx72eqclapjx9p17shenT6576OVr2v2y1prqenlF9Vl1urknZt6g5m11lLznp2jdvaUnZ8nw3AMefNsxLdBr7vuOkVHR0vqX5suSZs3b9aiRYsk9a9NB4Bg0Lv6dMNEHUsZo3cnR6v6dL0qW6t6vycjfpJyms/Kcf4/mB2mpbTG09rZcVA/rXxapmVe+npzUlVxRZJ+NydVB882avPhVwb8+gFX9aj/zJHoT3/6k37yk5/o6aefVkZGRr/H5s6dqxdffFGStHv3bnV2dmrmTMpYAPhX3xK9ztmVOvm1TTp35oDcDRVevY5lmjp3ZK/OtR6WU1N6uu1tL1LCL+fLuqxbJ2//gzpnV6p9yWY55FDUoXSd+sIb6vz0QcVUTNWYrJvlTJ6uhGfPP2/tvH57pQZrQOFueXfgr5/vAhjp/LqHitp0AKHkaHuj6lKj9MmdzbrsjFvNaZfpdJSl/6n7g4qSp/eeFVXYmC5zy1EdnhSr1ObTOhUXpW2fTJO1rX/p32Bd+2qbj9DNz0bf+973FB0drW9/+9u9X3v22Wc1YcIE3XPPPVq6dKnWr1+v2NhYrVq1yquGJQDgieHaknviklUuK1tOa4oSur8kd3KTzkT/P8XunCZ32gmdy2vW2fwmjf3jVep+v7anyURyoWI/fpNi1RPwxrjqL2l5Pmi3v8kfU0wtjSkGM2ygsrs2XQrd+vRgrfMMdsyb95gz38zImKq8PTvUHmPqlRsyZRkOHZhpaf7WJh09V6+PT+rZD/qj676jJ9/8P3rJVaEDRUlqShsrGQ7VTYrRcdPVO/8zzk5V7v6dqjT7HCDcfFYzJ+Vrf9MOVbpNpbWc0YS2TuU1nFHhrJyQ+7cLtfFK0l//+tdBH0tJSdGzzz47eoMBEJE8OVy3r4Faog/ciGKeYpO+oLNH35TzXLzMCe0as6NQ1p4cGcfHKyb1ExrT/QU5Z/Vvqx41pWTAUj1nZvGA3f6iZy3QubbqQbsARrphA5XdtelSaNanUzfsG+bNe8yZb1JS4pURlaUUa6zeSzX7rR4dTo/VgaOHlBWd3fv9M8dP1/aTVWo+H6YcpqWcxm6dnHBaz/3tJWXET1JhYr4KnOmy+nTtK4iepGsm/r3ebqnRgo2HdSbWUNOkseo0LP2/6leUFZ0dMk0oAvlZG64+HQBC2WBBZaBAMlhLdGfy9AFXuWJqd8mtI2r/+svnw1qV4n91g3TWUrdrp5yuVBlJX/ZonA7D6O32d/EK1mBfhx9K/i7Upj/zzDOD1qbfcccd1KYDCDqGw9AXcuep4ciL2t/nLKiM909rcnb/mz8DtTgf12Vpw/G/9vy9TwOKg201l3TtmzPpU6qqf1/bbpwky3Bof5GlmCG6BQIAwoc3gWSwluhRZsGAZXdK0CVB6+y0RkW/M0lmTLu6cw7J/Xajot4p6ndO1VBjHWgFa7Cvww+Bitp0AKHM4ZBiuk1dv61BzeljldZ0WtHdpiz1XxW/uMW5e8I5bTj+V/3uxrR+7dQPttUM2LXv/Y4mHUkfwz4qAIhQngaSQfdbdTsVNebSVa6o3CsVs29Hv6AVdShNMh3quPXP50NZlRLWGr3nVMG/RhyoqE0H4G/DnQ3lT40dzarLjtOxiZdp/PEuHShKUsoHZ9TY0aIrUvqvqPdtcf7HupdVlx7jcUDKiJ+knPqzquyzEpbT1K2MKekB+bkAAKGj754pud2KaRhov9UUxcyaf8kqlyRFvdPn4N2adFkOU2cL3x+wCQaByv/82uUPAEbKk7Oh/Kkn6JxTZfFYNU0aJ4dp6aqKk8MGHW8D0kAlg4XRPWERABC5LNPdf89UfbYcZ8YpYe28S/ZbDbbK1VtO2HpEZ4035e6qV/R7aeq8toqufKOAQAUgqPQ9y6lvKd1I9xpdvOr1maQrJXkXdPq+xuS4dBU406StTR4FpItLBvvurwIARK7Th96+dM/U0/M0ZvI/aMzZKI8aQPQNWjGz5utc/V517l6nhKf/l7qn1tOVL8AIVACCymBnOY1kr9FAq16vtr6pO6b9b4+DziWv0XBWhVHpujPrH9TY0eJlQAqtrqUAgMDpbq67dM/U1MMaczZKsaULvH49h2EoOrtUUVkldOUbJQQqAEElEHuNBlr1cmxr6F316rs3ypvX0NZGzXEY+mzO9cOOYbRLGQEAoSEmLUcxr/r/0Fy68o0eAhWAoBKIvUYDrXrVpkd7teo10pWzQJUyAgBC29i8WYp607MzqhCcCFQAgkog9hplxE9SzpFutSZ16PIPu/Xh5THKbbx01Wuo7oIjXTkLRCkjACD0OQwnh+aGOAIVgKDjSQmeNwoT8zWuxlJRhUvvTx6nogqX4tyxKkzM7/2e4UryRrpyRtt0AMBgKM8LbQQqAGHvYFuNTo1xaOucLFmGQweKkrRwW0vvIbzS8CV5I105o206AADhiUAFIOz1lNvFDLmHypOSvJGsnNE2HQCA8MSVHEDYy4ifpJzms3KYPS1pHaal3KazyohPH/J7pjR2quX0B6psrZJpmSMex4VA9tmc63tXvQAAQGhjhQpAWDMtU6ZlauK5WM3b0qgjk8Yop6lbxeOy+pXbXVySl/H+aRndbq1Lr9Pr9e/S4hwAAAyIQAUgbPVrNDE5SrlHLX2i3tAX876g6wqukst1qvd7+5bkvdWyTzvNg9owP0uW01ClSYtzAAAwMG61AghbfRtNVJQka8P/mqzm6E45HA4ZA7SjvVCSlzo2RbWZl8ly9nxP3/1UAAAAfRGoAIStoRpNDGWg/VQ5Td399lwBAABIlPwBCGO+nv1Ei3MAAOApAhWAsOVrMKLFOQAA8BSBCkDYGkkwGsmZUwAAIHIQqACENYIRAAAIJOpXAAAAAMBHBCoAAAAA8BGBCgAAAAB8RKACAESEN998U4WFhVq3bl3v11pbW3XbbbepvLxcCxYs0L59+2wcIQAgFBGoAABhr6OjQ4899piuueaafl9fvXq1ysrKtGXLFi1fvlxLly6VZVk2jRIAEIoIVACAsPfII4/o9ttv14QJE/p9ffPmzVq0aJEkqaysTDExMaqsrLRjiACAEEXbdABAWHv11VfV3t6uuXPn6s9//nPv148fPy7LspSYmNj7tfT0dDU3N6u4uNjj109KivPncG2VkhJv9xBCBnPlGebJM8yTZ4J1nghUAICQdtNNN6mxsXHAxzZv3qzVq1frmWeeCdj7u1wdMs3QLxNMSYnXsWPtdg8jJDBXnmGePMM8ecbOeTIMx5A3zwhUAICQ9tJLLw362O7du3Xs2DF98YtflNSzKvWnP/1JJ06c0J133ilJamtr612lampqUlpaWuAHDQAIG37bQ0X3JABAsCkrK9Mbb7yh7du3a/v27SovL9e3vvWt3jA1d+5cvfjii5J6wldnZ6dmzpxp55ABACHGLytUw3VPWrt2rXbv3q2lS5dqy5Ytcjgc/nhbAABG5J577tHSpUu1fv16xcbGatWqVTIM+jUBADznl0B1oXtS382+Uk/t+iuvvCKpf/ckbzb7AgDgL4888ki/v6ekpOjZZ5+1ZzAAgLAw4kAV6O5JUuh2UArWTiTBjnnzHnPmG+bNe8wZAAD9DRuo7O6eJIVmByU6tviGefMec+Yb5s17gZyz4TooAQAQrIYNVHRPAgAAAICBjajk70L3pAuWLVummTNnavHixZI+6p50xx130D0JAAAAQNgJ6DlUdE8CAAAAEM78GqjongQAAAAgkrBcBAAAAAA+IlABAAAAgI8IVAAAAADgIwIVAAAAAPiIQAUAAAAAPiJQAQAAAICPCFQAAAAA4CMCFQAAAAD4iEAFAAAAAD4iUAEAAACAjwhUAAAAAOAjAhUAAAAA+IhABQAAAAA+IlABAAAAgI8IVAAAAADgIwIVAAAAAPiIQAUAAAAAPiJQAQAAAICPouweAAAAgfb888/rhRdeUHR0tAzD0IYNGyRJZ86c0fe+9z0dOHBATqdT999/v6677jqbRwsACCUEKgBAWNu6das2b96s3/72t4qLi1Nra2vvY08//bTi4uK0bds2HT58WF/+8pe1detWjRs3zsYRAwBCCSV/AICwtnbtWt15552Ki4uTJCUnJ/c+9sc//lE333yzJCk7O1szZ87Ujh07bBknACA0sUIFAAhrhw4d0r59+/T444+ru7tbixYt0pe+9CVJUmNjoyZPntz7venp6Wpubvbq9ZOS4vw6XjulpMTbPYSQwVx5hnnyDPPkmWCdJwIVACCk3XTTTWpsbBzwsZ07d8rtdqupqUn/9V//pePHj+sf//EflZOToyuvvNIv7+9ydcg0Lb+8lp1SUuJ17Fi73cMICcyVZ5gnzzBPnrFzngzDMeTNMwIVACCkvfTSS0M+PmnSJM2bN0+GYSgpKUmf/OQnVVFRoSuvvFKTJk3S+++/r8TERElSU1OTrr766tEYNgAgTLCHCgAQ1ubNm6e//OUvkqTTp0/rrbfeUkFBgSRp7ty5+vWvfy1JOnz4sCorK/XpT3/atrECAEIPgQoAENZuvfVWNTU16XOf+5y++MUvav78+frUpz4lSbr99tt18uRJzZkzR//0T/+khx56qLd5BQAAnvBLyR/newAAgtWYMWP06KOPDvjY2LFj9cQTT4zyiAAA4WTEgYrzPfzLMk25Gyrkdh2RM2mKnJnFchgsJAIA7GealipqXapvaVdWaryKc5NkGA67hwUAthpxoFq7dq3uuuuuQc/3eOSRRyT1P9/js5/97EjfNixZpqnT2x7Ruc4D6s49rJi92YqqnqGxc5YRqgAAtjJNS0+u+5tO1jRoVnWlNhUUaUd+pu5cfBWhCkBEG3GgCvT5HlLonvHhba/8U+/uVntXlU5+bZPktNR57X5d/oxD406+q3EfKwvQKINPsJ4xEMyYM98wb95jziJXRa1LJ2satHrNakWZpha/tlV3L7lXFbV5KpmaPPwLAECYGjZQ2X2+hxSaZ3z40iu/q7ZaXTl1kvP8z+q01JVbp+O17+j0+GkBGGXw4SwG7zFnvmHevBfIORvujA/Yr76lXbOqKxVlmpKkKNNUaXWFGlpKCVQAItqwgYrzPUaPM2mKYvZmq/Pa/T2hyu1QzKFsOWdl2T00AECEy0qN16aCIi1+bauiTFPnDEN7Coo1P5VVSwCRbcQbczjfw3+cmcWKGjNDCWvnacz2IiWsnaeoy2bImVls99AAABGuODdJCfmZunvJvXr2mrm6e8m9ujw/Q8W5SXYPDQBsNeI9VLfeeqt+8IMf6HOf+5wkaeHChf3O91i2bJnmzJkjwzA432MYDsPQ2DnL5G6o0BhXvZyzsujyBwAICobh0J2Lr1JFbZ4aWko1ny5/ACDJD4GK8z38y2EYippSoqgpJXYPBQCAfgzDoZKpyeyZAoA+WPoAAAAAAB8RqAAAAADARwQqAAAAAPARgQoAAAAAfESgAgAAAAAfjbjL32gI1ZasoTpuuzFv3mPOfMO8eS9QcxbK/xahPPaLhdPPEmjMlWeYJ88wT56xa56Ge1+HZVnWKI0FAAAAAMIKJX8AAAAA4CMCFQAAAAD4iEAFAAAAAD4iUAEAAACAjwhUAAAAAOAjAhUAAAAA+IhABQAAAAA+IlABAAAAgI8IVAAAAADgIwKVny1btkzXXHONFi5cqIULF+rnP/9572Otra267bbbVF5ergULFmjfvn02jjS41NXV6eabb1Z5ebluvvlmHT582O4hBaXZs2dr7ty5vZ+vv/zlL5KkvXv3asGCBSovL9dtt90ml8tl80jts3LlSs2ePVvTpk1TTU1N79eH+ozx+Rt83gb7zEl87sIF1y3P8bticFyfBsY1yTMhfw2y4Ff333+/9fzzzw/42LJly6ynnnrKsizL2rVrlzVnzhzLNM3RHF7Q+spXvmKtX7/esizLWr9+vfWVr3zF5hEFp+uuu8565513+n3N7XZbN9xwg7Vr1y7LsizrqaeespYtW2bH8ILCrl27rMbGxkvmaqjPGJ+/wedtoM+cZfG5CydctzzH74rBcX0aGNckz4T6NYgVqlG0efNmLVq0SJJUVlammJgYVVZW2jwq+7lcLlVVVWnevHmSpHnz5qmqqkptbW02jyw07N+/X7GxsSorK5MkLVq0SJs3b7Z5VPYpKytTenp6v68N9Rnj89djoHkbCp+7yMB16yP8rvAevye4Jnkq1K9BBKoAeOaZZzR//nzdcccdOnTokCTp+PHjsixLiYmJvd+Xnp6u5uZmu4YZNJqampSamiqn0ylJcjqdmjhxopqammweWXC69957NX/+fD344IM6efKkmpqaNGnSpN7HExMTZZqmTpw4YeMog8tQnzE+f8O7+DMnic9dmOG6NTx+VwyP65NnuCZ5JxSuQVG2vGsIu+mmm9TY2DjgYzt37tR3v/tdpaSkyDAMrV+/XkuWLNHLL788yqNEuHrhhReUnp6u7u5u/ehHP9JDDz2kOXPm2D0shLGBPnOPPfaY3cOCF7huYTRwfUIghMo1iEDlpZdeemnIx1NTU3v//PnPf14/+clP1NzcrMmTJ0uS2traeu/2NTU1KS0tLXCDDRHp6elqaWmR2+2W0+mU2+3WBx984NXSb6S4MCcxMTG65ZZb9M///M/66le/2u8/ltra2mQYhsaPH2/XMIPOUJ8xy7L4/A1hoM/cha/zuQsNXLf8g2vV0Lg+eY5rkudC5RpEyZ+ftbS09P75L3/5iwzD6L1YzZ07Vy+++KIkaffu3ers7NTMmTNtGWcwSUpKUmFhoTZt2iRJ2rRpkwoLC/uVmUA6ffq02tvbJUmWZekPf/iDCgsLNXPmTHV2dmr37t2SpBdffFFz5861c6hBZ6jPGJ+/wQ32mZPE5y6McN3yDL8rBsf1yTtckzwTStcgh2VZlm3vHoZuvfVWuVwuORwOxcXF6b777lNJSYkk6dixY1q6dKkaGxsVGxurFStWqLS01OYRB4dDhw5p2bJlOnnypBISErRy5Url5ubaPayg0tDQoG9961tyu90yTVN5eXn6t3/7N02cOFF79uzRAw88oK6uLk2ePFmPPvqokpOT7R6yLX74wx9q69atam1t1YQJEzR+/Hj9/ve/H/Izxudv4Hn7xS9+MehnThKfuzDBdctz/K4YGNenwXFN8kyoX4MIVAAAAADgI0r+AAAAAMBHBCoAAAAA8BGBCgAAAAB8RKACAAAAAB8RqAAAAADARwQqAAAAAPARgQoAAAAAfESgAgAAAAAfEagAAAAAwEcEKgAAAADwEYEKAAAAAHxEoAIAAAAAHxGoAAAAAMBHBCoAAAAA8FGU3QPwxPHjp2Salt3DGDVJSXFyuTrsHkZQY46GxvwMjfkZmh3zYxgOTZgwblTf018uXKP4XA2OuRkcczM45mZgzMvgAjU3w12jQiJQmaYVUYFKUsT9vL5gjobG/AyN+Rka8+O5vtco5m1wzM3gmJvBMTcDY14GZ8fcUPIHAAAAAD4iUAEAAACAjwhUAAAAAOAjAhUAAAAA+IhABQAAAAA+IlABAAAAgI9Com06AKCHaVqqr21Ta0uHklPjlJWbKMNw2D0sAEAEM01LFbUu1be0Kys1XsW5SRF1bSJQAUCIME1LW9ZV6kxNu/KqHdpTYOlgfrzKFxdF1IULABA8TNPSk+v+ppM1DZpVXalNBUXakZ+pOxdfFTHXJkr+ACBE1Ne26UxNu5asidUNO2K1ZE2sztS0q762ze6hAQAiVEWtSydrGrR6zWrdumOzVq9ZrQ9rjqqi1mX30EYNgQoAQkRrS4fyqh1ymj13/JymQ3nVDrlaOmweGQAgUtW3tGtWdaWiTFOSFGWaKq2uUENLu80jGz0EKgAIEcmpcTpUYMltWJIkt2HpUIGlpNQ4m0cGAIhUWanxerugSOeMnlhxzjC0p6BYmanxNo9s9LCHCgBCRFZuog7mx2vNkp49VIcKLF2WH6+s3ES7hwYAiFDFuUnakZ+pu5fcq9LqCu0pKNbl+Rkqzk2ye2ijhkAFACHCMBwqX1yk+to2uVo6VEqXPwCAzQzDoTsXX6WK2jw1tJRqPl3+AADBzDAcyp6apOypkXPnDwAQ3AzDoZKpySqZmmz3UGzBHioAAAAA8BGBCgAAAAB8RKACAAAAAB8RqAAAAADARwQqAAAAAPARgQoAAAAAfESgAgAAAAAfEagAAAAAwEcEKgAAAADwEYEKAAAAAHwUZfcAAAAYDV1dXfrxj3+sN954Q7GxsSopKdHDDz+suro6LVu2TCdOnND48eO1cuVKZWdn2z1cAECIIFABACLCo48+qtjYWG3ZskUOh0Otra2SpAceeEC33HKLFi5cqA0bNmj58uV67rnnbB4tACBUUPIHAAh7p06d0vr163XXXXfJ4XBIkpKTk+VyuVRVVaV58+ZJkubNm6eqqiq1tbXZOVwAQAhhhQoAEPYaGho0fvx4Pfnkk3rz97QWAQAAIABJREFUzTc1btw43XXXXRozZoxSU1PldDolSU6nUxMnTlRTU5MSExM9eu2kpLjeP6ekxAdk/OGAuRkcczM45mZgzMvg7JgbAhUAIOy53W41NDRo+vTpuv/++7Vv3z5985vf1OOPPz7i13a5OmSallJS4nXsWLsfRht+mJvBMTeDY24GxrwMLlBzYxiOfjfPLua3QMVmXwBAsEpPT1dUVFRvad8VV1yhCRMmaMyYMWppaZHb7ZbT6ZTb7dYHH3yg9PR0m0cMAAgVfttD1Xez78aNG3XXXXdJ+miz75YtW3TLLbdo+fLl/npLAAA8kpiYqKuvvlqvv/66JKmurk4ul0vZ2dkqLCzUpk2bJEmbNm1SYWGhx+V+AAD4JVCx2RcAEOxWrFihX/7yl5o/f77uvvturVq1SgkJCXrwwQe1bt06lZeXa926dVqxYoXdQwUAhBC/lPwFcrOvpCFrFsMVmw2HxxwNjfkZGvMztHCcn8zMTD3//POXfD0vL0+/+c1vbBgRACAc+CVQBXKzr/TRht9IwWbD4TFHQ2N+hsb8DM2O+Rluwy8AAMHKLyV/nmz2lcRmXwAAAABhxS+Bis2+AAAAACKR39qmr1ixQt///ve1cuVKRUVF9dvsu2zZMv3sZz9TQkKCVq5c6a+3BAAAAABb+S1QsdkXAAAAQKTx2zlUAAAAABBp/LZCBQAAACA8mKalilqX6lvalZUar+LcJBmGw+5hBSUCFQAAAIBepmnpyXV/08maBs2qrtSmgiLtyM/UnYuvIlQNgJI/AAAAAL0qal06WdOg1WtW69Ydm7V6zWp9WHNUFbUuu4cWlAhUAAAAAHrVt7RrVnWlokxTkhRlmiqtrlBDy+ge+h4qCFQAAAAAemWlxuvtgiKdM3qiwjnD0J6CYmWmxts8suDEHioAAAAAvYpzk7QjP1N3L7lXpdUV2lNQrMvzM1Scm2T30IISgQoAAABAL8Nw6M7FV6miNk8NLaWaT5e/IRGoAAAAAPRjGA6VTE1WydRku4cS9AhUAAAACHucq4RAIVABwCgxTUv1tW1qbelQcmqcsnITuZgDwCjgXCUEEoEKAEaBaVrasq5SZ2ralVft0J4CSwfz41W+uIiLOQAEWN9zlaJMU4tf26q7l9yrito8StowYrRN///Zu/uwqM5zX/zftQYYRTDIgMMgbwIRkFcpTdru0xhN3LL3UZNcZ+fEJqanNba/3VxukzYSabsvzUt3o0aTNk3aJMcar1Z3bPPbv2iku6BJ1TSJTaSKDCAQ5WVGZ0AZUEDlbdb6/YEg4MwwM8yw5uX7+Utmhlk3T9a1Vu71PM99ExFNA0NTJ2409mDdLjXu/1iNdbvUuNHYA0NTp9KhEREFPPZVIm9iQkVENA062nuRVi9AJQ3PRqkkAWn1AiztvQpHRkQU+NhXyXWSJKPqXAc++LQZVec6IEmy0iH5LC75IyKaBjHaCJzKlLHkExkqSYBVlHE+U0ahNkLp0IiIAh77KrmGe85cw4SKiGgaJKVG4+yCSOxaN7yH6nymjJkLIpGUGq10aEREAY99lVzDPWeuYUJFRDQNRFHA8jW5MDR1wtLei0JW+SMimlbsq+Q8+3vOCjl+NnAPFRHRNBFFASnpGnzlH5KRks4no0RE5Ju458w1nKEiIiIiIqJR3HPmGiZU5DNkScI1fTX6Da1QJyVjVm4eBJGTqERE5P/Y2Jv8CfecuYYJFfkEWZJwbsdrMDZcxfH2AizWHkRixjGkb9zApIqIiPyao8beRL6Ke86cx4SKfMI1fTWMDVfxWOVWWOUQvG1cjX3YBJ2+GhH5BUqHR0RE5Laxjb1VkoAln8jYtW64sbdWO1vp8Ihoivjon3xCv6EVx9sLYJWHc3yrHILj7YvQbzQoHBkREfkCSZLRcs6Cyk9b0XLO4ldNRtnYmyiwMaEin6BOSsZibRVUwhAAQCUMYbH2NNSJSQpHRkSB5vXXX0dGRgYaGxsBAFVVVVi1ahWWL1+OtWvXwmKxKBwhTTSyZO7UnnqEvnoRp/bUo2Kv3m+SqhhtBM5nyrCKw/GONPbWsLE3UUBgQkU+YVZuHhIz7sC+ok34QdJe7CvahMSMKMzKzVM6NCIKILW1taiqqsK8efMAAJIkoaSkBJs3b0ZFRQWKioqwY8cOhaOkicYumbv/YzXW7VLjRuPwkjl/kJQajZkLIrFrXT8+vKcfu9b1s7E3UQDhHiryCYIoIn3jBuj01cg3GqBOfJBV/ojIowYGBvDCCy9g586d+Pa3vw0AqKmpgVqtRlFREQBg9erVuO+++/DSSy8pGSpN4GjJXEq675dxZmNvosDGhIp8hiCKiMgvYBEKIvKKX/7yl1i1ahUSEhJGXzObzYiPjx/9OTo6GpIk4cqVK4iKinLqezWaW8u2YmPZ9NKeqYxN2oJYHM+6COsnMlSSAKsooykLuHdBrF+Nub0CFP70N0w3jo1tHBf7lBgbJlRERBTwTp8+jZqaGmzcuNHj322x9EKSZMTGRuLy5R6Pf38gmOrY3KGZCfWdEdi1brjs+PlMGTPvjMQdmpl+P+Y8b+zj2NjGcbHPW2MjisK4h2cTMaEiIqKAd/LkSZw/fx733XcfAKCtrQ1PPPEEHn/8cZhMptHPdXZ2QhRFp2enaHpwyRwR+TImVEREFPC+//3v4/vf//7oz0uXLsWbb76J9PR0/PGPf0RlZSWKioqwf/9+FBcXKxgp2SOKAlLSNX6xZ4qIggsTKiIiClqiKGL79u3YsmUL+vv7MW/ePLz88stKh0VERH6ECRUREQWdv/zlL6P/LiwsxKFDhxSMhoiI/JnHa1KzYSIRERERke+QJBlV5zrwwafNqDrX4TdNsf2FRxMqNkwkIiIiIvIdkiTj9b1foGzPMahe3YOyPcfw+t4vxiVVTLimxmMJ1UjDxOeee270NVsNE8vLyz11SCIiIiIicqC6yYLuRiN27tqJ73xcjp27duJq4wVUNw2vGnMm4SLHPLaHylsNEwE4rPseqNiwbXIcI8c4Po5xfBzj+BARBQZDew8W1esRIkkAgBBJQmF9NYzthShIjxmXcIVIEtZ8chg/WrcR1U1pKEiPUTh6/+CRhMqbDROBW00TgwUbtk2OY+QYx8cxjo9jSozPZE0TiYjIPUnaSJRl5mLNJ4cRIkkYEkWcyszDSu3wg7PJEi6anEeW/I1tmLh06dLRhomtra1smEhEREREpJC8VA1mL0jEj9ZtxJ57ivGjdRtxx4IE5KUO93RL0kbidGYuhsThtGAk4UrUcqWCszwyQ8WGiUREREREvkcUBaxfcxeqm9JgbC/ESm0k8lI1EEUBwHDC9fHNhKuwvhqnMvPGJVyOSJKM6iYLDO09SJrwvcHEq32o2DCRiIiIiEhZoiigID3G5hK+yRIue0aKWXQ3GrGoXo+yzFx8vCAR69fcFXRJlVcSKjZMJCIiIiLyD44SLntYzOIWjzf2JSIi50mSjJZzFlR+2oqWc5agKsBDRET+y34xi+Ar+sSEiohIIZIko2KvHqf21CP01Ys4taceFXv1TKqIiMjnsZjFLV7dQ0VEgUOSZBiaOtHR3osYbQSSUqODbo20pxmaOnGjsQfrdqmhkgQs+UTGrnU9MDR1IiV98s3ARERESplKMYtAw4SKiCY1MpNyo7EHafUCTmXKOLsgEsvX5DKpmoKO9l6k1QtQScNjqJIEpNULsLT3MqEiIiKf5m4xi0DEhIqIJsWZFO+I0UbgVKaMJZ/IUEkCrKKM85kyCrVscEtERL7JVqn0YCtCMRETKiKaFGdSvCMpNRpnF0Ri17rhmb/zmTJmLohEUmq00qERERHdhqXSbWNCRUST4kyKd4iigOVrcmFo6oSlvReF3JtGREQ+jKXSbWNCRUST4kyK94iigJR0DWf6iIjI59kvlV7IhIqIyBHOpBAREVGSNhJlmblY88lhhEjSaKn0lUFYKn0sJlRE5BTOpBAREQU3lkq3jQkVERERERE55X98PRWVURG4eHcmVmTMRX56TNCvWGFCRUREREREDk2s8Hc6Mxd/7epFfhDvnRohKh0AERERERH5trEV/r7zcTl27tqJq40XUN1kUTo0xTGhIiIiIiIih+xX+OtRODLlMaEiIgoikixB31GHPzd/CH1HHSRZUjokIiLyA0naSJzOzMWQOJw+jFT4SwzyCn8A91AR2SVLEq7pq9FvaIU6KRmzcvMgiHwGQf5LkiX8Qv9bnB0yozkuFPMNg8gy6fB07hMQBZ7bRERkHyv82ceEisgGWZJwbsdrMDZcxfH2AizWHkRixjGkb9zApIr8Vq2lHmeHzPhgmRayKECfKwOHTai11CM3ZqHS4RERkQ8TRQHr19yF6qY0GNsLsVIbibxUTdBX+AOYUBHZdE1fDWPDVTxWuRVWOQRvG1djHzZBp69GRH6B0uERueVCjwnNcaGQb978ZFFAsy4MF3rMTKiIiGhSoiigID0GBazsNw4ftRPZ0G9oxfH2Aljl4WcOVjkEx9sXod9oUDgyIvclRMZjftsgBEkGAAiSjPnmASRE6hSOjIiIyH8xoSKyQZ2UjMXaKqiEIQCAShjCYu1pqBOTFI6MyH3Zmkxkheiw6nAb8s5YsOpwG7JC45GtyVQ6NK/r6urC9773PSxfvhwrV67E+vXr0dnZCQCoqqrCqlWrsHz5cqxduxYWC0sAExGR85hQEdkwKzcPiRl3YF/RJvwgaS/2FW1CYkYUZuXmKR0akdtEQcTTuU9gQ/LDeKb/LmxIfjhoClIIgoB169ahoqIChw4dQmJiInbs2AFJklBSUoLNmzejoqICRUVF2LFjh9LhEhGRH+EeKiIbBFFE+sYN0OmrkW80QJ34IKv8UUAQBRG5MQuDbs9UVFQU7r777tGfCwoK8O6776KmpgZqtRpFRUUAgNWrV+O+++7DSy+9pFSoRETkZ5hQEdkhiCIi8gtYhIIowEiShHfffRdLly6F2WxGfHz86HvR0dGQJAlXrlxBVFSUglESEZG/YEJFRERB5cUXX0R4eDjWrFmDI0eOTPn7NJqI0X/HxrLBpT0cG/s4NvZxbGzjuNinxNgwoSIioqCxbds2tLa24s0334QoitDpdDCZTKPvd3Z2QhRFl2anLJZeSJKM2NhIXL7c442w/R7Hxj6OjX0cG9s4LvZ5a2xEURj38Oy29z1+RCIiGkeSZLScs6Dy01a0nLNAulm2nKbXK6+8gpqaGrzxxhsICwsDAOTk5KCvrw+VlZUAgP3796O4uFjJMImIyM9whoqIyIskSUbFXj1uNPYgrV7AqUwZZxdEYvmaXHaXn0Zffvkl3nrrLaSkpGD16tUAgISEBLzxxhvYvn07tmzZgv7+fsybNw8vv/yywtESEZE/YUJFRORFhqZO3GjswbpdaqgkAUs+kbFrXQ8MTZ1ISdcoHV7QuPPOO9HQ0GDzvcLCQhw6dGiaIyIiokDBJX9ERF7U0d6LtHoBKml4NkolCUirF2Bp71U4MiIiIvIEJlRERF4Uo43A+UwZVnF435RVlHE+U4ZGa39zKxEREfkPLvkjIvKipNRonF0QiV3rhvdQnc+UMXNBJJJSo+3+jiRLqLXU40KPCQmR8cjWZEIU+PyLiIjIFzGhIiLyIlEUsHxNLgxNnbC096JQG4Gk1Gi7BSkkWcIv9L/F2SEzmuNCMd8wiCyTDk/nPsGkioiIPMYXH97JkoRr+mr0G1qhTkrGrNw8CKLv3/s8klB1dXXh2WefhcFgQFhYGJKTk/HCCy8gOjoaVVVV2Lx587jqSRoNN2ITUfAQRQEp6RqnilDUWupxdsiMD5ZpIYsC9LkycNiEWks9cmMWTkO0REQU6Hzx4Z0sSTi34zUYG67ieHsBFmsPIjHjGNI3bvD5pMoj0QmCgHXr1qGiogKHDh1CYmIiduzYAUmSUFJSgs2bN6OiogJFRUXYsWOHJw5JRBSQLvSY0BwXCvnmDJYsCmjWheFCj1nhyIiIKFCMfXhXna/BB8u0ODs4/PBOKdf01TA2XMVjlVvxG8MaPFa5FcaGK7imr1YsJmd5JKGKiorC3XffPfpzQUEBTCYTampqoFarUVRUBABYvXo1ysvLPXFIIqKAlBAZj/ltgxBuNv8VJBnzzQNIiNQpHBkREXmKJEvQd9Thz80fQt9RB0mWpvX4vvjwrt/QiuPtBbDKwwvorHIIjrcvQr/RoFhMzvL4HipJkvDuu+9i6dKlMJvNiI+PH30vOjoakiThypUriIqKcvo7NZrgq4YVGxupdAg+j2PkGMfHMV8dn3s1X8Xxjs8hHDGiSReKVPMg8mYl4d6Mr0KcxiUPvjo+RET+zheW2yVExmO+YRD6XBmyKNx6eJes3MM7dVIyFmsP4m3jaljlEKiEISzWnoY68UHFYnKWxxOqF198EeHh4VizZg2OHDnike+0WHoh3XxaGwxiYyNx+XKP0mH4NI6RYxwfx3xlfOxtCH4y4//cfN2MhCQdsjWZsFiuTVtcSoyPKApB+fCMiIKPL+yVzdZkIsukAw6b0KwLw3zzALJCh+9DSpmVm4fEjGPYh0043r4Ii7WnkZgRhVm5eYrF5CyPJlTbtm1Da2sr3nzzTYiiCJ1OB5PJNPp+Z2cnRFF0aXaKiCgQTfaEMjdmIYtQEBEFIEfL7abrui8KIp7OfeLWw7tkneJV/gRRRPrGDdDpq5FvNECd+GBwVfkDgFdeeQU1NTV4++23ERYWBgDIyclBX18fKisrUVRUhP3796O4uNhThyQi8lu+8ITSFb5YXpeIyB9Nttxuuq63vvjwThBFROQXICK/QOlQXOKRhOrLL7/EW2+9hZSUFKxevRoAkJCQgDfeeAPbt2/Hli1bxpVNJyIKdr7whNJZvrDen4goUDhabsfrrX/ySEJ15513oqGhweZ7hYWFOHTokCcOQ0QUMDy5IdjbTzP9bTaNiMiXOVpup++o4/XWD3m8KAUREU1u5AmlVHEBrfFqJJv6kRWW4PKGYHtPMzfkfBdnOxs9kmT502waEZE/sLfczt3rLZdlK4sJFRGRQmRZhsoqI7qjDyrr8M+usjd79NKpX8Eg9nhkyYgvltclIgpE7lxvfWGZoCxJuKavRr+hFeqkZL8pJuEpTKiIiBRQa6lHvbUNH/zzvNGb5qrDZpeXddh7mim2WPDBykSPLBnxxfK6RESByJ3rrdLLsmVJwrkdr8HYcBXH2wuwWHsQiRnHkL5xg92kKtASMCZUREQK8NQyOltPM5NMN9AW47kler5YXpeIKBC5c71Veln2NX01jA1X8VjlVljlELxtXI192ASdvtpmtT53EjBfx4SKiEgBnlpGZ+tpZqIQDVXPVQiS55bo+WJ5XSKiQOTq9dZby7KdnUXqN7TieHsBrPJwWmGVQ3C8fRHyjQabCZWrCZg/YEJFRKQATy2js/U0Myt6AV6reYdL9IiIgoA3lmW7MoukTkrGYu1BvG1cDascApUwhMXa01AnPmjzu11NwPwBEyoiIgV4chmdraeZXKJHRBQcvLEs25VZpFm5eUjMOIZ92ITj7YuwWHsaiRlRmJWbZ/O7XU3A/AETKiIihXhzGR2X6BERBQ9PX/NdmUUSRBHpGzdAp69GvtEAdeKDDotMuJqA+QMmVEREfop9R4iIgo8kSdB31Hn12u/qLJIgiojIL3BqyZ6rCZg/YEJFROSHlOw7wkSOiGhq3L2OSrKE5z99HWeuG7167ff2LJIrCZg/YEJFROSjHN1wPdl3ZOJx7tV81eFnlW4gSUTkz6ZyHa211KP6htHrPacCcRbJm5hQERH5oMluuJ7qO2LrOMc7PseTGf/H5o1d6QaSRET+birX0Qs9JjRNU88pf59Fms7mwUwziYh80NgbbnW+Bh8s0+Ls4PANF7jZd6RtEIIkA8CtviORrvUdsXWc6uvG0eNMZC+RM/ZcnMJfS0QUPBw9EJtMQmQ8Uj1w7Q90I2Xfv3jtIF57C/jitYM4t+M1yJLkleMxoSIi8kGT3XCzNZnICtFh1eE25J2xYNXhNrf6jtg6TpMu1O6NfTiRGxh3M4+/2Iu/W2ogyd65URERBRJbD8SSTX1ov34J+o46h9fSbE0m8mYmTvnaH+hGyr4/XvlznOnORMXFr+Jygwm9Z6q8cjwu+SMi8kEJkfGYb7Df+X6yviPObni2dZxU8yASkmw/7czWZCKx9Q4sLzfgwrxZiGu7gZ6IUBiuXeWyPyIiJ0xsxJtw8TrEASv26prxqeFLh/upREHEln9Yj2MNJ9ln0IF+Qys+bs/Hi+k7ERvWiS+u5qP7hhrGd/8/ZOUXeHzpHxMqIiIfNPGGO998e+d7e31HXNnwbOs4ebOSRo9jKzErmpONvw99BmuIiNrcaJjjwpGn7/TKGv7p0tzcjNLSUly5cgVRUVHYtm0bUlJSvH7cnvdeAbqqb70wJw+RD//I68clIu+Z7IHW2Adif28/g8+sdfjiKxrc0T2Ik9kRgP6iwwdUoiiOXqMv9JgAwO+SKm/vb1InJeMfte/Ccn0Wvl/3EqxyCHZdXI196hIk2WhOPFVMqIiIfNBkM1COuLLh2dZx7s34KiyWa3YTs/t0X8dco4C/fS0Kce03sLCuE6mG64hP03prOLxuy5YtePTRR/HAAw/g4MGD2Lx5M373u9959Zg9770C+drfIWluYHCBGaGNOog9f0fPe68wqSLyU84+0Bp5IGbsvogb1yUsPHsFbXEzsbCuC32yBGO3yW5CJUn+XW11ZH+TseEqjrcXYLH2IBIzjiF94waPJVWzcvMQE7Mf5fq8cc2Jj10qRL6h1eMJle+POhFRkBq54f7T/PuQG7PQ6RulqxuebzuOeHtp9rGFMQQIyFTFYdUhA3LPWKCyyuhXAR+ZT/jlPiqLxYK6ujqsWLECALBixQrU1dWhs7PTuwfuqoYUeQM93/sIfUtr0fO9jyBF9I2fsSIij5Lk4aa4f27+cNL9Su6YrKDQbfFg+Pgf3Z+AmrwYfHR/AgQAEqx2j3G6rdalY/iakf1Nj1VuxW8Ma/BY5VYYG67gmt7+tU+WJPSeqYLl0EH0nqmatLiEIIqY87Wv4ptzTkIlDAEAVMIQvjnnC8hW+2PrLs5QEREFmMn2XznLXmJ2sbcNy+L/AXWGizjyj/GQRQE1uTLC/LR8utlshlarhUqlAgCoVCrMnTsXZrMZ0dHRXj324AIzoBremA6VjMEME1QnMrx6TKJgNR199FxtaSEKIkzzZo37/MV5syD224+nucvokbYZSuk3tOJ4e8G4maPj7YuQbzTYnDlyd0ZLUKkgQ8DbC0vxxdUC3HVHFWRZBG5e6z2JCRURUYBxZv+VMxwlZhd6TGjVzfDbG7onaTQRo/+OjY10+vd6AIQ26tC3uG44qbIKCG2Id/l7/EUg/k2ewrGxz5Nj83eTHvXW8cuhhSNmXBgy4CvxuR45RvZgOlJrPoNeGlPop20Q2blpNv+WnME7kVZzAjVjPp/WNoSc3Dvt/u3zBxORWjPo9DF8jSo3E/fG/QFvG1fDKodAJQzh3rgqzM1ZjWgb8XeerMSFxm48VrkVVjkEbxtX4z+FUmQavkT0V4tu+/zIGKjyshD6wRm82fgw0sKNeOfiw/i3BX+ENjfT5nGmggkVEVGAmcr+q7EmS8w8MQvmC3Q6Hdrb22G1WqFSqWC1WnHp0iXodM79LRZLLyRJRmxsJC5f7nH+wHPyIPb8HZFv34/BDBNCG+Ih9s4A5uS59j1+wOWxCSIcG/s8PTa1F86hSTuhTURcKGovnEdSaIpHjpEQkoRMlQ7ymOtmZmg8EkKSbP4trn4eABbFZSPzrGu/40vkpDuRsGA29smbcLx9ERZrTyNhQRSGku60Gb9FX49jbfnj90K1FSCvpgHWlFsz+rIkIcTwJS7p66FOSkZ4dg4SFtyB9fIfcbx9Edbf+UeHx3FEFIVxD88mYkJFROTn7FWUslUB0Jnv6bxkQbSoQbYm025i5qlZMF+g0WiQlZWFsrIyPPDAAygrK0NWVpbXl/tFPvwj9Lz3ClSd1beW+bHKH5HXeGo5tCOuPtBy5wGYKIrYkPNdlLd8hPNtrUibk4zilPv8oiAFMLy/KX3jBuj01cg3GqBOfNBhlT91UjIWaw+Om9FarD0NdeKDo58ZWRZ4obEbx9ryR5cFpv1oPXS1NU4dZyqYUBER+TFHlfhMvW0Oe1BN/J5Xq3ehoe8Crs4E7rgBZFxMwFO5a29+Qh73eU/NgvmK5557DqWlpfj1r3+N2bNnY9u2bdNyXCZPRNNnuh4EufpAy9XPS5KE12reuXXdb2tDY43Bb6r8AcNJVUR+gVPV9sKzcxAz4/f4Xe4P8dfOu/DN6C8Qo+6DbLXCcugg1EnJkCVptNDFyLLAfdgEXW2N08eZCiZURER+zFaJ9MFyA+qbjGhKnOn0pmt9Rx3qe1twLVzE5dhwqNquo76nGT8//TqMQrfNDdzuzIL5qrS0NLz33ntKh0FEXhQoD4LGVvmbrDWGN3iqh5Sz33O9tgYdfZH4jeF/Iy3ciDcNj2JT2tv44lcf4OPLhVisPYg4zSA+bi9yutCFpzGhIiLyY7YqShnnzcSQSsTZnGinb7SnL+lxQy3io/sTIYsCanNk/FNZK5pkC/78jwmK3LSJiDwtEB4EKVnl7/aKeweQMO8goovyMSM5xenkytnKfbIkoeeLv8HSOxMSVPi96SF8Leo0OvvvwHdrt9+ajSoswT9qT+At47fsLgv0Jv9KyYmIaJyEyHjMbxuEIA0vyRMkGTrTdVyJVgOYvAfVWOb48HE36OuzQmCMn+l0PysiIvK++XMSb7vuzzcPICHS+0WBxvaQesvwLbRe0aD1/AB+9RbwxWsHcW7Ha5P2iJr4PfZ6UY0kXXWfmaHvzcAT8/6An9+5HZnh5/DZ1a+Mn426/BXExAj4z6+W4gdJe7GvaBMSM6IgS5JOZxHHAAAgAElEQVTTvaumgjNURER+bOKegGRTH8R+CW3amQDg9Kbrwrl5ONpSh5oxm7Ujrw0hcrB/3Gv+WsmPiChQLIrLRtZZZYoCje0h9Y2oSsSEdeHbNa8MzxRd+NbwviV99aTL7JzpRTWSdK05NTwT9X+FIbyTvRG5UV/i6kAk/u+F8bNRum/9b2RFzUJeTQPCElbBXHEcJ18/5FLvKncxoSIi8mMT9wTMS47DEdOnwBGzSzfanJgs5JuTEFJxAa3xaiSb+rEwPAWCIEAMgEp+RESBQhSV2ws2tuLeneHN+OJqvlv7lpyp3Gcr6Tpx9Sv4f5a0IaqrD/vCbpVdT8yIQkReAaK1d8CakoHeM1W39a5yNtlzBxMqIiIFyZIEq7EaVksrVJpkqBJd39w7cU9ATkyWyzfasYlZl2TBnBTNaOLk7xu4iYgCjVJ7wWbl5iEx4xj2YRPOXYnD/BlG7LpoPyly5nvGJkWzcvNGP2Mz6Yqrwuy7HoQuN89h2XVnZsA8iQkVEZFCZEnC9SNbMdRXi4HUFoRVpSCkPhvhy0qntCTB3RvtyO9NbKbp7xu4iYjIM8b2kMoztKLjZAf2zbCfFDnzPfaSIkdJ12Rl152ZAfMkJlRERAqxGqsx1FeL7u+WASoZfYtrMHv38Oshyd4v80pEROSqscmM5n+uRIKTDXodfY+9911pADyWMzNgnhTQCdW2XX9BQ8etnzNigE3rlioXEBHRGFZLKwZSWwDVzaa5KhkDaS2YYTEwoSIiIp/mqX5UjrjSAHji77mbjLljWhbCNzc345FHHsHy5cvxyCOPoKWlxevH3LbrLzBc7EOC5RL+1xfHkGC5BMPFPmzb9RevH5uIyBkqTTLCmlIA63BZclgFhJ1PgUqTpGhcRETkWZIsQd9Rhz83fwh9Rx0k2XslvKfDSEnzL147iNdcLJk+XUaSMc2KVYjIL/BaMgVM0wzVli1b8Oijj+KBBx7AwYMHsXnzZvzud7/z6jEbOoCE3m786ve/RIgkYc1nR7D+20+hoWOGV49LROQsVWIeQuqzMXs3MJDWgrDzKQiZmQ1VoneWJBAR0fSTZAm/0P8WZ4fMaI4LxXzDILJMOjyd+4TfFvkZ20dqOqro+Tqv/1e0WCyoq6vDihUrAAArVqxAXV0dOjs7vX1o3H2+DiE3M+UQScLXztV5/ZhERM4SRBHhy0oxa1EJZg9uwqxFJVMuSEFERL6l1lKPs0NmfLBMi+p8DT5YpsXZQRNqLfUe+X4lZr/sVdHrNxq8fmxf5PUZKrPZDK1WC5VKBQBQqVSYO3cuzGYzoqOjnfoOjSbCrWN/nrYQaz47ghBJwpAo4m/pw1WqYmMj3fq+6eQPMSqNY+QYx8cxnxof7TeVjuA2PjU+RER+7EKPCc1xoZDF4eXdsiigWReGCz3mKVdQVWr2a7qr6Pk6vyhKYbH0QpJkl34nIwYw9M/G+m8/ha+dq8Pf0heic9ZsZMRgXDlgXzSxZDHdjmPkmL+Pjyd6Mzni7+PjbUqMjygKbj88IyLyZQmR8ZhvGIQ+V4YsChAkGfPNA0hI1k35u8fOfsmiAH2uDBwenv3yZrsLe1X0wrNz0HumyquFKnyR1xMqnU6H9vZ2WK1WqFQqWK1WXLp0CTrd1E8iRzatW3qzyt8M/NddcwGwyh+RP/BWbyYiIiIlZGsykWXSAYdNaNaFYb55AFmh8aPN06fCm7NfjtiqoheenYPzr7wOY8NVHG8vwGLtQSRmHEP6xg0Bf//2ekKl0WiQlZWFsrIyPPDAAygrK0NWVpbTy/2mgskTkf9hbyYiIgokoiDi6dwnUGupx4UeMxKSdcjWZHpkSZ4zs1+SLN08tgkJkfEeO/bEkua9Z6qCtlDFtCz5e+6551BaWopf//rXmD17NrZt2zYdhyUiP8TeTEREFGhEQURuzEKPzxpNNvs1nXus7BWqyDcamFB5QlpaGt57773pOBQR+TmVJhlhVSnoW1wznFSN9GZaxN5MREREY002+zWde6yCuVCFXxSlIKLgwd5MREREznM0+zWde6zsFaqYlRv4928mVETkU0Z6M1mN1ZhhMUC1KMnjVf78ibfWvhMRUeDzZoXBiWwVqmCVPyIihQiiiJDkgqDfM6VUfxEiIgoM3qwwaMvEQhXBggkVEZEHeKN3llL9RYiIKDB4usKgLEm4pq8e12cKwG2vBcOs1FhMqIiIpshbvbOU6i9CRESBw1MVBmVJwrkdr93WZ0qWZVxo7A663lNjMaEiIpoib/XOms6170RERI5c01ff3mdKKsEMsR+PVb4WdL2nxgqe1JGIyEvs9c6yWgxT+t5sTSayQnRYdbgNeWcsWHW4zatr34mIyDdIsgR9Rx3+3Pwh9B11kGRJ6ZBs95m6VIiLvdG39Z7qN07t/udvOENFRDRF3uqd5em170RE5Pt8tSCRzT5Tc09hhtgPlTAUdL2nxmJCRUQ0Rd7snSUK4uiM1IUeEwAwqSIiCmC+WpDIdp+paMiyHJS9p8ZiQkVENEXe7J3lq08qiYjIOzxRkGhsD8N5ETrIkGHqbXO5n+HEqn5pP1oPXW3NuD5TABAfhL2nxmJCRUTkAd7qneWrTyqJiMg7plqQaOKDuHkt1xE2YEVzSgTmG4acfihnr6pf+sYNtxWcCMbeU2MxoSIiUogzvatYOn3qnn/+eZw4cQJhYWEIDw/HT3/6U+Tm5gIAOjo68Oyzz+LixYtQq9V48cUXkZ+fr3DERBTMptqM9/YHcdG474gRl+fOhD4v3OmHcjar+gVhBT9nMKEiIlKAs72rWDp96u655x785Cc/QWhoKI4ePYof/vCH+PDDDwEAO3fuRFFREXbv3o3KykqUlJSgoqICgiAoHDURBaupFiSy9SCuTReOqK5+mONnOf1QzmZVv/ZFyDcamFBNEFwLHImIfMTY3lV9S/Xo/m4Zhm7UwmqsHve520qnV5iRJM+Gseeiz5TS9XVLlixBaGgoAKCgoABtbW2QpOFxKy8vx+rVqwEARUVFCAsLg16vVyxWIiLgVjPef5p/H3JjFrq0Z3ZehA7zLl6HIA238hAkGXHm67gyR33roVzk5A/lhqv6VUElDAHAmAp+U6tgG4g4Q0VEpAB7vatmWAzj9mGNfVJp7DahUqiBQbiK4+pKzDecYIEKF+3btw/33nsvRFFEV1cXZFlGdHT06Ps6nQ5tbW3IywuuClVEFDhkyAgbsOK+I0a0xYVj3sVrUPdbEXvpBu6q7nZ6+aDtqn5RkCUJlkMHoU5KDsoCFLYwoSIiUoArvatGnlQCwPtXPsMHy+JYoGKMhx56CCaTyeZ7n332GVQqFQDgT3/6Ew4dOoR9+/Z59PgaTcTov2NjIz363YGEY2Mfx8Y+jo1tjsblyqUuNM+PwOXYmYjq6kd1ngYpLd34X11a/M+8+7AoLhuik0lQ7NafIPPUaXyjuQXhyY+g6eCHqHyjDMfa8nFv3AdIzfkEX3nhWQg3r7O+QIlzhgkVEZEC3OldxQIVtr3//vuTfubIkSN49dVXsWfPHsTExAAA5syZAwDo7OwcnaUym82Ii4tz6fgWSy8kSUZsbCQuX+5xMfrgwLGxj2NjH8fGtsnGJVrUYH7bEPS54TDHz4Igybirpgf/I/nrSApNgcVyzbUDpmRgRkoGus9Uoammc3yRCnkTNEc/85k9Vd46Z0RRGPfwbCImVERECrDVu0qcl+Ow6h8LVLjn6NGjeOmll/DOO+8gISFh3HvFxcXYv38/nnzySVRWVqKvrw85OTkKRUpENHVTrRJoD4tU2MeEiohIIWN7VzlT9c9bN8lA9+Mf/xihoaHYsGHD6Gt79uzBnDlz8Mwzz6CkpAQHDhyAWq3G9u3bnV4KQ0Tki6ZaJdCe4SIVB/G2cTWscsiYIhUPeihy/8WEiogIzvWE8qaxVf+gktG3uAazdw+/PlKkwls3yUD3t7/9ze57sbGx2LNnz/QFQ0Q0DUb23tpaDi7J0s37iAkJkfFO30fsFamYlcsiPkyoiCjoOdsTyptcqfpn7yZJRETkiCRL+IX+tzg7ZEZzXCjmGwadrhYriCLSN26ATl+NfKMB6sQHWeXvJiZURBT0nJkd8jZXqv4RERG5o9ZSj7NDZnywTOtWtVhBFBGRXxD0e6YmYkJFREHP2dkhZ7mzfNCdqn9ERESusFUttkUbis5TJ2Hp/5K9pdzEhIqIgp4nZ4fcXT5oq+rfdO/jIiKiwDaxWqxqUMKGt9oxeLEfr10qxGLtQSRmHEP6xg28/7iACRUR+RVvFI/w5OzQVJYPjq36R0SBT5JkNNa143zjZcRoI5CUGg3x5swBkTdMrBZ734krCL0QicdPbb/VWwqboNNXc1mfC5hQEZHf8FbxCE/ODnl6+SARBSZJklGxV4/+L3sx/yxwKlPG2QWRWL4ml0kVeYytin5jq8UmDzXjD5dj2VtqiphQEZHf8GbxCE/NDrG4BBE5w9DUiRuNPVi3Sw2VJGDJJzJ2reuBoakTKekapcOjAOCoot9Itdje7ir2lvIAJlQUtGRJwjV9NfoNrdyE6Sf8YfaHxSWIyBkd7b1IqxegkoZno1SSgLR6AZb2XiZUQczdHlG2OFPRj72lPIMJFQUlWZJwbsdrMDZcxfH2Am7C9BO+MvvjaB8Xi0sQkTNitBE4lSljyScyVJIAqyjjfKaMQm2E0qEFJU8mMlOJwd0eUbbYqujXrAvDhR7zaELF3lKewYSKgtI1fTWMDVfxWOVWbsL0I0rO/owmUR0tGDR8AStaMaS5jJCzWqjCExG+8gWIIcOX1MmWD3qjsAYR+Zek1GicXRCJ336vF6lngfOZMmYuiERSarTSoQUdTycy7ppqj6iJJlb0EyQZ880DSEjWjfsce0tNHRMqCkr9hlYcby/gJkw/o9Tsz/hiGM0IlXTAoAixayYG8s4htPE6rv9pM2at/NmksThbWINJF1FgE0UBy9fk4qrlBpoaL6OQVf4U4+lExl3OzCi5YmJFv/nmAWSFDs++kWdNOaF6/vnnceLECYSFhSE8PBw//elPkZubCwDo6OjAs88+i4sXL0KtVuPFF19Efn7+lIMmmip1UjI3YfopJUqLW43VGLpRi+v3VEJ16Q7cWFKDmX/JRt836zGUYUbf4jpE7gpxqjiGM4U1vFXNkIh8iygKWLBQizmx4UqHEtQ8nci4y9kZJWeMLGHMjEjBAiRB7BeRmDxPkaWMwWDKCdU999yDn/zkJwgNDcXRo0fxwx/+EB9++CEAYOfOnSgqKsLu3btRWVmJkpISVFRUQBD49IWUxU2Y5IqhjhZI1huY8UkmhlIvYcYnmZAFQHVpNoYyzIAgwxrTiQF9BQA4nE1yprCGN6sZEhHReJ5MZKbCUzNKty1hbBtEVogOxSn3MZnykiknVEuWLBn9d0FBAdra2iBJEkRRRHl5OT766CMAQFFREcLCwqDX65GXx/9pJWX5yyZMViL0DYIkQYCAnu8cG06E7qlD5Nv3A0MiIAGz3vs6xK4IXFtwEINV1Q5nk5wprOEP1QyJiHyds4UmfGVpnCiI43pEJSTr3JpR8pUljMHEo3uo9u3bh3vvvReiKKKrqwuyLCM6+tbmSp1Oh7a2NiZU5BN8fRMmKxFOD6f2KokiBheYxyU4gwtMUJ9Oh6pzNsSuCPR878Obs0m1DmeTnCms4SvVDImI/JUrhSY8lch4giiIoz2i3HWhx4RmbQjiTNeQeKEXkIFLETKM3SYmVF4yaUL10EMPwWQy2Xzvs88+g0qlAgD86U9/wqFDh7Bv3z7PRghAowm+EqKxsZFKh+DzAn2MOk9W4kJj97hKhP8plCLT8CWiv1o06e8H+vhMVWxsJGTJCvP/+xxu9FSjP7UZ6jPzMbMpD7p/eQ6CqBr97LW0LPR/PB991trRBEfdnIo5X/kW+i404MqC/xo/m5TeAk1fO+bY+W8gP/ozXD9/GgPtLQi7NwXhaYvGHU/WfAPmpnwI7wjoT2uG+vx8zLwjD3GF3xj3OW/i+UNE/szVWRpPJDK+Ij4iDvMbexFnvgZz/CzoTNeh7hvCyRl6FM9fymV/XjBpQvX+++9P+iVHjhzBq6++ij179iAmJgYAMGfOHABAZ2fn6CyV2WxGXFycy0FaLL2QJNnl3/NXsbGRuHy5R+kwfFowjJFFX49jbfnjKhEeaytAXk0DrCkZDn83GMZnKkbGZ6i1Cte7z9zaq3RPDeTdMtpOfYaQ5ILR2auhjhaIcjJm714xOqukmpmNocx/hjArAWFVp9C3+FayFXYuBX2LtI7/G0RlAFEZGAJw3XL9trdDFm9EuLEaaosBqoLhaoYdNj7nDUqcP6IoBOXDMyLyDl8pNKEEAQIGwkQcWZ4IWRRQkyvjviNGXBzo5LI/L5lyinr06FG89NJL+O1vf4uEhIRx7xUXF2P//v0AgMrKSvT19SEnJ2eqhyQKCsOVCKugEoYAYEwlQi778hR7e5WsFsNopb1rVS+jJ+xlWOVWqORkzB54FuEFzyAsoxgDVYcgyxJU6oWYvXsFZvwlF7N3r/BIb6yRaobqwlUISS7gMk8iIhckRMZjftsghJsP5EcLTUROb6EJJVzsNePivPBxyWSbLhxXwgVc6DErHF1gmvIeqh//+McIDQ3Fhg0bRl/bs2cP5syZg2eeeQYlJSU4cOAA1Go1tm/fDpH/U0DkFFYitM2T/Zkc7VWyXWlvBdSaf8FAQ/mtkuZnUhAyIxvhBc9gRueFaeuNRURE9vlKoQklJETGI7m1f1zVwjjzdUQMCEiID/yEUglTTqj+9re/2X0vNjYWe/bsmeohiIKSv1QinE6e7s/kqEDEQNUhm7NXYU0nbZY0Vwv/DHXhKs/+wURE5BZfKjQx3bI1mcg2JcBaboBx3kzoTNcxs19CRkRKUCSUSvBolT8i8ixfr0Q43Tzdn0kQRYQvK4XVWI0ZFsO42SV7s1eYDZY0JyLyA4FUaMIVI8lkTcdZnLpUDcwEFiXnIjdmYVAklEpgQkVEfsMb/ZlG9ipN/H17s1chqV9F2JmPWdKciIh8liiIyIvNRl5sttKhBAUmVETkN6azP5O92SsACGlw3EeKiIiIggcTKiLyG840xfUke7NX9pYJEhERUfBhQkVEfsPRnqfpjsNWokVERETBhwkVEfkVJjNERETkS7hGhYiIiIiIyE1MqIiIiIiIiNzEhIqIiILC559/jqysLOzdu3f0tY6ODqxduxbLly/HqlWrcObMGQUjJCIif8SEioiIAl5vby927NiBe+65Z9zrO3fuRFFRESoqKrB582aUlJRAlmWFoiQiIn/EhIqIAposSRhqrUL/qYMYaq2CLElKh0QK2Lp1K5544gnMmTNn3Ovl5eVYvXo1AKCoqAhhYWHQ6/VKhEhERH6KCRURBSxZknD9yFZcq3oZ3aHbca3qZVw/shWyZFU6NJpGx48fR09PD4qLi8e93tXVBVmWER0dPfqaTqdDW1vbdIdIRER+jGXTiShgWY3VGOqrRfd3ywCVjL7FNZj9W6Drr39Ef58VKk0ym/IGgIceeggmk8nme+Xl5di5cyfeeecdrx1fo4kY/XdsbKTXjuPvODb2cWzs49jYxnGxT4mxYUJFRAHLamnFQGoLoLq5J0aQIUk30NnwewykX0BYVQpC6rMRvqzUraRKliRYjdWwWlqZnCno/ffft/teZWUlLl++jIcffhjA8KzU0aNHceXKFaxfvx4A0NnZOTpLZTabERcX59LxLZZeSJKM2NhIXL7c4+ZfEdg4NvZxbOzj2NjGcbHPW2MjisK4h2cTMaEiooCl0iQjrCoFfYtrAJWMkC91ECCg+4nyWzNWu4dnslxtFDyynHCorxYDqS1TTs7IO4qKinDixInRn0tLS5GTk4M1a9YAAIqLi7F//348+eSTqKysRF9fH3JycpQKl4iI/BATKiIKWKrEPITUZ2P2bmAgrQVh1akYyDt/a8ZKJWMgrQUzLAaXEipZkjDw9wMY6jiL6/9UiaE7zVNKzkg5zzzzDEpKSnDgwAGo1Wps374dIhNiIiJyARMqIgpYgigifFkprMZqzLAYgAVDQNN/oW9x7XBSZRUQdj4FqkVJTn/nyMzU4LUzGMwzYMYnmZDPpODav5xwKzmj6bV169ZxP8fGxmLPnj3KBENERAGBCRURBTRBFBGSXICQ5ILhEuqd9bjjHQH9qc0IO5+CkJnZUCXmOf19I4UuetaV30zK6hDxzhKEfKlzOTkjIiIi/8eEioiCxsiM1azuL9HV1ADVoiSXC0lYO1owkNo8btng0Px2hP/3XQiJzXIpOSMiIiL/x4SKiIKKIIqYdWcRrkdluPcFkoTQRt24ZYOhjfEIi/s6Ziz9VxakICIiCjJMqIiIXCCLImTIiHhnCYbS2hFyXgtZkCHMmcdkioiIKAjx7k9ENIEsSRhqrUL/qYMYaq2CLEmj74XEpEBUzUTfN89CDh1C3zfPQhRnIiQmWcGIiYiISCmcoSIiGmOy/lIjpdjDPx4uxR7+cRFCwl0rbEFERESBgwkVEdEYI1X8ur9bZrP578RS7O4UtiAiIqLAwYSKiGgMq6UVA6ktDpv/ji3FTkRERMGNj1SJiMZQaZIR1pQCWIXhF0aa/2rYX4qIiIhuxxkqIqIxRvZIzd49vEfKnea/REREFDyYUBERjcE9UkREROQKJlRERBNwjxQRERE5i49ciYiIiIiI3MSEioiIiIiIyE1MqIiIiIiIiNzksYTq888/R1ZWFvbu3Tv6WkdHB9auXYvly5dj1apVOHPmjKcOR0REREREpDiPFKXo7e3Fjh07cM8994x7fefOnSgqKsLu3btRWVmJkpISVFRUQBAETxw2oEmSjOomCwztPUjSRiIvVQNR5LgREZFyZEmC1VgNq6UVKk0yK2ASEcFDCdXWrVvxxBNP4NixY+NeLy8vx0cffQQAKCoqQlhYGPR6PfLy2M/FEask4/W9X6C70YhF9XqUZebi4wWJWL/mLiZVRESkCFmScP3IVgz11WIgtQVhVSkIqc9G+LJSJlVEFNSmfAU8fvw4enp6UFxcPO71rq4uyLKM6Ojo0dd0Oh3a2tqmesiA9/f6dnQ3GrFz10585+Ny7Ny1E1cbL6C6yaJ0aEREFKSsxmoM9dWi+7tl6FuqR/d3yzB0oxZWY7XSoRERKWrSGaqHHnoIJpPJ5nvl5eXYuXMn3nnnHY8HNpZGE+HV7/c1H1WZUFhfgxBJAgCESBK+Uq9HZ+/XERsbqXB0voNj4RjHxzGOj2McH5rIamnFQGoLoJKHX1DJGEhrwQyLgT3biCioTZpQvf/++3bfq6ysxOXLl/Hwww8DGJ6VOnr0KK5cuYL169cDADo7O0dnqcxmM+Li4lwO0mLphSTJLv+ev0qddwf2ZebgsU8qECJJGBJF/D0zFysjwnD5co/S4fmE2NhIjoUDHB/HOD6OKTE+oigE3cMzf6PSJCOsKgV9i2uGkyqrgLDzKVAtSlI6NCIiRU1pD1VRURFOnDgx+nNpaSlycnKwZs0aAEBxcTH279+PJ598EpWVlejr60NOTs7UIg4CX8nU4tCCRPxo3UYU1lfjVGYe7liQgLxUjdKhERFRkFIl5iGkPhuzdwMDaS0IO5+CkJnZUCVyXzQRBTePFKWw55lnnkFJSQkOHDgAtVqN7du3Q+TG1UmpRAHr19yF6qY0GNsLsZJV/oiISGGCKCJ8WSmsxmrMsBigWpTEKn9ERPBwQrV169ZxP8fGxmLPnj2ePETQEEUBBekxKEiPUToUIiIiAMNJVUhyAfdMERGNwcdKREREREREbmJCRURERERE5CYmVERERERERG5iQkVEREREROQmJlRERERERERuYkJFRERERETkJq/2ofKUYOy/FIx/s6s4Ro5xfBzj+Dg23ePjz/89xsbuz3+Ht3Fs7OPY2MexsY3jYp83xmay7xRkWZY9flQiIiIiIqIgwCV/REREREREbmJCRURERERE5CYmVERERERERG5iQkVEREREROQmJlRERERERERuYkJFRERERETkJiZUREREREREbmJCRURERERE5CYmVERERERERG5iQuVDSktLcc899+CBBx7AAw88gN/85jej73V0dGDt2rVYvnw5Vq1ahTNnzigYqXKam5vxyCOPYPny5XjkkUfQ0tKidEiKW7p0KYqLi0fPm7/+9a8AgKqqKqxatQrLly/H2rVrYbFYFI50emzbtg1Lly5FRkYGGhsbR193dO4E03llb3zsnUdA8J5L9hw8eBArV67EwoULsXfv3nHv3bhxA08//TSWLVuG4uJiHD161Kn3AhXva/YF03VnMryP3cJ7mH0+ff+SyWds2rRJ/v3vf2/zvdLSUvmNN96QZVmWT548KS9btkyWJGk6w/MJjz/+uHzgwAFZlmX5wIED8uOPP65wRMpbsmSJ3NDQMO41q9Uq33///fLJkydlWZblN954Qy4tLVUivGl38uRJ2WQy3TYujs6dYDqv7I2PrfNIloP7XLKnoaFB/vLLL+WSkpLbrtm/+tWv5J/+9KeyLMtyc3Oz/I1vfEPu7e2d9L1AxfuafcF03ZkM72O38B5mny/fvzhD5SfKy8uxevVqAEBRURHCwsKg1+sVjmp6WSwW1NXVYcWKFQCAFStWoK6uDp2dnQpH5ntqamqgVqtRVFQEAFi9ejXKy8sVjmp6FBUVQafTjXvN0bkTbOeVrfFxJJjPJXsWLFiA9PR0iOLtt9A///nPeOSRRwAAKSkpyMnJwccffzzpe8EomO9rwXbdcUewXnt4D7PPl+9fTKh8zDvvvIOVK1fiySefxPnz5wEAXV1dkGUZ0dHRo5/T6XRoa2tTKkxFmM1maLVaqFQqAIBKpcLcuXNhNpsVjkx5GzduxMqVK/Hcc8+hu7sbZrMZ8fHxo+9HR0dDkiRcuXJFwSiV4+jc4Xl1y9i+VX4AACAASURBVMTzCADPJReZTCbMmzdv9Oex12pH7wUy3tdux+vO7Xgfs4/3sMkpff8K8fg3kl0PPfQQTCaTzfc+++wz/PCHP0RsbCxEUcSBAwewbt06fPjhh9McJfmbffv2QafTYWBgAP/xH/+BF154AcuWLVM6LPIzts6jHTt2KB2WIia7Vo/8jwvxvkaewfsYTYUv3L+YUE2j999/3+H7Wq129N8PPvggXnrpJbS1tY0+0ezs7Bx9mmc2mxEXF+e9YH2QTqdDe3s7rFYrVCoVrFYrLl265NL0byAa+fvDwsLw6KOP4gc/+AG+/e1vj/ufnM7OToiiiKioKKXCVJSjc0eWZZ5XsH0ejbwebOfSZNdqR+Lj43Hx4sVx1+q777570vf8Fe9r7uH9bDzexxzjPcwxX7h/ccmfD2lvbx/991//+leIojh6MyouLsb+/fsBAJWVlejr60NOTo4icSpFo9EgKysLZWVlAICysjJkZWWNWzISbK5fv46enh4AgCzL+O///m9kZWUhJycHfX19qKysBADs378fxcXFSoaqKEfnDs8r++cRAJ5LLiouLsYf/vAHAEBLSwv0ej2++c1vTvpeoOJ9zTZed27hfWxyvIfZ5yv3L0GWZdkr30wu+853vgOLxQJBEBAREYFnn30WBQUFAIDLly+jpKQEJpMJarUazz//PAoLCxWOePqdP38epaWl6O7uxuzZs7Ft2zakpqYqHZZijEYj/u3f/g1WqxWSJCEtLQ3//u//jrlz5+LUqVPYsmUL+vv7MW/ePLz88suIiYlROmSv+9nPfobDhw+jo6MDc+bMQVRUFP70pz85PHeC6byyNT5vvvmm3fMIQNCeS/aUlZVh+/bt6O7uRmhoKGbOnIndu3cjPT0d169fR2lpKc6ePQtRFFFSUoL7778fABy+F6h4X7MvmK47jvA+Nh7vYfb58v2LCRUREREREZGbuOSPiIiIiIjITUyoiIiIiIiI3MSEioiIiIiIyE1MqIiIiIiIiNzEhIqIiIiIiMhNTKiIiIiIiIjcxISKiIiIiIjITUyoiIiIiIiI3MSEioiIiIiIyE1MqIiIiIiIiNzEhIqIiIiIiMhNTKiIiIiIiIjcxISKiIiIiIjITUyoiIiIiIiI3BSidADO6Oq6BkmSlQ4DAKDRRMBi6VU6DJ/EsXGM42Mfx8axYBgfURQwZ84spcNwiy/do6ZbMJyb7uC42MexsY3jYpuvjMtk9yi/SKgkSfapm5UvxeJrODaOcXzs49g4xvHxXb52j5puwfy3O8JxsY9jYxvHxTZ/GBcu+SMiIiIiInITEyoiIiIiIiI3MaEiIiIiIiJyExMqIiIiIiIiNzGhIiIiIiIicpNfVPkLBpIko7rJAkN7D5K0kchL1UAUBaXDIiIiIiKyS5Il1FrqcaHHhITIeGRrMiEKwTVnw4TKB0iSjNf3foHuRiMW1etRlpmLjxckYv2au5hUEREREZFPkmQJv9D/FmeHzGiOC8V8wyCyTDo8nftEUCVVTKh8QHWTBd2NRuzctRMhkoQ1nxzGj9ZtRHVTGgrSY5QOj4goIPT39+PnP/85Tpw4AbVajYKCArz44otobm5GaWkprly5gqioKGzbtg0pKSlKh0tE5PNqLfU4O2TGB8u0kEUB+lwZOGxCraUeuTELlQ5v2gRP6ujDDO09WFSvR4gkAQBCJAmF9dUwtvcoHBkRUeB4+eWXoVarUVFRgUOHDuGpp54CAGzZsgWPPvooKioq8Oijj2Lz5s0KR0pE5B8u9JjQHBcK+eaKKlkU0KwLw4Ues8KRTS8mVD4gSRuJ05m5GBKH/3MMiSJOZeYhURupcGRERIHh2rVrOHDgAJ566ikIwvCNPyYmBhaLBXV1dVixYgUAYMWKFairq0NnZ6eS4RIR+YWEyHjMbxuEIMkAAEGSMd88gIRIncKRTS8u+fMBeakafLwgET9atxGF9dU4lZmHOxYkIC9Vo3RoREQBwWg0IioqCq+//jo+//xzzJo1C0899RRmzJgBrVYLlUoFAFCpVJg7dy7MZjOio6MVjpqIyLdlazKRZdIBh01o1oVhvnkAWaHDhSmCCRMqHyCKAtavuQvVTWkwthdiJav8ERF5lNVqhdFoxMKFC7Fp0yacOXMG//qv/4pf/vKXU/5ujSbCAxH6r9hYrqawheNiH8fGNn8dl/9Y8jROt9WipcuIlLxELIrLhih6bhGcP4wLEyofIYoCCtJjWISCiMgLdDodQkJCRpf25efnY86cOZgxYwba29thtVqhUqlgtVpx6dIl6HTOL1exWHoh3VzuEmxiYyNx+TL3+07EcbGPY2Obv49LUmgKkuamAAAslmse+15fGRdRFBw+POMeKiIiCnjR0dG4++678emnnwIAmpubYbFYkJKSgqysLJSVlQEAysrKkJWVxeV+RETkNM5QERFRUHj++efxk5/8BNu2bUNISAi2b9+O2bNn47nnnkNpaSl+/etfY/bs2di2bZvSoRIRkR9hQkVEREEhMTERv//97297PS0tDe+9954CERERUSDgkj8iIiIiIiI3MaEiIiIiIiJyExMqIiIiIiIiNzGhIiIiIiIichMTKiIiIiIiIjd5PKF6/fXXkZGRgcbGRgBAVVUVVq1aheXLl2Pt2rWwWCyePiQREREREZEiPJpQ1dbWoqqqCvPmzQMASNL/z969h0dV3mvjv9eayQRCEkImYTLkMJMDISEkJDFC696CeCh0/xB1719b1LSvlvSwu309FZRqN1C1bwWhqLVudQOyLVSrV1+lpHtzUASKVgEhTE5DICGZnCETIAnkwMxa7x85mMNMjmsyp/tzXV5KJlnrmWWYme96vs/9SFizZg3WrVuH/fv3IycnB5s3b1bylERERERERG6jWEHV1dWF5557Dhs2bOj7WlFREQIDA5GTkwMAWLlyJfbt26fUKYmIiIiIiNxKsY19X3nlFaxYsQIxMTF9X6uvr8esWbP6/hweHg5JknDlyhWEhYWN+thabbBSw1REZGSIu4fgsXhthsfr4xyvzfB4fYiIiDyTIgXV6dOnUVRUhNWrVytxuCGs1jZIkuySY49VZGQILl1qdfcwPBKvzfB4fZzjtRmeP1wfURQ87uYZERHRaChSUJ04cQLl5eW44447AAANDQ1YtWoVvv/976Ourq7v+5qbmyGK4phmp4iIiIiIiDyVImuofvzjH+PYsWM4dOgQDh06hKioKGzfvh15eXno6OjAyZMnAQDvvfceli1bpsQpiYiIiIiI3E6xNVSOiKKITZs2Yf369ejs7ER0dDReeuklV56SiIiIiIho0rikoDp06FDff2dnZ2Pv3r2uOA0REREREZFbKb6xLxERERERkb9gQUVERERERDROLKiIiIiIiIjGiQUVERERERHROLGgIiIiIiIiGicWVEREREREROPEgoqIiIiIiGicWFARERERERGNEwsqIiIiIiKicWJBRURERERENE4sqIiIiIiIiMaJBRUREREREdE4saAiIiIiIiIaJxZURERERERE48SCioiIiIiIaJxYUBEREREREY0TCyoiIiIiIqJxYkFFREREREQ0TiyoiIiIiIiIxkmt1IF+9rOfoaamBqIoIigoCP/+7/+O1NRUXLhwAWvXrsWVK1cQFhaGjRs3wmg0KnVaIiIiIiIit1GsoNq4cSNCQkIAAB9//DGeeeYZfPjhh1i/fj0eeOAB3HPPPdizZw/WrVuHd955R6nTEhERERERuY1iLX+9xRQAtLW1QRAEWK1WlJSUYPny5QCA5cuXo6SkBM3NzUqdloiIiIiIyG0Um6ECgGeffRafffYZZFnGtm3bUF9fD51OB5VKBQBQqVSYOXMm6uvrER4ePurjarXBSg5zwiIjQ0b+Jj/FazM8Xh/neG2Gx+tDRETkmRQtqH79618DAD766CNs2rQJjz32mCLHtVrbIEmyIseaqMjIEFy61OruYXgkXpvh8fo4x2szPH+4PqIoeNzNMyIiotFwScrfvffeiy+//BJRUVFobGyE3W4HANjtdly8eBF6vd4VpyUiIiIiIppUihRU165dQ319fd+fDx06hOnTp0Or1SI1NRX5+fkAgPz8fKSmpo6p3Y+IiIiIiMhTKdLy197ejsceewzt7e0QRRHTp0/HG2+8AUEQsGHDBqxduxavv/46QkNDsXHjRiVOSUREEyBLEuzVJtitVVBpDVDFZkAQx3aPTYljEBEReTtFCqqIiAi8//77Dh9LTEzEBx98oMRpiIhIAbIk4frBF2HrKEZXQiU0BUaozWkIumvtqAsiJY7hLq+99hp+97vfYe/evUhOTkZBQQHWrVuHzs5OREdH46WXXoJWq3X3MImIyEt49rseEREpzl5tgq2jGC0P56Pj9kK0PJwPW3sx7NWmST2GOxQXF6OgoADR0dEAAEmSsGbNGqxbtw779+9HTk4ONm/e7OZREhGRN2FBRUTkZ+zWKnQlVAKqnvRUlYyuxErYrRaH3y9LEmxVBeg8tQe2qoLuVr8xHsMTdHV14bnnnsOGDRv6vlZUVITAwEDk5OQAAFauXIl9+/a5aYREROSNFI1NJyIiz6fSGqApMKJjcVF3QWQXoCk3QpUVN+R7nbX2aeYsg+bM6I7hKV555RWsWLECMTExfV+rr6/HrFmz+v4cHh4OSZJw5coVhIWFjeq4/h73zj3SHON1cY7XxjFeF8e84bqwoCIi8jCDwx5k7S2KHl8VmwG1OQ2hO4CuxEpozhuhggH2psq+x3vXQfVv7YNKRsfiIoTuADRYBvWUfscoN0I9NQ2q2AxFx6qU06dPo6ioCKtXr1b82J60V+Jk84c90saD18U5XhvHeF0c85TrMtJeiSyoiIg8iKMZofqK+VAvXq1Y2IMgigi6ay3s1SYENlXBJn4JO6rQrjkyJFxiQGufBKgrdLAHtsBWcQJT73gKUm0RplgtUGXFeXTK34kTJ1BeXo477rgDANDQ0IBVq1bh+9//Purq6vq+r7m5GaIojnp2ioiIyDPf+YiI/JSjsIf2FtOQsAdH65rGQhBFqA2ZUEcYYEeV03AJldYATYUR6BQQvPM2TP1rFiDL6Kr9G67vXQdJsgHw/NmZH//4xzh27BgOHTqEQ4cOISoqCtu3b0deXh46Ojpw8uRJAMB7772HZcuWuXm0RETkTThDRUTkQRyFPXQmXkCg1QK1IROAspHlzsIlpvScTxWbAVXpXIS+BsjT2nEjw4KAMj2koOuQ7WdhP7YVXfO9Kza9P1EUsWnTJqxfv35AbDoREdFosaAiIvIgjgIjAsvjocr8OuzB2bome7Wpr+iayPn6h0sIoojAlG/j2vUzaM37pOd8JQh+ewnaby3F1MNzYYu7hI7bxj8Gdzh06FDff2dnZ2Pv3r1uHA0REXkzFlRERB5kSGBEuRFTp2cMCHsYaVZpoucbHC4hNVfjxuyaAeezJTZCdSkUN2Y3QNU4HbbZDeMeAxERkTdjQUVE5EH6B0b0hj1EZd+CJuv1vu9xNKsUcC4GiLVBlqQxtdw5Ot/gcInu88WjY3Fx3/nU5Tp03FqKKX9LRcfiEq+ITSciInIFFlRERB6mLzCiZ6ZHEFUDHh84q3QBAWV6yLiBjto/w9ZsHtM6psER7b0zU7aqgr6vidHzBp7vrB6yIGPqoQwIHRqoLZEIOnyzR8emExERuQoLKiIiL9G/+NHMWQbVxTmA6SNc//Zx2GbXA7IwpnVMzsItZFmGvbNkwNf6ItKbqgCDHbKogkobCwCY0lzj8bHpRERErsKCiojICwwpfs4YId6Yia70ctjm1Pd+V/c6pqYqABgw6+So0HEYbrFdAm6o0PLTgYEXUm3RgFmzAYzZLnzmREREno0FFRGRF3BU/IS89S0EFMegY1Ex1JU6qOrDoCmJR1fAF5Bq3h8xUt1huEVSFVQ14YoEXhAREfkD9mYQEXkBR8XPjTk1QIAdob/7Nqbumw/1hZmQpRuQrlnQ8r8cb9TbX9+mvXah5yQCNOcNULWGDfxauREqLcMmiIiIHOEMFRGRF3Cc7KdH15waBJ6JhxzUBXucFUKFCkLLVKgrdLDNaRh2hslhZHpQ9xqq0B2y0xh1IiIi+hoLKiIiLzCk+DkfB1wXIV6dBnlaJ9oeOtxdaC0qQci22xFQEtNdUA0TZ+4sMh3AsDHqRERE9DUWVEREXmBw8SNmxaDT/D9AuYiu7PMDWwGTGqA5nQT5UOeIM0yDI9p7OQ2gICIiogFYUBEReYnBxY86LhOdX30Iuezd7s11+23yGzj3Xky5EcAZJiIiIhdTpKC6fPkynnrqKVgsFmg0GhgMBjz33HMIDw9HQUEB1q1bh87OTkRHR+Oll16CVqtV4rRERH5NEEUE3nQf7M1nEbo9AF1JVdCcN0AdnI7Am+5jEeVHJEmGqcIKS2Mr4nQhyEjQQhQFdw+LiMgvKPJuKwgC8vLysH//fuzduxexsbHYvHkzJEnCmjVrsG7dOuzfvx85OTnYvHmzEqckIvJasiTBVlWAzlN7YKsqgCxJ4z5WbyvgtOynEXqj+9+OItLJd0mSjNd2HUf+zsNQbd2J/J2H8dqu45Ak2d1DIyLyC4q844aFhWHhwoV9f87MzERdXR2KiooQGBiInJwcAMDKlSuxb98+JU5JROSVejfovVbwEloCNuFawUu4fvDFCRdVakMmArNXQG3IZDHlZ0wVVrSUVWPLti146Og+bNm2BVfLamCqsLp7aEREfkHxd11JkvDuu+/i9ttvR319PWbNmtX3WHh4OCRJwpUrV5Q+LRGRV+i/Qe9I+0QRjYalsRVZ5kKoe4pytSQh22xCdWOrm0dGROQfFA+leP755xEUFITc3FwcPHhQkWNqtcGKHEcpkZEh7h6Cx+K1GR6vj3P+cm0umxtwObFyQCpfV1IlZrQ3wnrpOhpqryIqejqSUmYOWAPjL9eHhhppfVScLgT5KenIPXYAakmCTRRxKiUDd+v4O0NENBkULag2btyIqqoqvPHGGxBFEXq9HnV1dX2PNzc3QxRFhIWFjem4Vmubx/SCR0aG4NIl3vVzhNdmeLw+zvnTtbFNjereoHfR1xv0qs/FI/9SMDosp5FoFvBpiowvkkOwNDcdoij4xfURRcHjbp55gt71US1l1cgyFyI/JR1Hk2PxSO6CvqIqI0GLo8mxeDJvNbLNJpxKycD05BhkJEwsAMrXgy5kScK1QhM6LVUIjDNgWjrTMIlofBQrqH7729+iqKgIb731FjQaDQBg3rx56OjowMmTJ5GTk4P33nsPy5YtU+qUROSnJEmGpaIZTY1tiNAFIy4h3Gs+6A3ZoLfciIYb/4AOC5C3LRAqScCSYzK25bXCUtEMYxJTUf1Z//VRaklC7rEDeDJvNUwVichMigDQXYw+krsApopEVDdm425dCOYZwydUDA0o5EoL8VHyPPy3UY+nVt0Ctdr7iw5ZknB+86uoPnsVRxozsVi3B7FzDiNp9aMsqohozBQpqM6dO4c333wTRqMRK1euBADExMTg97//PTZt2oT169cPiE0nUgLvLvonSZKxf1ch2stakWgWcCpFRmm/2RxP1l0IXkbTtAcwI+QSZnXVIyArDq3VYUh8vw4qqXv8KklAolmAtbGNBZWfc74+KruvoAK6i6rMpAhkJkWMalZrJEMKuc8O4JEfPI7f7Pg7ns27xeP/ro3kWqEJ1Wev4sGTL8Iuq/FW9UrsxtPQF5oQPJ8bWhPR2ChSUM2ePRtnz551+Fh2djb27t2rxGmI+vDuov+yVDSjvazV62ZzBheCZ1JklCUbsTQ3HRE3mnEqRcaSYzJUkgC7KKM8RUa2ji1w/i5mZjA+SMuGpusGkhprMd9ybsT1UaOZ1RqJpbEVWaUDC7lvnC/GJ9OCYaqwjvo4nqrTUoUjjZmwy90fg+yyGkcaszC/2sKCiojGjJ88ySv1v7v4H5ZcPHjyRVSfvYJrhUxK83VNjW1INAsOZ3M8Wf9C8M6jgcjbFoj2su5CMC4hHFOTQ7AtrxMfL+rEtrxOTE0OQVxCuLuHTW4kSTKO/b0CAZ2d6FIH4L9uXYpVP/kFQmdHD7s+SonUvzhdCE4kz4Ot5waVTRRx2jAbcy3nfSI9MDDOgMW6AqgEGwBAJdiwWHcagbFxbh4ZEXkjxVP+iCYD7y76rwhdsFfO5gxXCBqTtFiamw5LRTOsjW3IHmZdmCxJsFebYLdWQaU1QBXLVldf1TvT9LudW7tnmj4/gMdX/RyLvpk4bMudEql/GQla/LdRj0d+8Di+cb4Ypw2zoW1rQZ0+Bjk+kB44LT0DsXMOYzeexpHGLCzWnUbsnDBMS89w99CIyAuxoCKv1H13cQ/eql4Ju6zud3fxXncPjVwsLiEcpckh2JbX3TpXniJ7xWzOcIWgLEmQqk3Qt1QhJsYAVWwsBCfF1PWDL8LWUYyuhEpoCoxQm9MQdNdaFlVeqjdJr6qhBZLUvRbKENUdKnG8pHFI213O2ULUXLoJWcmRTo85ntQ/R4l+T626Bb/Z8Xd8Mi0Ycy3nUaePQZgC6YGeQBBFJK1+FPpCE+ZXWxAYey/X4RL5oJbOFrzw5VZct11HkDoIv1z4BEIDQxU/Dwsq8kq8u+i/RFEY9WyOJ3FWCMYaw0ZdJPXfFBgqGR2LixC6o/vragNnZr1Nb3jE1bJq3Oi8AQgCFpaXIj81HbtDp0N17Trq4ucg97OxzTSNNfVvuBCLZ/NuganCiurGucjxseh0QRQRPD+TXQ1EPqqlswWrv/w12qeqURs9HdG117D6y19j88JnFS+qWFCRV+LdRf8migKMSVqPDqEYrH8h2NTQihhJhiAKqDx+CuHtJWj74chFkt1aha6EyoGbAidWYorVwoLKC/W29N3/ST7+9I07sPnd1wck6n3/2D4cSrsJT97/M+ivNqPYkIhw/QzMM3bPxg63T5TT1D8HEegjhVj0/kNE5E1e+HIr2qeqcWBZHGRRQHG6Ft/aZ8ELX27FpkXrFT0XP32S1+q9u6hdvgLB8zNZTNGoSZKMyvNWnPysCpXnrZO2cbgoCohLCMelihbUHKiD5uU6nMm/jr/V3Q5Z6Lnr31Mk2a2WIT+v0hqgqTAC9p7vtQvQlBuh0nIhvTfqDY+oitAjq+rckES9Gq0OT+/djUCbDRatDneaTkCw1OP1P56AzSbhtV3Hkb/zMFRbdyJ/52G8tuu4w99lU4UVV8uqsfKTfEzp6kLu4b/ienktfrPj791R/gqEWBAReZrrtuuojZ4GuedGkywKqI2ehuu264qfi59Aiciv9MaXn9ppRsDWWpzaacb+XYWTVlQNSfvbMQ03qg24WHxT9zcMUySpYjOgnpKG0B3LMeVQOkJ3LId6ahpUsWx19UZxuhCcTkmHoakepw2zByTqfZGUhrimBhQYknFDrcbv/vAKHvrbPmzZtgVXy2qw9/PKvlmlh45+/XVThXXIeaoaWnCj8wb+9I070BkQgD994w6IsoTm+iswVVgRGxmMrwYl+p1KyUCsD4RPEJH/ClIHIbr2GoSe93dBkhFdew1B6iDFz8WWPyLyK+7ex8pR2l9S2RS05X8bUy51QFNudFokCaKIoLvWwl5twhSrBaqsOKb8ebHe8Ig/4m7YOru6E/XKS3AqNQMdoaH44x13I+jqFWRWnR8ye1SSFj+qDX8BQJIACEJfS+GDnx/EIz94DHprIywNLbhQfhFXNFPwWO6juLnCjC+T0xAxivAJSZJxvKQBhWUXh7QcEhG52y8XPoHVX/4a39pnQW30NETXXsPUdht+ufBpxc/FgoqI/MpI8eWuIkkyLBXNuGK9jktpdiz+TEKAXexO+0sF5s9djNAbySMWSYIoQm3I5JopH9A/PMLS0AK7BNjFBbi7J+WvqLIZx0sa8dUXocj9fGAwxbzoMJweZTS6KHaHXQxsKSzBJ/MXYrYEtJ6rwbbtv8WZuNko183CjcAp+MdvJgxbHPWuy2o9V4PMUtOAIAsWVUTkCUIDQ7F54bN44cutmG6+2pPy9zRT/oiIJsqV+1j1Fk1NjW2I6Jc+2Ntm2F7WnfB3OQl45SftmF+kQkUKMDU5BPHfSOcHUT/UPzxisMykCGQkaPHalbYhEeh332JEdeWl7q+XmnA8eR4CY3V9gRX9GaJCkJ+aPiAt8IukNMzQh0EUBWSZCxFot2PBBTMWXDCjU6NB7cV0ZM/ujmZ3FH4xUpAFEZEnCA0MVTyAwhEWVETkV1y1j9XgoulUiozS5JC+ZL/BbYZvrepA0w/CkT13plfEvpN7OIpA722t+9kDN+M3O2w4FBCIVEs56lUCXv/jiSGzRAP2peopvqYa9Xjqh99EUWUz9qakY05tFaoi9DA01eOrlAys6JnpchapbkiIHHXLIRGRr2NBRUR+xVX7WA23NstRm+HssyJs/xTkVdHv5B7OZrGKKpshWOqxo2eWyCaKDmeJBhdl9/UryuYZw7E7dDreuXUZFp4vwTu3LkN7aGjfTJezmSjJGDnqlkMiIl/HgoqI/I4r9rEabm2WK9sMyX85jzsfOks0XFE2veUqtrzzSnfB9PlBPJm3GkWVzchMinB6DvuybIQmx+LnP1qNrNKvWxFHCrIgIvJFjIYiIlJAhC4Y5Sky7GJ3PGtv0aTtmQGbmhyCbXmd+HhRJ7bldSrSZkj+rTd2fSJx5yPtQeXsHHFRIXgkdwEefHQZpCcewt0PLWYgBRH5Lc5QEREpYLi1Wa5qMyT/NmBtlHl8s0RxuhDkD9O6N9w5RFHAgrlRiI+c5qqnSETkFVhQEREpYKSiabRtho6SAokcGS6wYrRGKsqUOAcRka9jQUVEpJCJrs1ylhSY+8QtCo+UfMVwseuj/fmRCqaJnoOIaLwkSUJhUwlqWusQEzILadoUiILnrVhiQUVEpBBn+1CNlrOkwPPmi5gRGeTCkZM/Y8FEQ85vygAAIABJREFURJ5IkiX86rPXcOZ6NS5EBSDecgOpdXo8nr7K44oqFlREROMwuHiKMc7AwT8WOdyHarRFlbOkwIbaFhZURETkV4qtZpjaq/GXu3SQRQGF6TJwoA7FVjPSI+a6e3gDsKAiIhojR615X8UFQrB0OtyHarQtgM7i1ZdEh7r4GRFNnCTJMFVYYWlsRRzXWhHRBNW01qEiKgByz+uILAq4oNegprXedwuqjRs3Yv/+/aitrcXevXuRnJwMALhw4QLWrl2LK1euICwsDBs3boTRaFTqtERELjFc+56j1ryX/7Ud80tVDvehGm1B5SwpMCllJqzWNpc9V39w+fJlPPXUU7BYLNBoNDAYDHjuuecQHh6OgoICrFu3Dp2dnYiOjsZLL70ErZb7KY2WJMkoKG/CR/tKoK6/iJvKipCfko6jybGMUieicYsJmYWE6hsonCdDFgUIkoz4+i7EGPTuHtoQijUg3nHHHdi9ezeio6MHfH39+vV44IEHsH//fjzwwANYt26dUqckInKJ3hmoUzvNCNhai1M7zdi/qxCS1L3HlKPWvFiLgHPJksN9qEarNykw+6EU2J6IRvZDKWNqGSTnBEFAXl4e9u/fj7179yI2NhabN2+GJElYs2YN1q1bh/379yMnJwebN29293C9hl2S8dqu4/hg1+cQq2qxdcdv8dDRfdiybQuultXAVGF19xCJyEulaVOQMTUWKw40IOOMFSsONCA1oDuYwtMoVlDl5ORArx9YMVqtVpSUlGD58uUAgOXLl6OkpATNzc1KnZaISHH9Z6DuPBqIvG2BaC/rbt8DHG/i26wHVMYpE968tzcp8KZ/MMCYxJYppYSFhWHhwoV9f87MzERdXR2KiooQGBiInJwcAMDKlSuxb98+dw3T63xlbkRLWTVuP/0lFlSYnW4QDACyJKHtTAGse/eg7UwB5J7vJSJyRBRErP+HR/Co4Tv4eecCPGr4jkcGUgAuXkNVX18PnU4HlUoFAFCpVJg5cybq6+sRHj76Dxla7ejv8E6GyMjR70Lvb3hthsfr45wnXZvSgnokmcUBM1BJZhHtbTcQGRkCrTYY5ScbsP1HV5FYKqA8VUZY2gz8//+6ABVll9BQ24Il0aFISpmpWEHkSdfH20mShHfffRe333476uvrMWvWrL7HwsPDIUlSX5v6aHjae9Rk+qSgDtnmIiQ11uKPt9yJBz8/2LdB8OnUDDyYPBORkSGQ7XZ8tW4TKoqacbhhPm6L+gsS5h3DTc89BaHnM4Kv4d9Z53htHPPm6yJJEk43FOPC5WrEz4hFVlQaRFGZwuf21IUjf5ObeUUohdXa1tdq426RkSG4dKl15G/0Q7w2w+P1cc7Trs3UYA1KUyTc1i8c4nyKhKwgNU78vRJNjW1IyNYBN+nQfPEasnpS/k6fsPStuZqunarYuidPuz6uIIrCpBUmzz//PIKCgpCbm4uDBw9O+Hie9B412RKip2N3yjys/OwA9mfcjJ/f/zNkVZ3HydR0zJgdA4M2CJcutaLtTAHKC6148OSLsMtqvFW9Ervlp6H99HMEz89099NQnD/8nR0vXhvHvPm6SLKElwu3o9RW3x1vXngDqaXKxJt7ynUZ6T3KpQWVXq9HY2Mj7HY7VCoV7HY7Ll68OKQ1kIjI3fqHUGhnTsPU5GBsy2vrFw4RjNK/16LjXPfXTvcERizNTQcAhxvycv2T59m4cSOqqqrwxhtvQBRF6PV61NXV9T3e3NwMURRHPTvl725K0WFvcizWrPo5sswmVM2Kw2d33Inv3JWC+UkRfb//nZYqHGnMhF3u/thhl9U40piF+dUWnyyoiPxJsdWMUlu9V8Sbu4pLCyqtVovU1FTk5+fjnnvuQX5+PlJTU8fU7kdE5GqDY9BPp8iYMjsYWT+Yg+ZL15CtC4Ysyzj9X2f7kv0WfybhP358FYfyzQgNm+JwQ96xRKaT6/32t79FUVER3nrrLWg0GgDAvHnz0NHRgZMnTyInJwfvvfceli1b5uaReg+VKOCR3AUwVSSiuj4T91+rxayuZkxpr4UALYDugiowzoDFuj14q3ol7LIaKsGGxbrTCIy9171PgIgmrKa1Dhe8JN7cVRQrqF544QUcOHAATU1NePjhhxEWFoa//vWv2LBhA9auXYvXX38doaGh2Lhxo1KnJCJShKMY9P/Ma8Wl+FaIqu52hf7JfpIg48/LOxFwTUbkf13GmQz7hCPTybXOnTuHN998E0ajEStXrgQAxMTE4Pe//z02bdqE9evXD4hNp9ETRQHzE8Ix7f/uQvXZq/hzYyYW6/Ygds5hJD75CK4XF6GjqhIx0cBuPIUjjdlYrDuN2DlhmJae4e7hE9EExYTMQrzlBgrTPT/e3FUUK6h++ctf4pe//OWQrycmJuKDDz5Q6jRERIobHIMuyIDUKcHyP7WYfU7EqRQZQmwgpBQJS47JKDfY0RIs48e7gqCSBMTU3cAnt3ZhyWeaARvyZo8hMp1ca/bs2Th79qzDx7Kzs7F3795JHpFvuVZoQvXZqwPXSOEp2J97EXW1dhxpzMRiHTArOgD/+15gSty9mJaeAcHJonVZknCt0IROSxUC4wzDfu94uPr4RP4kTZuC1Do9cKAOF/QaxNd3eWy8uat4RSgFEZErReiCcSpFxpKeEIqyBBtkAfjJ21P6tfB1AnHdseiaqxISqr6ekUquUOPQP3bhrYc7MPuc2Lch71gj04m8laM1Uuev6CHbapFbsLlfkfU0Yv7FMOy6KVmScH7zq6g+e7WnEOue7Upa/agiRY+rj0/kSpIsodhqRk1rHWJCuosWd8eIi4KIx9NX9YyrHjEGvUeMazKxoCIivxeXEI7S5GC8taoVs80iCjJsyDSph7Tw3VgWgYjbQ3C+5CLOf2HFks+7CzBZAMRAEbHfioZtuYhsXTDiEsIZSEF+w9EaqawwM/IbbhtzEIXj2a6noS80KRJg4erjk2eTJQn2ahPs1iqotAaoYr1ndnJImp7lBlLrlEnTmyhREJEeMddv1kwNxoKKiAiALAM31DKqZ9khADg724aYOhEXI2TMbBJwPkXCTVEhMCZpEZcQjv1XCrEtrxUJZqA0TQJmahAZFQIDN+MlPzQtPQOxcw5jN57GkcYsLNadxvToGViMM9hW8z3cPN2EOUHlWKr7DJrolcMey9WJgEwc9F+yJOH6wRdh6yhGV0IlNAVGqM1pCLprrVcUVUzT81ye/9tDRORilopmdJxrw7+9ORUP/ykIj7w5BW1TZXxyaxe6Arr/3R4qIMY4A0D3IvyluenI+l9zULZYDc0NAXM/teP0O2exf1eh3+5JRP5LEEUkrX4UCx69F4/+VMCCR+9F0rpnEZMcig+zf4qfxuxCoKoL17s0aDh4FLIkOT1W92xXAVSCDQD6JQLGKTJWVx+fPJe92gRbRzFaHs5Hx+2FaHk4H7b2YtirTe4e2qgMl6ZH7sUZKiLye4NDKapiZYS2Cn2hE0s+12BbXidqKi/3pfaJogBBEKButCFvxxTGpZNfGBzmELHklr7HBFFE8PzMAbM8+qWLUW2+goeLN8Euq/GfNfdjt2b49rqgtHmImPIHvJP+BP7WvAC3hh9HxJROBKXNU+Q5OJpN84bEwclsVfPmtrjh2K1V6EqoBFQ9N71UMroSKzHFaoHa4Pmzk0zT81wsqIjI7w0OpajT2TG7YugaqsEx6IMLMcalky9zFOZg/fQY4h79mdMP213V1Th6KXtM7XXXi4vQ1BGC/7B8F4lB1fgPSy4emf0nXC8uUqQlr3c2TV9owvxqCwJjh08c9AST2arm7W1xw1FpDdAUGNGxuKi7qLIL0JQbocryjtlJpul5Lp8uqN7/5DT2nbjc9+dlN8/Ad+/IcuOIiMgTdYdShGBbXvfGviVpdqg70Rc64SwGfXAhxrh08mWOwhz+KKyFdpjZpvFs6Nu9xikLx64sxLErCwEA6Y3nkGGp6nt8olHnjmbTPFn/VjWoZHQsLkLoju6vKz2zMpnnmmyq2AyozWkI3QF0JVZCU26EemoaVLGePTvZi2l6nstnC6r3PzmNI8fqEdPWgoXlJfgycS6OHOsAABZVRP1wP5av10RZKpphbWzDN2ZOg/nvtdiW1z0D5SwGfXAhxrh08mWOwhwON2QiY5jZpr72OmkNjlzMxuKZpxA7J3zY9jrHRdgpNJ0IQN1HBX4ZdT6ZrWre3hY3HEEUEXTXWtirTZhitUCVFed17YxKp+l5Ygy7N/LZgmrficuIaWvB7/7wCtSShNzPD+KRHzyGfSem4Lt3uHt0RJ6B+7F8TRQFGJO0fa16hkRtX4HlLAZ9cCHGuHTyZY4KnduiChAYe8+wPyfLMqaInZgXfBZTxE7IcvcHdWc3cxytoZoZ0Iq62ghFo8696WbSZLaqeXtb3EgEUYTakOn1xaESPDmG3dv4bEEFAAvLS6DuSRJSSxK+cb4Ef14w082jIvIc3I/FucEF1kS/j8jbOQpzSJgXMexs07VCE2rKWvDgyVf7irDdeBr6MwVoOHjU4c0cR2uofjH7TRxpmD9wLVZDJuZbqsb1WuVtN5Mms1VtvOfy1SALX8YYduX4dEH1ZeJc5H5+EGpJgk0U8UUSfzmI+uN+LEQ0Wo7CHIxLbkFT83WnP+PsNSb1qxNOb+Y4WkN1+spRLIr4Cm/V3N9XmP3jjOOwnghE+P9397Af3B3NRHnbzaTJbFUbz7l8OcjClw0Xw86Camx8tqBadvMMHDnWgUd+8Bi+cb4EXyTNRfO0UCy7eYa7h0bkMcazYJyI/NfgMAdBpRr2+529xkDWO72Z4+hnksLqERUu4Z30J3C0eSEWTC9ATbseqtomzBqmCHI2EzUjxeh1N5Mms1VtrOfy5SALX8YYduX4bEHVGzyx78SUvjY/pvwRDeSt+7EQkXdw9hoTfPPNWPzFXoc3cxz/zAyEzTHg2DuN6JCmYHvtSnxxJQs/iXt32CLI2UzUjGQJi3WFvJmkEF8OsvBljGFXjs8WVEB3UcUACiLnvHE/FiLyHs5eYwAgds5RhzdznP3MtUITksJMWH/+iTFGsA+dicoQZcREA3/BT3D6SgqSwuoRO2cGbyaNk68HWfgqxrArx6cLKiIambftx0JE3sXZa4yzQqvtTEHfeqfwf1red4NnyMxV5FeI0kqQpe5/HN0IchrBfjIAdbXAkYbbsCjiK8yKDkTik4/wZtI4efv+Tv5M6Rh2f8WCahBJkmGqsMLS2Io4XQgyErQ+GYHsL8+TiIg80+BCa6Tkvd6ZqyhTAWLefR9NTTLeL/kmFr22F7FzjjpM6HPUPhgTLaKm1v51G2DN/ditfhoxxUW8sTROvrC/E9FEsKDqR5JkvLbrOFrKqpFlLkR+SjqOJsfikdwFPlVs+MvzJM8mSTIsFc1oamxDYnIkpmun8vePyI+NJnlPEEUIgoiapql93/dm9f1OE/octQ92VFVi9ylhUgMpvGnPq/Hi/k7kz3zrb/MEmSqsaCmrxpZtW/DQ0X3Ysm0LrpbVwFRhdffQFOUvz5M8lyTJ2L+rEKd2mhGwtRZHXi3A/l2FkCTZ3UMjIjdxtt6ps9oyru/r1TsTpl2+AsHzMzHFYMRiXQFUgg0A+q3Fcs16n96Zt+Ov7sGrbwLHX92D85tfhdyzTyYReT8WVP1YGluRZS4csBlwttmE6sZWN49MWf7yPGlksiSh7UwBrHv3oO1Mwbjf4CVJRuV5K05+VoXK89YRCyNLRTPay1qRty0Qdx4NxA//U4P2slZYKprHdX4i8n6amFgs1X2Oh2f9CbeEnUSA0OWw0OleFzW0INJEx4zq9ay7DXA6duc8jX+N24XdOU+7NN20/8zbf1hy8eDJF1F99gquFZoAdL8O26oK0HlqD2xV438dJiL3mZSWvwsXLmDt2rW4cuUKwsLCsHHjRhiNxsk49ZjE6UKQn5KO3GMH+jYDPpWSgbt1Ie4emqL85XnS8EZarzBavbNN7WWtSDQLOJUiozQ5BEtz05228DU1tiHRLEAldT+ukgQkmgVYG9tgTNIq8vyIyDM5an8DgIYDR3G9U4VAsQs/jdmFX8RfwRRRhmS3DQidcLguKnk6Gg4eHdXrmVLppqNt4xtuA/Vp6RncEJfIB6g2bNiwwdUneeyxx/C9730PL7zwAjQaDV5//XXcd999o/759vYuyJPQCTQzbCrO1LbhL4Z5aJwWgp3fug/Tk2Nw9+LZEITuD37TpgXi+vUu1w/GhUbzPMfDF66NK3na9blmOoPS/z6DB0++iONXM/Fh/e24MzAfM+NnQBMVNerjVJU3o/qTOuRtC0RSpRpZp1U4briOIMM0hIUHOfyZri47SmqakHVaBVEWYBdlHLzjBkITQ6CPDZvQ76Ev8rTfHVcQBAFBQRp3D2NcJus9yhON9Xez90ZO6X+fwftHohBQfAT2sjPQBAei5K8F+P6ZLTjRkoW/XLoT/xTxKYpaktB+5hTs50wI/+YCCIIAQRAQ/s0FmBk/AznJLTB8ayGCEw0o/W/TqF/PBEGAJioKQclzoImKGvNrjrPn0TvG/tdF6uhAQPERfFh/O2SIUAk2PJn8Bxi+tRCqrkZ01nyElofzYUtsROf8cwg4MQPqoCSIYaN/HfYm/vB6Nh68Lo55ynUZ6T3K5TNUVqsVJSUlePvttwEAy5cvx/PPP4/m5maEh4e7+vRjIooCHsldAFNFIqobs3G3j6bf+cvzpOENd9d0LAuzxzPbFJcQjtLkEGzLa0ViqYCziTYINqD6QC2sla3Dzm4RkfdyFjwRPOMEjl7MGvB6dPTyQnRIU7C+/EnsFoeGU/RPCLTu3aPI69lEn4ejYIzhNlDvKtjLDXGJfIDL55Pr6+uh0+mgUqkAACqVCjNnzkR9fb2rTz0uoiggMykCd/9DPDKTIkb8UCdJMgrON+Evn11Awfkmr1lUP9bnSb7H2TqEsS7MjtAFozxFhl3s/t23izLKU2RodcFOf0YUBSzNTUfMt2bhTIYdd/xNg5++E4QfbZvCtVREPszZjRwIwKKZpwe8Hi2YXoBz140jhk4Ayr2e9RppfelYgjF6WwwXPHovHv2pgAWP3tvXiqjSGqCpMAL2nvfg3g1xtdwQl8ibeEVsulbr/IOZO0RGdq81sksy/s/vj8BaXIms0kL8NTUdX6QZ8cy/LYbKTwuU3mtDjnnS9YlYcgusnx7DH4W1ONyQiduiCpAwLwLGJbdA6LkBMhpabTDKTzZg+4+uIrFUQHmqjOlpYbhpoWHEQj0kdAoyC9VIKQ/o/oIMJJlFtLfd8Khr5Ql4PcgXON5o9zSCb1qBuOaj2GV7Ekeab8atYcdR06HHF1ey+hVH9zo97nCzQGM1mvWlzp6HszE629yYG+IS+QaXF1R6vR6NjY2w2+1QqVSw2+24ePEi9Hr9qI9htbZ5zMxPZGQILl3qTsMrON+EpqIL2LJtC9SShAeP7ceTeatx6EsDMpMi3DzSydf/2tBQnnh94h79GbSFJmRUWxAYew+mpWegqfn6mI+z5LtzYalohrWxDVm6YMQlhMNqbRvx56YGa1CaIuG2YzJUUvdaqvMpErKDAzzuWrmTJ/7uKE0UBY+7eUbKc1b4BM/PRNL8TESZCpB64jiuFndCdfUifhL37qiKI6WCJoDRtfMpVcBxQ1wi3+Dygkqr1SI1NRX5+fm45557kJ+fj9TUVI9bPzUezuPHs/2yoCLv4+yu6ViJogBjknbMCX29a6m2/6gNCaVAeYqMqckhiEvw/tcHIhpqpMInJDMbIZnZ0EsSYsdYHCn1ejaa9aXDPQ9ZktB84iSsheZRbeLLDXGJvN+ktPxt2LABa9euxeuvv47Q0FBs3LhxMk7rcowfJ5qY3rVUV63tqCi7hOye2S2u6SPyXaMpfJQqjsZjtO18jsbY2y5YU9aCww3zx70dBRF5l0kpqBITE/HBBx9MxqkmVUaCFkeTY/Fk3mpkm004lZKB6ckxyEjgPjpEoyWKApLn6jAj0nHEOhHRRI12zyhgYu18Y0n/IyLf4RWhFJ6K8eNERESebaybmE9kPdZo2gVlSYK92gS7tQoqrYFrpoh8AAuqCeqNH+eaKSIiIs8znlmj8bYcjtQuKEsSrh98EbaOYnQlVEJTYITanIagu9ayqCLyYiyoiIiIyGcptYn5aPS2C/ZuRzG4XdBebYKtoxgtD+cDKhkdi4sQuqP76wylIPJeLKiIiIjIZ411z6iJ6G0XTLGcQ0bR2SHtgnZrFboSKgFVz1YwKhldiZWYYrWwoCLyYiyoiIiIyGcpuenvaAiiiPCbc2A3zhnymEprgKbAiI7FRd1FlV2AptwIVVacS8ZCRJODBRURERH5LCU3/Z0oVWwG1OY0hO4AuhIroSk3Qj01DapY1xR3RDQ5WFARERGRT3PnvlaDxxF011rYq02YYrVAlRXHlD8iH8CCioiIiGiSCKIItSGTa6aIfAgLKiIfNZaNLImIiIhofFhQEfmgsW5kSURERETjw4KKyAeNZyNLIiIiIho73qp2M0mSUXC+CX/57AIKzjdBkmR3D4l8gLONLDurLW4eGREREZFvYUHlRpIk47Vdx5G/8zBUW3cif+dhvLbrOIsqmrDujSwLoBJsANBvI0vudeJJZEmCraoAnaf2wFZVAFmS3D0kv3XhwgV873vfw9KlS/G9730PlZWV7h4SERF5Cbb8uZGpwoqWsmps2bYFaklC7rEDeDJvNUwVichMinD38MiLTfZGljR2siTh+sEXYesoRldCJTQFRqjNaQi6ay3XubnB+vXr8cADD+Cee+7Bnj17sG7dOrzzzjvuHhYREXkBFlRuZGlsRZa5EOqeu9JqSUK22YTqxmwWVDQhnrSRJTlmrzbB1lGMlofzAZWMjsVFCN3R/XXGKU8uq9WKkpISvP322wCA5cuX4/nnn0dzczPCw8PdPLrJI0kyTBVWWBpbEacLQUaCFqIouHtYREQej5+u3ChOF4LTKemw9XzItYkiTqVkIFYX4uaRkS/o3chSu3wFgudnspjyMHZrFboSKgFVT4uvSkZXYiXsVq5zm2z19fXQ6XRQqVQAAJVKhZkzZ6K+vt7NI5s8bEEnIho/zlC5UUaCFkeTY/Fk3mpkm004lZKB6ckxyEjQuntoRORiKq0BmgIjOhYXdRdVdgGaciNUWVzn5m202mB3D2HCjpc0oPVczYAW9J//aDWqrPOwYG7UsD8bGcmbgI7wujjnqmsjS3ZcLz+NroYL0ETFIygxC4Kocsm5XIG/M455w3VhQeVGoijgkdwFMFUkoroxG3ezxYLIb6hiM6A2pyF0B9CVWAlNuRHqqWlQxXKd22TT6/VobGyE3W6HSqWC3W7HxYsXodfrR/XzVmub18/kFJZdRGapaUALelapCUVl2YiPnOb05yIjQ3DpUutkDdNr8Lo456prM2Rd6hEj1F96z7pU/s445inXRRSFYW+esaByM1EUkJkUwTVTRH5GEEUE3bUW9moTplgtUGXFQRXLdW7uoNVqkZqaivz8fNxzzz3Iz89HamqqX62fitOFID8lHbnHDkAtSX0t6HezBZ28BNelkjtNuKDas2cPtm3bhvLycjzzzDPIzc3te6y9vR2/+MUvUFxcDJVKhaeffhpLliyZ6CmJiHyCIIpQGzL5Zu8BNmzYgLVr1+L1119HaGgoNm7c6O4hTSq2oHsHWZJgrzbBbq2CSmvgTZh+nK1LnWK18DXWTex2Gy5fvgSbrWvcx7h4UYQ0yVuKqNUazJgRCZVq9GXShAuq1NRUbN26FW+99daQx7Zv347g4GAcPHgQlZWVePDBB3HgwAFMm+a8fYCIiGiyJSYm4oMPPnD3MNyGLeiej1stDI/rUj3P5cuXMGVKEKZNi4IgjO+1RK0WYbNNXkElyzKuXWvB5cuXEBExurZvQIGCKjk5GQAgOvjL/D//8z948cUXAQBGoxHz5s3D0aNH8e1vf3uipyUiIiIFsQXds7GlbXhcl+p5bLauCRVT7iAIAqZNC0Vb25Ux/ZxL11DV1dUhOjq67896vR4NDQ2uPCURERG5Afexci22tA3PU9elSrKEYqsZNa11iAmZhTRtCkTBf2YUvamY6jWeMY9YUN13332oq6tz+Njnn3/et2+HK3laJK03xDe6C6/N8Hh9nOO1GR6vD3my3n2sWsqqkWUuRH5KOo4mx+KR3AUsqhSidEubL67H8rR1qZIs4eXC7Si11eNCVADiLTeQWqfH4+mr/Kqo8gcjFlQffvjhuA8+a9Ys1NbW9iUl1dfXY+HChWM+jidF0npKfKMn4rUZHq+Pc7w2w/OH6zNSJC15NlOFFS1l1QP2sXoybzVMFYlsIVSIki1tXI81OYqtZpTa6vGXu3SQRQGF6TJwoA7FVjPSI+a6e3h+yWKpwq9/vQFXr17F9OnT8ctf/gqxsRNfZ+fSvzXLli3Dn/70JwBAZWUlCgsLceutt7rylDSIJMkoON+Ev3x2AQXnmzymMCUi15AlCbaqAnSe2gNbVQHkSU5HIv9kaWxFlrlwwD5W2WYTqht9+0bAZOptaZuWtQahN57GtKw14y6A+q/H6ri9EC0P58PWXgx7tckFI/dfNa11uBAVALlnllYWBVzQa1DTWu/mkXm2/p9dT5+7pOhn182bf4N//ufv4L33/i/++Z+/g5de+j+KHHfCBVV+fj4WLVqEffv24ZVXXsGiRYtw/vx5AMCqVavQ0tKCu+66Cz/5yU/w3HPPITiYdyAnS28LRv7Ow1Bt3Yn8nYfx2q7jLKqIfFTvXedrBS+hJWATrhW8hOsHX2RRRS4XpwvB6ZR02Ho+3PfuYxXLfawU1dvSFpi9AmpD5rhnk5ytx7JbLcoNlhATMgvxDTcg9HzuEiQZ8fVdiAkZfXqcvxn82XXP9k8V++x6+XIzysrMuPPOpQCAO+9cirIyMy5fvjxgBQviAAAgAElEQVThY084lGL58uVYvny5w8eCgoLw6quvTvQUNE5swSDyL0wBI3fhPlbehRHjkyNNm4LUOj1woA4X9BrE13chNaA7mIIcc+Vn18bGRkREzOzLf1CpVIiIiMTFi42YMWPGhI7t0pQ/ci/nLRjZLKiIfBBTwMhduI+Vd2HE+OQQBRGPp6/qSfmrR4xB73cpf2PlrZ9d+X/Uh7EFg8i/qLQGaCqMgL3nQ2zvXWct7zqT6/XuY3X3P8QjMymCxZQHU3I9Fg1PFESkR8zFt+PvQHrEXBZTI3DlZ1edToempouw2+0AALvdjqamS5g5UzfhY3OGyoexBYPIv/CuMxGNlqdFjHsCX4yS9zZDPrumZmD6bGU+u86YEY6kpGR8/PF+LF36T/j44/2YPXvOhNv9ABZUPo0tGET+xVM3tiQi8nSMkvcMgz+73jsrFGmGcMU+u65Z8wxeeGE93n57G0JCQvDv//4rRY7LgsrH9bZgeHLfKREph3edyZUkSYapwgpLYyvidCG4nXuHkY9gqI/n6P/ZVa0WYbMpl1RrMBjxn//5X4odrxcLKiIiIhpRb5xxS1k1ssyFyE9Jxxcn4/Hj72az84G83lhCfdgaSIOxoCIiIqIROYoz/vmPVsNUYfD7LghJkmGpaEZTYxsidMHQcubO64w2Sp6tgeQICyoiIg8lyRKKrWY0X7QiXNQybpfcymGccWmhx8cZu5okydi/qxDtZa1INAs4lSKj/GQDlnx3LmfuvMhoQ33YGkiOsKAiIvJAkizh5cLtKLXV44I+APE1N5Bap8fj6atYVJFbxOlCkJ+SjtxjB6CWpO4449R0LB9nnPHgWZ24BOUWnk8mS0Uz2stakbctECpJwJJjMrb/6CosFc0wJjFV11uMNtSH+/2RIyyoiIg8ULHVjFJbPf5ylw6yKKBwngwcqEOx1Yz0iLnuHh75IUdbcUSmGccVZ9w9q2PCdXMrks6K+GqOhNKUECzNzfC6oqqpsQ2JZgEqqXvcKklAYqkAa2MbC6pJotSaptGE+oy2NZD8CwsqIiIX6G3Xq2mtQ0zIrDG369W01uFCVADkng+Xsijggl6DmtZ6FlTkFo624rh9oRHN1rYxH6vqvBVtJS34yc6p3bM6n8l446EWVJ23Ij558toHlZgli9AF41SKjCXHZKgkAXZRRnmqjCyd766j8qRQhsle08T9/sgRFlRERAob0K4XFYB4y9jb9WJCZiHecgOF6TJkUYAgyYiv70KMQe/i0RM5N3grDtU4Z5PKzZeQXKYaMKszp0yF8rOXJq2gcrT2qTQ5BEtz08dUVMUlhKM0OQTb8rqPU54iY3paGOISwl04evfxtFCGyV7TxP3+vNtrr72MI0cOob6+Du+88x4SEpIUOS4LKiKiCXA0EzWkXS997O16adoUpNbpgQN1uDBLg/i6LqQGdB+fyBecS7Bhyeeavlmdcwk2hMmTd35Ha5+25bWOee2TKApYmpsOS0UzrI1tyNYF46aFBljHMXPnDTwtlMEda5q4359r9Z8BlWYaIcxKV6xgvfXW2/Cd76zEv/3bjxQ5Xi8WVETktSbaVqfE+R3NRKWEGCfcricKIh5PX4ViqxmXJStmGJjyR74jMTUSR09dwvb725FYpUK5wY5rwcBNqZGTNgaHa5/M41v7JIoCjEnavp/ztnVgY+FpoQxc0+RbhsyAfmWEuli5GdD5813zO8qCioi8khJtdRPlbCYqWY5DfMPE2/VEQUR6xFxERobg0qVWFz0LoslnSNQiMn46rla0wBJtR0coEBk/HYbEyQtxcLj2KUVGtg+vfVKCpxUwXNPkWzxtBnS0WFARkVdSoq1uopwFR4gdKqSqe9r19BrE14++Xc/RrBuRrxFFAcu+n9HXJjfPDbHpjtY+TU0O8dm1T0rxtAKGa5p8i6fNgI4WCyoiHyJLEq4VmtBpqUJgnAHT0n33TcUTUvCcBUfEGmZhWfztPYVRPWIM+lG16zmbdfv1kscn5fkQTabBbXIT1ZvYd6mhFbIkQxAFREaFOC3UHK198ta9sEZDyWhxTytguKbJd3jaDOhosaAi8hGyJOH85ldRffYqjjRmYrFuD2LnHEbS6kd9sqjyhBS8AcERg2aietv1xlLcOZt1O91QjLgAo+ueCJGXG5DYVyrgbKINggxYAkWUJoc6Te5TuqjzVEon87GAIVfxtBnQ0WJBReQjrhWaUH32Kh48+SLsshpvVa/EbjwNfaEJwS5ahOlOwxUzk6V/cMRYZqKccTbrVnm5GnEzjQqOnMi3DEns+0yD7fe3Y9ExNY5g7Ml9vsZb16WQ/xk8AxqQY1A05e/ll1/CkSOfornZiscf/zeEhk7Hrl3vT/i4LKiIfESnpQpHGjNhl7v/WttlNY40ZmF+tcUnCyqli5mJjGOsM1HOOJt1M2bEKjBSItdQYnPciXKY2FelwsUIedzJfb7EW9elkH/qPwOqVouw2STFjv3442vw+ONrFDterwl/8vjVr36FZcuWYcWKFVi5ciUKCwv7HmtqasIPf/hDLF26FCtWrMCZM2cmejoiciIwzoDFugKoBBsAQCXYsFh3GoGxzvuOZUlC25kCWPfuQduZAsiSci9ak6G3mPl2/B1Ij5jr9ZHiadoUpKr1WHGgARlnrFhxoAGpAbOQFZXm7qEROdTbandqpxkBW2txaqcZ+3cVQpImcUMpdCf2lafIsIvd57WLMsoNdsxs6g6b0Pp5cp9Ka4CmwgjYewrd3nUpWs9el0LkLSY8Q7Vo0SI888wzCAgIwKeffoonnngCH3/8MQBgy5YtyMnJwY4dO3Dy5EmsWbMG+/fvhyD45oJPInealp6B2DmHsRtP40hjFhbrTiN2ThimpTvuO/a3NVfewOmsG/9/kIc6b76oyOa4EzUgsa/fGqrDd9gQlBzq98l97l6X0j8Q41pCCuTQ2XyfIZ8y4YJqyZIlff+dmZmJhoYGSJIEURSxb98+fPLJJwCAnJwcaDQaFBYWIiPDsxeWEXkjQRSRtPpR6AtNmF9tQWDsvcOm/PnbmitvoWQLIZGrNdReVWxz3Inon9jX1NAKoyRDFAVEDJPy50/cmcw3OBCj82g8VIFzFduolcgTKLqGavfu3bjtttsgiiIuX74MWZYRHv71XSG9Xo+GhoYxF1RarWdN1UdGhrh7CB6L12Z4k3J9dLeO6ts6rA0O11zd0tzolv+P/N0ZnlY7DacbinHhcjXiZ8QiKyqNM1fkdlHR0/Gph2yO6y+JfePlrmS+IYEY9iKE7pAZiEE+ZcSC6r777kNdXZ3Dxz7//HOoVCoAwF//+lfs3bsXu3fvVnaEAKzWtknvx3YmMjIEly61unsYHonXZniedn1s2igs1u3BW9UrYZfVfWuubOH3Tvo4Pe3aeBqtdhqe/fTlr/enKryB1FI9Hk9f5fXrxnqJouBxN89oZEkpM/EFN8f1akrtT+UMAzHIH4xYUH344YcjHuTgwYPYunUrdu7ciYiICADAjBkzAADNzc19s1T19fWIioqayHiJSCFjXXNF7nO6odjh/lTFVjNbA0lRkiTDVGGFpbEVcboQZCRoh22X87fNcX2N0vtTOeKtG7USjcWEW/4+/fRT/OY3v8Hbb7+NmJiYAY8tW7YM7733Hn72s5/h5MmT6OjowLx58yZ6SiJSwFjXXJH7XLhc7XB/qprWehZUpBhJkvHaruNoKatGlrkQ+SnpOJoci0dyF4xYVLHVzjtNxv5UgwMxAivioZo61+M3aiUaiwkXVL/4xS8QEBCARx99tO9rO3fuxIwZM/Dzn/8ca9aswUcffYTAwEBs2rSJPf9EHkQQRQTPz2QIhYeLnxGL+MKh+1PFGPTuHhr5EFOFFS1l1diybQvUkoTcYwfwZN5qmCoSkZkU4e7hkQtMRjve4ECMGYvn4BpT/sgNrl69guefX4fa2hoEBAQgJiYOa9Y809dVNxETLqi++OILp49FRkZi586dEz0FEZHPk2SpJy69DjEhswZsUpwVlYbUUj1woA4X9BrE13chNaD7e4iUYmlsRZa5EOqe/ejUkoRsswnVjdksqHzUZLXj9Q/EmBYZgutcM0vD6P9+aAiLQUpYsiLrhQVBwAMP/ADZ2TkAgN///hW88cbv8ItfrJvwsRVN+SNyJVmScK3QhE5LFQLjDGxPI58hyRJeLtz+deiE5QZS674OnRBFJ/tT+UggBXmGOF0I8lPSkXvsANSSBJso4lRKBu7WMYHTV7lqfypXB12Q7xryfnjhc6SqlQlhCg2d3ldMAUBa2jx8+OGfJzpkACyoyEtwE1ryZcVW84ihE9yfilwtI0GLo8mxeDJvNbLNJpxKycD05BhkJHBtlK9yxf5UkxF0Qb5rNO+HSpAkCR9++Gf84z8uUuR4LKjIIw2ejZJliZvQks+qaa1j6AS5nSgKeCR3AUwViahuzMbdo0j5I+/Xvx1PiZmlyQi6IN81We+HW7e+hKCgqfiXf/muIsdjQUUex9FsVExEO440fnPIJrTzqy0sqMjrxYTMQryFoRPkfqIoIDMpgmum/JBSM0vcd4omYjLeD1977WXU1FiwceNWxcLyWFCRx7lWaBoyG/XnnP+NRZGnhmxCGxh7r7uHSz5quJAIpaVpU5Bax9AJInIfpWaWuO8UTYSr3w/ffPP3OHu2FC+99Ao0Go0ixwRYUJEH6rRU4Uhj5oDZqAONt+C7c09idw43oSXXGykkQmmiwNAJV/rVr36Fv//979BoNAgKCsKzzz6L9PR0AEBTUxOeeuop1NbWIjAwEM8//zzmz5/v5hETucZwLX1KzSwNF3QhSxKunTuJzgozwyrIocHvh4aEaMVS/ioqyvGHP7yN2Ng4/PSnPwQA6PWz8JvfbJ7wsVlQkccJjDNgsW7PgNmoRboCxN7/z4gTRW5CSy43WYti+2PohOssWrQIzzzzDAICAvDpp5/iiSeewMcffwwA2LJlC3JycrBjxw6cPHkSa9aswf79+yEI/6+9ew2Pqjz3Bv5fa00SEpJATiSThJzJwSScRKlYgViRaAF1X61KRS8rbK3uS1/dlRp27a51t1Wprbt6ufWlnNrKLr67+wIrKIItHjCiRE4J5HwmkwlhEkhCjjPreT8MGTLJzGRmMslMyP/3KWStWfNksdZK7rmf5765bmiyUlWBhpo2XGjpQmR0MBJSwj22Dmw8jz1Wo61/Gm1Kn6cyS/YKXQBA96GX0dl3Fn3JtSxWQXYN/X2o0cgwGlWPHDclJRVHjhR55FjDMaAinzM9dy5mZ3yCXbDORgXPm29pREs0nlgk4tqSl5dn+Xr+/PnQ6/VQVRWyLOPAgQP4+9//DgBYtGgR/P39UVxcjLlzmf2ejFRV4KN3itFT0YnUMgnHMwVOzA5AfHYkomJCxhQA2Tp2aXoIVq7LHbegytkiEc6sfxptSt9oJdRdKVgxtNDFIGP9SRaroGsWAyryOZIsI+3Zp6AtPs1sFHkFi0Rcu3bt2oXly5dDlmW0t7dDCIHw8HDLdq1WC71e71JAFRERPB5DnTSiorzfp0pVBarKzqPkhA6Xajrwo20B8DPJyDsi8PZD3bj8dROaYiVUZ8/Avf+y2K0AqOJsC/oqu7BhawAUVULeEYFt/9yFS4YepF8XPWL/sZ4XoZrQ/NcX0NN5Gn0ptQg4lYzAmrnQfu8FSLJite/lyiJ09p21ClZm7JAwvaMS0+eY++60l+nRnlpnPaUvrQ4RvS0IuzJW8YNforv6BPpb6uC/PAlBqQsgyYpLY7HHmfef6nzhXvKk8+dlaDRj/9vNE8dwlSzLLv1/MKAinzSYiWI2iryBRSIml3vuuQc6nc7mtsLCQiiK+Q++/fv34/3338euXbs8+v4GQxdUVXj0mJNFVFQIWls7bW6bqKl3EbOmo+zLJvRUdCG1VEJLsor/XdWHe/82DYoqIaNKA/8BCf+03w9bN1zEN1/VIynN9d5a1RWtSC4FFNX8MyiqhJRSoKaiFWFRQVb7OjovzjLWn0R3x6mrQdLSEojtAvrjhSMyOn01ZehLrrUKVvpSatFeU47umRnm4wXGmKf0LR0ypa8qCb0Loq3HOjMDmJkBI4BuQ7fLY7H78zj7/lOUJ64ZX6Oq6pin63lyyp8rVFW1+v+QZcnhh2cMqIiIhmGRiMllz549o+5z6NAhvPbaa9i5cyciI80lwcPCwgAAbW1tlixVc3MzYmJixm+wU4Sj6XEAxhRoDT/2l9kmaHqBH/0x0Jw5+sIf29b2oCrJhNR6BTWJJiwv9IeiSkgtk2Bo6XIroIqMDsbxTIG8IwKKKsEkC1RnCiyMHp8MpStFIpxZ/zTalL6hhk/vM12oG3PBisH3n7FDQl9KrcP3J5psGFAREdnAIhHXjsOHD+Oll17Cjh07EB8fb7UtPz8fu3fvxhNPPIGioiL09vYiJyfHSyO9djTUtKGnotNqetzWDZ2orzKg7KhuTOuQhh5bEkBZSjcyqjTWmaN6BV/c0I9DywTC22Wk1SljDoASUsJRmh6CrRvMY6/OFAhMN6/LcsTdTJ0rRSKcCZbsFYsYPp3e1nosRU2Evzy2ghWD7z+9oxLtNeV2359oMmJARURTwkT2lSLfsmnTJvj5+eGpp56yfG/nzp0ICwvDj3/8Y2zcuBF79+5FQEAANm/e7LFGj1PZhZYupJZJVkFOapmE6vJWm4FWQ02b01mjoceuSDZCSEBNogmmwquZo4oMFWE3RaBP341LDb34xy39TgdA9siyhJXrctFQ0wZDSxcWOhEcjaWQhSsZJWeDJVvFIoazWbxi2yooSETo9lWjjsURSZYxfc4iyzREomsFAyoiuuZNdF8p8i1Hjx61uy0qKgo7d+6cuMFMEfamx4UK2Ay0XJmGN/TY+lkqMisVGCIEtq3tQWq9gooUI3rCFSzKmoXZd4bjXF270wHQaGRZQlJahNVYbWWgBtnL1DkTQDobJA3df7RgyRk2pxqm1SGk/15Mi7zXqbEQ+apNm34MnU4HWZYQGBiEZ57ZiDlzxh7gM6Aiomuep/tKMdtF5Ji96XGpWVE4kdnm1jqkwcClVd8JaXYAtm7oQ5hOoDVCxaPvBKI2QUVztAm9AQLxpSpOXCpH2ZVs0GDwoqoCdVUGt9Zv2QucbGWg1j2zBID9TJ2zAeRoQZIrpcydZW+qoWZBokcCNqLRCFXF5eLT6GuoR1ByEqZdl+ux4P2nP/0FgoPNz5vPP/8EL730IrZvH3uhIgZURHTNa+xowvlggczSdlwMC0BzTJClr1R2RKZLwZGz2S4GXTSV2ZseBwBlbq5DGhq4qJkqkDANl7IUGEs6seP+XqTUKyhPMyLmvILv758GIcEqGzSW6Xf2Xpv5rVibGaiqsvMIiwoa10IWlrVO3cXoT6uH//FEaMpyrXpPuRNwuTLVkMjThKqi6tXX0Vh+CZ+2zMey6L2YnXEYac8+5ZGgajCYAoCuri5IHvq9zICKaIIN/eQlICGRPbbGmSpUFLWfQajaj85gP2SXtCGl6hIiLwNxiTEuTwV0JtvFKYZEtqfHAXB5HRIwshBFfJMR+/N7EDMvAkalC0uP+uHr+UZEXZDxvf3TIAsJuDK90NDShYSUcBQdqcPl0g48umOay9Pv7E3dq5p5HqmlwzJQpRLOnNBhyW2pbheyGOQoIDI2nMRA1wl0/vPBK2udziDkD0YYG07CL2mhU81+7b2fJvI6aNRMBPQr0CzwTOaLyBmXi0+jsfwSHih6GSahwZbG+7ELz0FbfNpjrXRefvk/8PXX5qngr776ukeOyYCKaAKN/OTlPczO+MRjn7zQSGcMZWiULuFgfgKELOGMScWd++sRrgairqMRpQM6/O32mKvB0UdN+KD2EBRJsZlZOtepQ22MH8SVPwCFLFmyXYMBlaenGBJdS+wFWo4MTp2TBPD/1vSiM1hg3ikFlb1t6A2T8cl3jAhvBlojVQgJgIAlG7Qgajo+eqcYrbWXMK9ccWr63fDpfa36zhFT91LKgJKIi2hPNSLvC39LBqoy2QhjoR4f6buxcl2uWwEkYLva3tCAyFhzDAPp56zWOg2kn4Ox5hj8khbaLi6x3Vx0wta0vRHvV5MEzbRsBCxYzd9PNGH6Gurxact8mIQ5RDEJDT5tWYB5jQ0eC6gKCn4GADhwYD/+679+75GgincI0QQa+snLWw3r8EDRy2gsbYN+2xZ0nToJoU5887prnTkA8jcHQKrAkkI9BvwUFCVrsKe9EL1qPwZbsgoAvWIA/9v2BX4bcAyvN/wV/1m8Daq4+v8SHxKLZP0ApCuNXCVVILm5H/Eh2mHvaTvoIiLXRUYHozpToCLFiM5ggUf+EojbjgTg0R3TENQBzL49DiE/jIdfahC2bujDx0v7sHVDHwLTQwAJ6KnoxHcP+KE20QSTbL53BwOuiGHT7wan9x3fWQa/15pwfGcZzp25gKpM1eq1Z7NNkNqNkE3AlnXd+Pjbfdi2tgdhl2T86P8GoKfCnP0aDCCvvzkRSWkRTq/ZGhoQ9d5ajI4f7oOxuxjGhpNX9hDwq4oBTFeOZ5LgV3n1OWSvj5XJ0OD8+/WcganxtHP/SUQeEJCQiGXRJ6FIRgCAIhmxLPoEAmY7X6LfWfn538Xx49/g0qWLYz7WmDNUb731Fj744AMoigIhBB577DHceeedAICenh5s2rQJZ86cgaIoeO6555CXlzfmQRNNVrY+efnk/EIYPi5HxFFmq8ZDfEgsEut7UZwrEKPvRmCPEYdWzoaQJZTkCqw80IBY3WXo4oMRq7sMAPhgZZzdzFJ2RCaydFrgoA61Wn8kN/cjy8+cyRr6nskNAyjOFRCydDXoStTaHCMROTY4dW6/3yXMOzUyy2S8Q8b1Nydi4ZLEEdmg4182ILVMQnqNBidzjNi2tgcp9QoqM1RMTw8dMf3O1vS+P2zoRV+MBv/5eA9mN0gwaAX6AyQEtwnMqVVQkmHEyZwBrD4YgDm1GsjCPPXvgr7Tsn7L1V5U9qrtKV/tgiZhPjQpN6L/yOcI3pEHY2oLNNXRkLoDoVl4g3l3F/pY2X0/F5v3Eo3V9Ny5mJ3xCXbhOXzasgDLo08iPmMmpueOfQ1fd3c3Ojs7EB1tbt5+5MhnCA0NRWjojDEfe8wB1bp16/D4448DAFpaWnDHHXfg5ptvxowZM7Bt2zYEBwfj0KFDqKurwwMPPICDBw9i+vTpYx440WRk/uTlPWxpvB8moYEiGXFD6Clsa7ofX12a7/F5wgRkhacjvNIPKz5qRL+/jJboIKvMUVPcdCwuMqDa0IfU2i5UJU93OJ1PlmQ8nbv+SsGJZsQnakdMC3Qm6CIi5w0WuSg6UofK3ibkFdou8mBrOuHVwhDAvX+bhooUI/bnDyAzLx6Lvp00IrAZXplPEoDap8K/yYjsCgWV6SpMs/wRrO/Ho+8EmYOuQoG3H+qGkABZmMdVnmqEcvYC5n8rAYf+u8TlYhhKRCL8v0mAMe4ClPMzYJp1CZrqaJjQAlPjaSjxcyEHJ0D01EFpjIDcGwwlMguaBPPvD1eLS7gagBGNB0mWkfbsU9AWn8a8xgYEJd3tsSp/vb09+NnPCtDb2wNZVhAaGopXXnkNkuR+K4VBYw6oQkJCLF93d3dDkiSoV6Ytffjhh3j55ZcBAElJScjJycFnn32GO+64Y6xvS+RTnC00YfXJi34+bprxDXR90Th6cQFUKB6fJzzVqULF6yU7cEnqg2ZAxcWZ/ohp7kbJkMxRSvMAVmuXQunTwKQ14j39UavttjJLsiQjN/I6u+uhnAm6iMg1sixh0beTYKjrdKnIg63CEFHJM2wGU8DIHloVKebmwY8NFrP4QmDLD3sRcd56TVVGtQbvr+jDOa2KmkQTwttlXGroxfHC+hEZry3rO1BfZUByeqT9nzcuB9JnAQg8nI2B9GYEHs4GBhT0Z9Vi2oV69JV9ABUNMMUaoGmMhhI0G0G3PWf1u8c/Ix9yTTj8W5dCM/8GaBLm2/3DlNX9yFdIsozgefMRPG8+NBoZRqNnlkOEh0dgy5adHjnWcB4pSvGXv/wFf/zjH6HX6/HrX/8aYWFhAACdToe4uDjLflqtFnq93hNvSeR1g0FUb30dLhSVQNdkGrXQxNBPXrKOfYXaL/ux/syPAQDfnvkVVkUfhjAuhVBVTvvzAEtxiDvjsKRQj9BLfZBV4PYDDdDFTUdK8wCy/GJxZ/IKyJIMVaioKG7wSGZptKCLiFxnrxy7o0yPM68ZOiUvImo6ps0JxtYN5kzVqVwT5p3WWAVPcypknMwxwiRfzZSVpRkRcVGG/4CE5YX+SKtT8I9b+lGf3TGioMWcUhlHD1Uj0cGaKrWpBGpwHzrX//1KUYmzCN6RB/+yZCDFZF7v9Mg+SzYpdPsqqE0lkBPn2ywwoZYbLNkrW1xtJExEV40aUN1zzz3Q6XQ2txUWFkJRFKxduxZr165FeXk5nn32Wdx0002WoMoTIiLG3q/Bk6KiQkbfaYqaKudGmEz45t83o6akDZXts5A8rQcPlfzOUuLzv6UCZDZUIvyGRVavs5yf6Fsg8pag/9834x1pEwZ6jJAg8L5+OfL2nUZKnQ7Xv/gTSIoy6jjaj5/A5ZpaTE9JRtjCBaO+xleNx7XTdt6AWq0fhCLji5u10Oq7kVHahmVSAnKUDCTPTcCCmGzIQ/5g+FXe0zihP4O69kYkzZ09Yru3TJV7i2g07lQJdPSa4T2mTmQKTJsTjLgVWtRndyIm0A/VA+3I++Jq8FSZqcKkCGxb24PUegXViSb0BAkoioSbj/lZTUeMjwtFVXqnVS+qmkQTcN7ksGS7yVCPgbQGqzVNxpQWBJ5NhZBlh+udXK3wN2i0RsJEZNuoAdWePXucPlhGRgZmzZqFr7/+GitXrkRsbCyampoQHm5OxTc3N2Px4sUuD9Jg6IKqitF3nABRUSFobe309jB80ka7qQcAAA6RSURBVFQ6N12nTqK62IAHil7GOu0eNPZorQtN6Odjbkk5TEkZltfYOj8JTz2B6X/bi1N7TmDdyd/CJDT4wzkjdonnEHG40DL1z9aUQgDDSrDvxuyMDydlUQtXrx1nm+aGyxFIPjeA4hzzFD59TBBuPN2BpYk3WzJHBsPlEa9L8EtCwqwku9sn2lS4t2RZ8rkPz2hqsFWE4u2HO3CppgPXnVFQlamiJ1TC1g19limDpmg/LPgUSGr0g36WiuWF/qibPYDKZX7YuqEPaWUyqjJVBKaHYOGSRNSeOo8t67qRXqNBdaIJoV0Skhttl2wfZHNNU1USAhY/AEmSHa53YoEJook15il/VVVVSEtLAwA0NjaitLTU8u/8/Hy8++67yM3NRV1dHYqLi/Hb3/52rG9J5HVDq/VVdidjfdy72Np0tdCEucTn3aMeR5JlSIqCzwyL7PZcsNe7Kub2pePe/M4XudI0l8UhiGg0w4tQKKqEjAoFfkZg2dEAS5W/+NvjYLxDxsLoYAghcKKlHN85oiC9VgOTLHB4hRE35KdCkiT0dA1gYbCfZWrhjfmpOPpOKTRGYHmhP5IbZGxf328ppmGrga/NNU1B2ZZpe47WO7HABNHEGnNA9cYbb6CqqgoajQaKouD5559HamoqAGD9+vUoKCjAihUrIMsyXnzxRQQH8xNImvyGVus7enEB7oo6iD/lPoMj7TdiWcxJzHahxKetyn9DA7KhvauEkFDcMQebsAXT0DPm5nfOFtPwJbaa5qofnUPJhVLMjcq22pfFIYhoNMOLUJhkgcoUI77zeQAAc4CVViZbSrMD5mmCZcMKXQSmhyAx1bwmanhWOTE1AmWpM1Bm6sRAmQmHVxgtxTQcNfB1tKbJ0TYWmCCaWGMOqH7/+9/b3RYUFITXXx9792EiXzO8T0LizAuIjwvAwhskBCTc7VJgMvxYy6JPWAVkg9kwIST8es5mRPm34f3m5VhpOoJbwo7ZDcRGYy/z5etTBm01za2LDcD/VO9DTmTWiGCJxSGIyJHhVQArM1Rc9gOSG8zPkuGl2QHXi2M42t9Yf8rheid7a5ocrXdigQmiieWRKn9EU83wPgkBs+9xO7sz8ljWAdlgBqu4Yw6i/Nvw6NmXYBIabGu6D3sW/gi7Fm7Ep63XjwjERjM08zWZpgwObdQ7WNo8Wt+NFkhWDXiJiJwxPNi5Pmo6Sr9swvb1XQ5Ls7taHMPe/uO13okFJogmDgMqIjcN7ZMwnscazGBtwha837zcMsVvQPjjg9Y8PHZ3C+bFSCMCsdEMXQcmw4TFM07C0BWIzmNf+fTUv+yITMTUBGHFR43QxQUhprkHPUEanI+2bsBLROSs4cFOYlqES6XZx4LrnYgm3vbtW7B9+xb86U+7kZKSNubj+eZfTERkMZjBSl69FMuivoEiGQEAimTE0uiTCLlhMSJWrUHwPPsNG20xZ75Owk/qx6/nbMb6uHdR3JWBs1/oUPXq6xCqZxrpeZosybg3+bsIMskwyTLO5IajcEkMkvUDiA/Rjn4AIqJRDAZYC24yBzXHv2xAXZVhXCoOK7PnQjMtG6HbV2HaP3IRun0V1zvRlKaqAnVVBhR9UY/aygsev+/Ky8tw5kwJYmI89zcDM1REk4Aky4hYczcSKhqwS2N7rZWrBjNf/4P/g46eAPzwzKtXyravxS7Zt6f+5UZeh8zm2RDndKg1Cdx4uoPV+4jIo4b3pzqeKVCaHoKV63I9mq3ieieiq4bfd0WZAiUevO/6+/vxu9+9ghde+BWefPIxD4zYjAEV0SQx2lord48XvO0PeHtv9JiqBTrD2d5RzuzL6n1ENN5s9afauqETRUfqICsyIj04FZDrnYjMht93piv3naMm2K7YuvVt3H77HdBqYz0w2qsYUBFNIp5ctzV4vJAbF2PZ0few5dxat6oFOsOV3lHO7svqfUQ0nmz1p0otlXDK7xzmFSvjlrEimsps3ndljptgO6uk5DTKy0vx+ONPemKoVhhQEU1xo5Vt9wRbvaNwUIczhjJkR2TiG10xzpyrQnxILFSh2t2XwRMRTRRb/anKU4347gF/ZFb7WTJWnvrkHLDd4JdT/2gqsXXfDW9b4K4TJ46jrq4W3//+GgBAa+t5/Ou/Pol/+7ef48YbvzWmYzOgIpriPD2V0BZbvaNqtf5o7GzCId0XKDM1oybanI2aZQxAbZxmxL6s4EdEE2lEf6o5KiQjkF5j/tPJk5+cA3DY4JdBFU0Vw++76iyBwDkj2xa448EHH8aDDz5s+ff3vrcamze/5pEqfwyoiMjjUwmHiw+JRXLDgFXvqOTmfqhhI7NRqz7SIeWcQPFc633jE1nBj4gmzvD+VAkmFY0HmyAkAMJ2w9+xMDWedtjgl2gqGH7f3RAbgrjEMJ+fVsuAiojGXXZEJrJ0WuCgDrVafyQ39yPLLxYy5BGZq/rYabipQcaag3qrfVnBj4gm2tD+VKoqYKjrvPrJuZ2Gv+4arwa/RJPN0PtOo5FhNI5PG5e//vV9jx2LARURjTt7VfnOGMqQ3PDliMzV91O/B0mSWMGPiHzG8E/OPd3wlw1+iSYvBlRENCFsVeUbzFxJh5pRE+NnyUblRGZZ9ici8hVDPzn3NGX2XGjKshG6HehPrYN/dRIb/BJNEgyoiMhrBjNX54wNOHOumtkoIpqy2OCXaPJiQEVEXiVLMq6PzUWCX5K3h0JE5FVs8EvXGiEEJMm3C0oMJ4Rw+TX82IOIiIiIiDxKo/HH5csdbgUo3iKEwOXLHdBo/F16HTNURERERETkUWFhUWhvb0VX10W3jyHLMlR1fKr82aPR+CMsLMq114zTWIiIiIiIaIpSFA0iI8fWQzIqKgStrZ0eGtH44ZQ/IiIiIiIiNzGgIiIiIiIictOkmPLnqaZ5nuJr4/ElPDeO8fzYx3Pj2LV+fibzzzeZx+4JU/3nt4fnxT6eG9t4XmzzhfMy2hgkMZlKbxAREREREfkQTvkjIiIiIiJyEwMqIiIiIiIiNzGgIiIiIiIichMDKiIiIiIiIjcxoCIiIiIiInITAyoiIiIiIiI3MaAiIiIiIiJyEwMqIiIiIiIiNzGgIiIiIiIichMDKjvee+89rF69Gtdddx3eeecdq209PT14+umnsWLFCuTn5+Pw4cNObbtWFRQUYOnSpbjrrrtw11134a233rJsu3DhAh555BGsXLkSa9aswalTp7w4Uu+ora3Ffffdh5UrV+K+++5DXV2dt4fkVbfeeivy8/Mt18vnn38OADh58iTWrFmDlStX4pFHHoHBYPDySMffK6+8gltvvRUZGRmoqKiwfN/RNcPriXwBn/v28R69is97Mz7rbbN3XuxdN4APXzuCbCovLxeVlZVi48aN4s9//rPVtjfeeEP89Kc/FUIIUVtbK5YsWSK6urpG3Xateu6550aco0EFBQXizTffFEIIcezYMbFixQqhqupEDs/rHnzwQbF3714hhBB79+4VDz74oJdH5F15eXmivLzc6nsmk0ncdttt4tixY0IIId58801RUFDgjeFNqGPHjgmdTjfinDi6Zng9kS/gc98+3qNX8Xlvxme9bfbOi63rRgjfvnaYobIjPT0daWlpkOWRp+jDDz/EfffdBwBISkpCTk4OPvvss1G3TUUHDhzA/fffDwBYtGgR/P39UVxc7OVRTRyDwYCzZ89i1apVAIBVq1bh7NmzaGtr8/LIfEtJSQkCAgKwaNEiAMD999+PAwcOeHlU42/RokXQarVW33N0zfB6oslgKj/3eY+Obio+7/mst83WeXHEl68dBlRu0Ol0iIuLs/xbq9VCr9ePuu1atmPHDqxevRpPPPEEqqurAQDt7e0QQiA8PNyy31Q5H4Oam5sRHR0NRVEAAIqiYNasWWhubvbyyLzr2WefxerVq/HCCy+go6MDzc3NiI2NtWwPDw+Hqqq4ePGiF0fpHY6uGV5P5Ev43B+J9+hIfN7bxme9Y8OvGwA+fe1ovD0Ab7nnnnug0+lsbissLLRcxDT6uXrmmWcQFRUFWZaxd+9ebNiwAR9//PEEj5Imi127dkGr1aK/vx+/+tWv8OKLL2LFihXeHhYRDcHnPnkCn/fkDlvXzauvvurtYTk0ZQOqPXv2uP3a2NhYNDU1WT6Ba25uxuLFi0fdNlmNdq6io6MtX99999146aWXoNfrLZm6trY2q/MRExMzfoP1MVqtFi0tLTCZTFAUBSaTCefPn3cpxX2tGfzZ/f398YMf/ACPP/44HnroIas/3tra2iDLMmbOnOmtYXqNo2tGCMHriSYEn/vu4TPfGp/39vFZb5+t62bw+7567XDKnxvy8/Px7rvvAgDq6upQXFyMW265ZdRt16qWlhbL159//jlkWbb8ss3Pz8fu3bsBAEVFRejt7UVOTo5XxukNERERyMrKwr59+wAA+/btQ1ZWltV0mKmku7sbnZ2dAAAhBD744ANkZWUhJycHvb29KCoqAgDs3r0b+fn53hyq1zi6Zng9ka/gc9823qNX8XnvGJ/1ttm7bgD49LUjCSGEtwfhi/bt24fNmzejo6MDfn5+CAwMxPbt25GWlobu7m4UFBSgtLQUsixj48aNuO222wDA4bZr1cMPPwyDwQBJkhAcHIyf/OQnmD9/PgCgtbUVGzduhE6nQ0BAAH7xi19g4cKFXh7xxKqurkZBQQE6OjoQGhqKV155BSkpKd4ellc0NjbiySefhMlkgqqqSE1NxfPPP49Zs2bh+PHj+PnPf46+vj7ExcXhN7/5DSIjI7095HH1y1/+EgcPHsSFCxcQFhaGmTNnYv/+/Q6vGV5P5Av43LeP96gZn/dX8Vlvm63z8vbbb9u9bgD47LXDgIqIiIiIiMhNnPJHRERERETkJgZUREREREREbmJARURERERE5CYGVERERERERG5iQEVEREREROQmBlRERERERERuYkBFRERERETkJgZUREREREREbvr/b3Wi2XuQbV4AAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":["scaler = StandardScaler().fit(df_clust_5)\n","\n","scaled_0 = scaler.transform(df_clust_0)\n","scaled_1 = scaler.transform(df_clust_1)\n","scaled_2 = scaler.transform(df_clust_2)\n","scaled_3 = scaler.transform(df_clust_3)\n","scaled_4 = scaler.transform(df_clust_4)\n","scaled_5 = scaler.transform(df_clust_5)"],"metadata":{"id":"SgU0EkaUPSZz"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["df_check['0_sc_km'] = KMeans(n_clusters=5).fit(scaled_0).labels_\n","df_check['1_sc_km'] = KMeans(n_clusters=5).fit(scaled_1).labels_\n","df_check['2_sc_km'] = KMeans(n_clusters=5).fit(scaled_2).labels_\n","df_check['3_sc_km'] = KMeans(n_clusters=5).fit(scaled_3).labels_\n","df_check['4_sc_km'] = KMeans(n_clusters=5).fit(scaled_4).labels_\n","df_check['5_sc_km'] = KMeans(n_clusters=5).fit(scaled_5).labels_"],"metadata":{"id":"zlImWzIYPNdg"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["fig, ax = plt.subplots(3, 2, figsize=(12, 12))\n","\n","draw_clustering(items=PCA(n_components=2).fit_transform(scaled_0), labels=df_check['0_sc_km'], ax=ax[0, 0], comments=False)\n","draw_clustering(items=PCA(n_components=2).fit_transform(scaled_1), labels=df_check['1_sc_km'], ax=ax[0, 1], comments=False)\n","draw_clustering(items=PCA(n_components=2).fit_transform(scaled_2), labels=df_check['2_sc_km'], ax=ax[1, 0], comments=False)\n","draw_clustering(items=PCA(n_components=2).fit_transform(scaled_3), labels=df_check['3_sc_km'], ax=ax[1, 1], comments=False)\n","draw_clustering(items=PCA(n_components=2).fit_transform(scaled_4), labels=df_check['4_sc_km'], ax=ax[2, 0], comments=False)\n","draw_clustering(items=PCA(n_components=2).fit_transform(scaled_5), labels=df_check['5_sc_km'], ax=ax[2, 1], comments=False)\n","\n","plt.tight_layout()\n","plt.legend()\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":869},"id":"83Yl4xrTRnt4","executionInfo":{"status":"ok","timestamp":1653299292909,"user_tz":-180,"elapsed":4277,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}},"outputId":"2545183e-bf19-43fc-b394-9c04bca22bf6"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["<Figure size 864x864 with 6 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA1MAAANUCAYAAABWvXckAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde3yU9Z3//fd1TUggJAgZQpiQEwchAQIBUay/rVSRQn8i1d17K61oq9Bud29/1rZS0XY9dxWLulp1rQvWR1eq3d57K4Xe5VAVLbUqCCEHCIEk5EAOwIRDgoSQua77j5BIICGZKzOZmeT1/Atmkrk++ZLk4j3f7/fzNWzbtgUAAAAA8IsZ6gIAAAAAIBIRpgAAAADAAcIUAAAAADhAmAIAAAAABwhTAAAAAOAAYQoAAAAAHCBMAQAAAIADUaEuoCeOHTsly4qc47Dc7jh5vY2hLiPiMY69xxj2HmPYe92NoWkaGjFiaB9WFDiRdn/qDN/jzjBu/mPMnGHcnAnEuPXk/hQRYcqy7Ii7WUVaveGKcew9xrD3GMPe669jGIn3p870h68hFBg3/zFmzjBuzvTFuLHMDwAAAAAcIEwBAAAAgAOEKQAAAABwgDAFAAAAAA4QpgAAAADAgYjo5gcAuJhtWTqVn6czFeWKSUvX0OxpMkzeI0PnbMuSrzJPPm+5XO50uVL5fgGA3iJMAUAEsi1LB1a9oMp9J/RBXY7mJK1T6qStmnDfPfwHGRexLUufb3lKLU2Fah53UNG5GYoqmqLYeStCXRoARDTCFABEoFP5earcd0K37XhKPjtKr1Yu1lrdL09+nuKm54S6PIQZX2WeWpoKdfLODZLLVtOcAg17rfVxJX051OUBQMTi7UsAiEBnKsr1QV2OfHbre2I+O0of1M3QmcqKEFeGcOTzlqt53EHJde4AS5et5vEH5fPy/QIAvUGYAoAIFJOWrjlJuXIZLZIkl9GiOUm7FJOaFuLKEI5c7nRFl2ZIPqP1AZ+h6JIMudx8vwBAb7DMDwAi0NDsaUqdtFVrdb8+qJuhOUm7lDppuIZmTwt1aQhDrtRpiiqaomGvSc3jDyq6JENRQ6bIlcr3CwD0RkDC1LFjx/STn/xEFRUVio6OVnp6uh577DElJCQoNzdXDz30kM6cOaMxY8boF7/4hdxudyAuCwADlmGamnDfPfLk52l6ZYViUm+mmx+6ZJimYuetkK8yT4O9FXLNSKObHwAEQEB+ixqGoWXLlmnTpk1av369UlNTtWrVKlmWpeXLl+uhhx7Spk2bNGvWLK1atSoQlwSAAc8wTQ3NnqaY1DSdqSjXqfw82ZYV6rIQpgzTVFR6jmJmLlJUeg5BCgACICC/SYcPH67Zs2e3/z0nJ0fV1dUqKChQTEyMZs2aJUlavHixNm7cGIhLAsCA19Ye/dMX1umFX0mfvrBOB1a9QKC6wLFjx/Td735X8+fP10033aS7775b9fX1kqTc3FwtWrRI8+fP11133SWv1xviagEAkSTge6Ysy9Kbb76p66+/XjU1NUpOTm5/LiEhQZZl6fjx4xo+fHiPX9Ptjgt0mUGXmBgf6hL6Bcax9xjD3gvXMazfvkNVxSc7tEf/rbFCmRX7lXDlrFCX10Eox7Bt9UTbm34rV67UqlWr9MQTT2j58uV68sknNWvWLL388statWqVnnzyyZDVCgCILAEPU48//rhiY2O1ZMkSbdmyJSCv6fU2yrLsgLxWX0hMjNeRIw2hLiPiMY69xxj2XjiPoTe/SFtrp3doj761NkfTCvbJlzEpxNV9obsxNE0jqG+adbZ64s033+x09cTcuXMJUwCAHgtomFq5cqXKy8v1yiuvyDRNeTweVVdXtz9fX18v0zT9mpUCAHSutT36Or1auVg+O+q89ug3h7q0sBXo1RORuHKiM+E6+xruGDf/MWbOMG7O9MW4BSxMPfvssyooKNCrr76q6OhoSdLUqVPV1NSkHTt2aNasWXrrrbe0YMGCQF0SAAY02qP7L9CrJyJt5URnwnn2NZwxbv5jzJxh3JwJxLj1ZOVEQMLU/v379atf/UoZGRlavHixJCklJUUvvfSSnn76aT388MMdWqMDAHqP9uj+YfUEACDQAhKmLr/8cu3bt6/T52bOnKn169cH4jIAgAsYpqm46TmKm54T6lLCGqsnAADBEPAGFACAwLEtS6fy83SmolwxaenMPDnA6gkAQLAQpgAgTLWdI1W574Q+qMvRnKR1Sp20VRPuu4dA5QdWTwAAgoUwBQBh6lR+nir3nehwjtRa3S9Pfl77sj5mrgAACB3CFACEqTMV5fqgLqfDOVIf1M3Q9MoKxU3PYeYKAIAQ424LAGGq9RypXLmMFkk67xypNEkdZ67+o2KJbtvxlCr31qt2zatq3J0r27JCWT4AAP0eM1MAEKa6O0eqs5mrrYdnyvvnfXJ/zCwVAADBRpgCgDDV3TlSrTNX6/Rq5WL57Ci5jBZdOWy31hxarE9O5Fy0vwoAAAQWYQoAwtilzpHqMHNVm6MvXfaZqs8k6ePjM2TJ1WF/FQAACDzCFABEqPNnrrK2f6KyvzVraeGPZcl13v6qm0NdJgAA/RZhCgAiWNvM1dDsaWqsf0H/pQc63V8FAAACjzAFABGmq7OlLrW/CgAABB5hCgAiSHdnS3W1vwoAAAQeYQoAIsj5Z0v57Ci9WrmYrn0AAIQI6z8AIAhsy1Lj7lx5168L6AG6nZ0t9UHdDJ2prAjI6wMAgJ4jTAFAgLUtxfv0hXV64VfSpy+s04FVLwQkULWeLZUrl9EiSed17Uvr9WsDAAD/sMwPAAIsmEvxOpwtRdc+AABCijAFAAHW1VK8QBygS9c+AADCB3dfAAiwYC/Fa+va5164SHHTcwhSAACECDNTABBgLMUDAGBgIEwBQICxFA8AgIGBMAUAQcABugAA9H+8TQoAAAAADhCmAAAAAMABwhQAAAAAOECYAgAAAAAHCFMAAAAA4ABhCgAAAAAcIEwBAAAAgAOEKQAAAABwgDAFAAAAAA4QpgAAAADAAcIUAAAAADhAmAIAAAAABwhTAAAAAOAAYQoAAAAAHCBMAQAAAIADhCkAAAAAcIAwBQAAAAAOEKYAAAAAwAHCFAAAAAA4QJgCAAAAAAcIUwAAAADgAGEKAAAAABwgTAEAAACAA4QpAAAAAHAgYGFq5cqVuv766zVp0iQVFxe3P15WVqZbb71V8+fP16233qqDBw8G6pIAAAAAEDIBC1Nz587V2rVrNWbMmA6PP/zww/rWt76lTZs26Vvf+pYeeuihQF0SAIBu8WYfACBYAhamZs2aJY/H0+Exr9erPXv2aOHChZKkhQsXas+ePaqvrw/UZQEAuCTe7AMABEtQ90zV1NQoKSlJLpdLkuRyuTRq1CjV1NQE87IAQsiybB084NWOv5br4AGvLMsOdUkY4HizDwAQLFGhLqAn3O64UJfgt8TE+FCX0C+Eahwty9aBosOqPXRCo8dcpgmZo2SaRkhq6a2+HEPLsvXfL32ihsITGrfXUG6WrZIpl+kb//fsiB0/iZ/nQAi3MbzUm30JCQk9fp1IvD91Jtz+fSIF4+Y/xswZxs2Zvhi3oIYpj8ejuro6+Xw+uVwu+Xw+HT58+KJ3CLvj9TZG1LvbiYnxOnKkIdRlRLxQjaNl2dr0Rr5OFzdofJGh9zNtfTwxXvOXZEdcIOjrMTx4wKsTBce1bHWMXJahr2yztXrZcX32SbkyJrj7rI5A4ue597obQ9M0IjaURNr9qTN8jzvDuPmPMXOGcXMmEOPWk/tTUJf5ud1uZWVlacOGDZKkDRs2KCsry693/YC+VlFar9PFDVq2OkY3fBijZatjdLq4QRWlLP/pztG6Ro0vMuSyWkOnyzI0vsiQt64xxJUBHZ3/Zp8kx2/2AQAGtoCFqSeeeELXXnutamtrdeedd+rGG2+UJD3yyCN64403NH/+fL3xxht69NFHA3VJICgIBM6NTIpTSaYtn9n6Tr3PtFWSacudFJmzDui/eLMPABAIAVvm97Of/Uw/+9nPLnp8/Pjx+v3vfx+oywBBNzIpTjszbV23zZbLMtoDwUwCQbfSxiVo78R4rV7WukSyJNPWkInxShvHf1AROk888YQ2b96so0eP6s4779Tw4cP1xz/+UY888ohWrFihl19+WcOGDdPKlStDXSoAIMIYtm2H/WLvSFuTztrWwAiXPVNtgYA9Uz1jWbYqSuvlrWuUOylOaeMSIm7czsfPc++xZyq88T3uDOPmP8bMGcbNmb7aMxUR3fyAvmSahuYvyW4PBDP7QSDoS6ZpKGOCO2IbTgAAAPQUYQroBIEAAAAA3QlqNz8AAAAA6K8IUwAAAADgAGEKAAAAABxgzxQwgLR12jta16iRNNYAAADoFcIUMEBc2PJ9Z6atvRHa8h0AACAcsMwPGCAqSut1urhBy1bH6IYPY7RsdYxOFzeoorQ+1KUBAABEJMIUMEAcrWvU+CJDLqt1FsplGRpfZMhb1xjiygAAQF+zLFu5B47qD38tU+6BoxF/AHmosMwPGCBGJsVpZ6at67bZclmGfKatkkxbM5MufbI3AAAIL5ZlK6/Uq4q6BqUlxWvauNZzMS98rKtl/JZl68U3PtXJ4krNKMrXhsxsfTgxVXcvuYql/34iTAEDRNq4BO2dGK/Vy1r3TJVk2hoyMV5p4xJCXRoAAOihzoLQB5enyDCMHoej3JKjqimp1fV5OzWh7pC++dctWr70x8orHa+cCSND8FVFLsIUMECYpqH5S7JVUVovb12jZtLNDwCAiJNX6tXJ4ko9s/oZRVmWlmzbrO//0wMacvaMnnvt2fbHfrTsvk7DkWXZemfjHsWcOqWzUVH67TU3aNO0KzVjb54qamcSpvxEmAIGENM0lDHBrYwJ7lCXAgAAHKioa9CMonxFWZYkKcqy5K4/oqzqig6PzSzKU2XdxeEor9SrqJrDeu6NXyrKsnTbR1v042/+iw6MGqPL9lRr4TUZHd5o7WxJ4YVvxPbkY/orGlAAAAAAESItKV67MrPVYrb+N77FNOVNSNRnk6Z2eGxn5jSlJsVf9PkVdQ26origQ/CaUX5AQ5rPyK6oVV6pt/1j25YUbnh9q1zPva4Nr2/Vi2982qFZRU8+pj9jZgoAAACIENPGufXhxFT9aNl9mlmUp52Z0zR63CgZhtHhscsmprQ3ppC+mD2q9X6u2olTtWTbZkVZllpMU5+Nnajv/OVPKkrJ6DCb1dmSwguXD57/MYZta9Khcr086B+1bluZvv53Y/v9DBVhCgAAAIgQpmno7iVXKa90vCrrZuqmDt38Oj7WFmTOb1qRU5SvvVNm6e5v/1CzDxQqN22CRp08phnl+/XbGxbppvNmszpbUnjh8sHy2pMaXXNI/33VV7Rj7CT5TJfm7v5E25s+V+XBI/2+QyDL/AAAAIAIYpqGciaM1E3/a6xyJoyUaRqdPtbm/NmjOz/cqDWvPqlm06U/TZutKvcolSR6tOz7P1XceI9sy24/eyo1Me6iJYXnLx+0LFuFhdWqcCepOWqQTkcPlrvxpG7/62Y9/+tndaK4qsOywf6ImSkAAAAgAjht9HDhDFOMz6dr9+3W9rGZskxTs0v26JMJk1VWZarxNx9o5rn26vGXp2jYBUsKz18+mFfqlVVZq1/+5vnWZYDnmll8ljFJV5UVddkEoz8hTAEAAABhrjcH7aYlxWtDZnaHfVLbLs/WkLNn9Px//bI9CN19xw/0zb9s1JdK9rbvj7rx29fKvKbz5YOdLQOcUb5fZaM8mllerJ2Z0zosG+wp27J0Kj9PZyrKFZOWrqHZ02SY4bmgjjAFAAAAhLmeNIPoSlvTinvu/JGu2legXekTFGX7dMXB4g5B6OoDe1QxcrS+VLK3fX/UocMz25cOXqizkPbxhClK99bqR8vuu6gJRk/YlqUDq15Q5b4T+qAuR3OS1il10lZNuO+esAxUhCkAAAAgzPWkGcSl2Lat5uhobZl6haJ8Pk2qqdAn4ydryUdbzgtCk/Xtv2yU9MX+qEvNLHXWWXBIapJGLbpSs0YPc3Te1Kn8PFXuO6Hbdjwlnx2lVysXa63ulyc/T3HTc/x6rb5AmAIAAADCXGezQD1dRpdX6lXD/iq9cq59+afjMvXSgn+UNShKd99xr64+UKiPJ0zRifhh+u3cm7RvTHqn7dUv1FVnwd507ztTUa4P6nLks1tjis+O0gd1MzS9soIwBQAAAMB/nc0C9XQZ3YWzWl8q2at9+Z+q5Qd3yLIN7Tl0uWaOGa4br07XnopjfgWjti6C58+OOW2UYVuWbJ9P17p36dXKxfLZUXIZLZqTtEsxqTeH5V4qwhQAAAAQ5nozC9TlrJbnsouWCF4YjLrSVWC6VKMMQ3aXYeiLvVLH5Wux9ZvsH+ovx67SV0bnKnXScMVOmRqWe6kIUwAAAEAE6GwWqCd6M6vVmUsFpi4bZRwYq6Hv/LbLMPTFXqmVsm1D1wzfoQcuf1Vjb7pW7kU3h+1eKsIUAAAA0I/1dFarp8voLtVZsKtGGfU741R/iTB04V6pbcdna0Pdft0TZcgwzbDdSxV+/QUBAAAABFTbrFZbm/POgtSBVS/o0xfW6YVfSZ++sE4HVr0g+1woOl/XnQVbl/ztysxWy7kQ1rakcFSTVweOJ2mJ521dM3yHbNvQB3UzdKayQpIUk5auOUm5chktktS+Vyp6TIoad+equbZG1ybuvOj5mNS0oI1ZTzAzBQAAAAxw/iyju1RnwU6XFF6erKiSdzV28GlVnvZo6Zjf6euJm5U+/KhiUm+RJA3NnqbUSVu1Vvfrg7oZmpO0SykTL1Ptlg9Vue+EPqybrv+duFdvTPuRPjx2leYk7VLqpOGyLUve9etC1pCCMAUAAAAMcE3l5dpaO73DMrqttTmaVlF+UZi61B6szpYUjm+s1PYPfbqj4Fn57CitPrRYv8n+oVLGxGho9jRJkmGamnDfPfLk52l6ZUVr9z7b0vZfrm8PeP9Zeat+P+sH+v7NtYqbtUg1mz7Q9hfXX7QHS5Lqt++QN78o6CGLMAUAAAD0Iaetw4OpOnqErknYov+s+mZ7S/JrEj5T9aB5urDdRXd7sC5slOFd/9eL9jttO3aVZl5pdAg5hmkqbnpOe3jzrl/X4fPO2tHaVPe/dM9oQ4Zhqqr45EUzaaN356p2y4eqKj6prbXTg971jz1TAAAAQB9p64S34fWtcj33uja8vlUvvvGpLMsOaV0Hh47RcJ3Qb7Pu0T+n/Ea/zbpHw3VC5UPHdPg4y7KVe+CoNvztoCTpxi9ldLoH63yd7ocanauYtPRL1tTVPqqY1LQuG1I0frZdlftO6Fvbn9R/VCzRbTueUuW+4zqVn+dwZC6NmSkAAACgj1yqE56/Lc8DKc1zmf6Y9mX9dP2v9KX4fA2uatYTN31fCz2XtX/MpVqiXypMdbYfKnXS8PYlfk4/b07SuosO95Xt6dOuf4QpAAAAoI903QlvZkjD1LRxbn04KU2PG//cug/quovPonIaBDvbD9WTfUyX+ryuglbclVdqzsfrLwpZMak3B2yszkeYAoAwYluWfJV58nnL5XKny5Xa952JAADBc6lOeKHUk7OoehMEL9wP1VNdfV5XQUuSUid9qN8aK7S1NqfHs2BOEaYAIEzYlqXPtzyllqZCNY87qOjcDEUVTVHsvBUEKgDoJy7VCS/ULmwccaFwC4JdBa0J992jzIr9mlawr8ezYE4RpgAgTPgq89TSVKiTd26QXLaa5hRo2Gutj0elh+50dwBA4PRkBihcZWeM0F63T6sXL5K7tl7bxs8OmyB4PsM0lXDlLPkyJgX9WoQpAAgTPm+5mscdlFznOjq5bDWPP6jB3grCFAD0I93NAPWlnrZpty1Lpc/+Ukn7TmhrbY7+LnGnbowu07Rv3eJXELQtS6fy83SmojxkB+0GEmEKAMKEy52u6NwMNc0paA1UPkPRJRlyzUgLdWkAgH7In+58p/LzVLnvxBcH6FYt1lrX/TpdmH/JfVDnh6fo1FTVbPpAVcUnLzpoN1IDFWEKAMKEK3WaooqmaNhrUvP4g4ouyVDUkClypQZn0ywAYGDzpztfV+c6XarluG1ZOrDqBVXuO6EP6nJ0beI6xeu4bt/5is7a0e0H7Xry84LStrwvRGYEBIAwZVuWWspzdWbnOrWU58o+1/GoJwzTVOy8FRo6Y7mGnb1fQ2csp/kEACBouu7O13DRx17qAN2unD+b9R8VS7Rk59OqPzNMV17WeoBuWyA7U1kRhK+ub3CHBoAAaevGdyr3Fzo56Gmdyv2FPt/yVI8DVce26GkBaYvem3AHAOjf0pLitSszWy3n7jVt3flSO+nO13qu02VaO+t+/XPaG1o76/5uW453Npv10YkrNDG2RNK5QJb4maJTUoLw1fUNlvkBQIA47cZnW5ZaKnLVtOO/ZLlq1TyhIiBt0Wm1DgC4FH/atDs5eLd1NmtdxwN0E7ZrsHlag13NuuayzxSnk6rZ9IHipuVE5L2JMAUAAeKkG1974DmxR/agU2pY+l7A2qLTah0AcCn+tmm/8Fwn27LUuDu3y858rbNZW7VW9+uDuhmak7RLycmDVV99Vk2+aL1StUTbT0zTf5kPKDlC900RpgAgQJx042sLPGey98vwuQLaFp1W6wCA7jht097WXKJ873F9eHiGrh31jtKzOnbm62w2q6n8oN581dDr1be2v1Z3jSzCWeTNpQFAmHKlTlPU4Cka9tpCDX4vW8NeW9htN762wOPzHFdU6SjJd+7dwLYg5nbeFt3lTld0aUZAX7M/Kisr06233qr58+fr1ltv1cGDB0NdEgCEvca83SotqNftO1fqlcolun3nSpUW1Ksxb3eHj2ubzXIvXKS46TkanJ7hdyOLcNYnM1NlZWVasWKFjh8/ruHDh2vlypXKyMgI+nWf+I/3VHrii7+Pu0z62T9fH/TrAhiY2rrx+SrzNNhbIdeM7ptItM9mfblA9q6xivv1dWoZV6foAxmKiu1dW3RarffMww8/rG9961v6+te/rnXr1umhhx7Sb37zm6Bft+H1x6Xmki8eiB6v+O/8a9CvC2DguNSBvL09PLd8d5H+6p3ZobnEX70zNWb3Pk3NmdHl53W29K+7RhbhzLBt2w72Re644w79wz/8Q/uN6n/+53/8ulF5vY2yLP/KfOI/3lPN4Sa5G09qdskefTJ+srxxw+QZNTjogSoxMV5HjlzcUhL+YRx7jzHsvWCPYdueqebThSpMOaEjNSlKaRmqaTnfVHT6zIB082vtEFgRsA6B/upuDE3TkNsd14cVfcHr9Wr+/Pn65JNP5HK55PP5NHv2bG3evFkJCQk9+Hz/709Sa5CyVSQr/rTOTqzRoGKPzIYhMpTZ54GK3xPOMG7+Y8yccTpuFx7IuyszW8POHchryO5w/tOcpFylTrrMr8Nz331rk3zrP9S3C55tby7xm6k/lOumObp+8fxLfm57kKusUExqmt9BricC8f3Wk/tT0GemvF6v9uzZo1//+teSpIULF+rxxx9XfX19j25UTpWekFIaT+qX//V86yFkH23R3Xf8QKUnBgftmgAGDsu2VOgtUlVDtVLikzXFnSnT8P9GYJimBt/wE73y2Qsqso+r7IohGlvbrKyGXbrXmKnOtwD79/pR6TnskepCTU2NkpKS5HK5JEkul0ujRo1STU1Nj+5RTkNgQ3OJLPdpNXz33XPNQfYo/tUb5KovUWLixS2Jgy0U1+wPGDf/MWbOOBm3T/fUqmF/VYcDeX/83ftU7p2qCaeqVFV8UrfteEo+O0qvVi7Wb40VyqzYr4QrZ/Xo9cded41Ktn6o32bdo60nr9ZXhn2slvgoZVx3Tc/qTfqy31+Tv/ri+y3oYaq3N6remF2yp8MhZFcf2KP/uWpUUK8JoP+zbEv/nr9Ge1tqVDZ6kMZWnFVWtUf3Zi91FKj2HCtWUVSj/jBvjGzTUH62LW2uVqG3SNkjJwfhK0CgOJ2ZkqSzE2s6NAc5O6larr9N6vN37pktcIZx8x9j5ozTccsvPqycvXkd/i88Y2+eCopnalh9kbbWTu+wRG9rbY6mFeyTL2NSj14/IzFOG760ULH5uzS/Zqv2eCbp8+wZmpsYFxb/zv1mZioQnL7z98n4yVry0RZFWZZaTFMfT2j9T0lfpFTeeQkMxrH3GMPeu3AMP6vOV5GvRn+Yl9QefowtNapqqdAVydl+v379Ya/KPINkt61jNw2VJUfrmOXtN/9+4fp1eDwe1dXVyefztS/zO3z4sDweT9CvPajYo6Y5e9o7Pw7alxz0awIYONKS4rUhM1tLtm1u/7/wzsxpuikpXjFxF5//9Hcjd+pQ1FwNb/HpdGF+h71Uki7aX2Wapu6+/WrllV6uyroGzeqmrXp/FfQwFYgblZN3/sZdJtWcGaa77/iBrj6wRx9PmKz6ocM07jIFPS3zzktgMI69xxj2XmdjWFh1QKVJHcNP6ehBKqwqUdqgDL+vkWC6NbbqrPKn2rJNQ4Zla2x1s0aku/vFv18475lyu93KysrShg0b9PWvf10bNmxQVlZW0FdOKHq8zIYixb96g85OqtagfckyGwdL0eODe10AA8alDuQ1lNDeBGJrbY6uSfhM8b4TWv9hrY5u+rl00j63l2qdUia+L8MwzttftU6pk1pboJum6aiten/ieuSRRx4J5gViY2P1l7/8RVFRUcrMzNT69et15MgR3XbbbT1+jdOnm+Vvm4xrrxyrXXsrVWEO1d4xGWoYMlRp7qg+6eY3dGiMPv+8OejX6e8Yx95jDHuvszFs8jWp+FCBiscNlYzW8HP17hOaN2q2kmIT/b5G4hC3So7ul3t/jWJONevq3SeUNShZizK+KsOI/Hf4uvs+NAxDsbHRfVhRR9OnT9ezzz6rNWvWaN++ffr5z3+uESNG9OhzndyfJCkmZ46ac/fIbDylqKqRMk/HyHBNDEk3P35POMO4+Y8xc8bpuBmGoSuzx2h4+iidyJ6sK/9uom6ac7lM05BhGEr40lVqHOzSoGM7tejjD5Wzu1Szqgu0b1iy7tj1tD49kaO3a67XTTH/Le+RFtBFLyIAACAASURBVC35bGX7YzfEbNCosSMUPXp0EL7iwAjE91tP7k99sszvkUce0YoVK/Tyyy9r2LBhWrlyZV9cljboAIJiijtTWdUeaXO1yjzRGlvTrKxBrU0onDANU/dmLz3X0KJGKekexw0tAu2LboDlcrnTQ9INMNjGjx+v3//+931+XdqgAwi2Sx3Ia5imDsananBVkxJrW1cPNA2L0UfeKzrspTrU6FZB46QOj0XyIbuB1idhKlQ3KgAIhmCEH9MwlT1ycq8bTnQWfiQ5CkRtbdtbmgrVPO6gonMzFFU0RbHzVvS7QAUAA9GF+6oGnzyja8Z+pv889M32vVRj4rxKiN2lV6u+eKz1kN2bQ11+WIiIBhQAEG4CFX56qiczRF2FH9u25Tuzx+9A5KvMU0tToU7eueFc++4CDXut9XFarQNA5LtwX9WuSdm65vM9WjvriwN1R070yDAMrTX7xyG7gUaYAoAw19MZok7DzxpLOuvSye/7H4h83nI1jzvYoX138/iDGuytIEwBQD9gmobuXnKV8krHq7JuphYmxSs74xadLszX9MoKxaTe3B6aPPl5HR5jhUIrwhQAhLmezhB1Gn4mlMtVleAoELnc6YrOzVDTnIL29t3RJRlyzUgL0lcKAOhrne2ripuec9F+qM4eg0SkBIAw19UMkc9b0eHjXO50RZdmSL5zHQB9hqIPpMvVMLzjYyUZcrm7D0Su1GmKGjxFw15bqMHvZWvYawsVNWRK+z4sAAAGOmamACCILNs616iiWinxyY4aVfR0hsiVOk1RRVM07DWpefxBRZdkKCq2dc/UsNfsLx7rYSAyTFOx81bIV5mnwd4KuWak9ctufgAAOEWYAoAecBKKLNvSv+ev0d6WGpWNHqSxFWeVVe3RvdlL/QpUHULSuIOK3jtWLiXJti3ZltUebroKP5IcByLDNBWVnsMeKQAAOkGYAoBuOA1Fhd4i7W2p0R/mJck2DeVn29LmahV6i/zqAtgWkloqcmXueENWdI1OT/hYvt21itrXsRFFV+HnUoFoIJwlBQBAMBCmAKAbTkNRVUO1ykYPkm227leyTUNlnmhVNdRc9HndzXwZpinDMGUNqtPJO/+/gLUq5ywpAACcI0wBQDf8CUXnS4lP1tiKs8rPtmWbhgzL1tiaZqWkezp83IUzX+nlTRpdGqtvjL1R2SMnt4eq7lqVO5lh4iwpAACcI0wBQDd6GoouNMWdqaxqj7S5WmWeaI2taVbWoNZZp/N1NvM1b1OlXir9b2XWpLYvJ7xUIwqnM0xOz5JiaSAAAIQpAOhWT0PRhUzD1L3ZS88t36tRSrqn08YVnc18VY+Jlc80ZVd9sZyw0259Q6bIHDNVzZ+9o7Ondqth2Ua/ZpicnCXF0kAAAFoRpgCgGz0NRV19bvbIyX4vBxxdc1qF2Qkq89ntywk769Znjpmq0+8+rZaje3V2WoXfM0xdBbRLtU5naSAAAK0IUwAiRiDObHKqJ6Gojb91ts18WZuqdDA5Rkm1n+t0bJRqk4boqryT8o1o0Z/K/tz+Wud35mspz1VLU6E+/9oODd6WKfn29HiGSXJ2lpTTpYEAAPQ3hCkAESFQZzYFm5M622a+Co7u1e9LNqhOhg4nRWvRljoNPWNr3bGPW5cXdvJabcGm5fIa2bszFPfr69Qyrk6D9qcpamjnM0yd7Xfy5ywpJ0sDAQDojwhTACJCoM5sCjandZqGqWmJUzR1ZFb7ckLfiBatO/ax/vDV0V2+1vnB5tT/9TdF7fco9k9XafDEWxR9xc0XzTAFYr+Tk6WBAAD0R4QpABHBaXvyvtbbOs9fTvinsj+rzBN9ydfqNNiMzOo0SEkX7HcybLWMOarYP5lq/uydLj/nQk6WBgIA0B8RpgBEBKftyYPNsi0VHN2rnYfzJEnuwSM0trY5IHX25Gv2N9i073cybA39f74ko2GwmqcdkL3/d2qpL+rxDJVhmn4tDQSAULIsWxWl9Tpa16iRSXFKG5cg89wbVUBvEKYARASn7cmDqW1/1O4zFaoaM0Se6s815JhPsUa0Fm2u7XWdPf2a/Qk2bcsCW8YcldEwWI3f2XquI98eDXstio58APody7K16Y18nS5u0PgiQzszbe2dGK/5S7IJVOg1whSAiNCb9uTBUugtUuHZKm1ckCLbNFSQbWvulkpZTWd18/BrFXVmUK/qDMbX3LYsMPZPppqnHeiyIx+H8gLoLypK63W6uEHLVsfIZRm6bput1csaVFFar4wJ7lCXhwhHmAIQMfxpT94XqhqqddAT02FPU60nViOPNMnbdEzfmfLNXl8j0F9z27LA5s/ekb3/d2qac3ErdQ7lBdCfHK1r1PgiQy6r9Xe1yzI0vsiQt66RMIVeI0wBGDACfU5VSnyyUg+eVkGHw3Y/V/QZSxoWHjV2xjBNRV9xs1rqizTstaiLOvJxKC+A/mRkUpx2Ztq6bpstl2XIZ9oqybQ1Myku1KWhHyBMARgQgnFO1RR3psaVuzV/Y4UOjRkqT/Xnij7TIpdtaMaobOc1nq3W4XhpdPFZpUS79cDM/6MoM7C/ri/VuIJDeQH0J2njErR3YrxWL2vdM1WSaWvIxHiljUsIdWnoB1ivAWBAOP/8p7zpbv1hXpL2nm09s8kp0zD14Iy7NUEjdXlJgyRbUWaUMuPHOlqWV+gt0t6z1Toaa2voqRbtz4hVsX1U/7brRVm25bjOrrQ1roiZuUhR6TntS/hc7nRFl2ZIvnMbs9uWALo5lBdA5DFNQ/OXZGvmdzLV8sMxmvmdTJpPIGCYmQIwIATrnKooM0o/m/WDL5pExHfdJKK7JXxVDa0zUkNP+fTuDa1NLQqz3Rq06VCfHk7MobwA+hvTNJQxwc0eKQQcYQrAgBDMc6pMw2xvV17VUC1JFwWlniwzTIlP1ujis9qfEdsh9FUkD+nTw4k5lBcAgJ4hTAEYEIJ5TtUXQalaZaOjlXrwtMaWJ+jBGXe373U6f5mhbRrKz7alzdUdZpymuDOVEu3W54eOqjDbHdLDiTmUFwCA7hGmAAwIwTynqjUoVesP80a3B6X5Gyv05M5f6qdX/ECmYfZomaFpmHpg5v/Rv+16UYM2HVJF8pCwOJwYAAB0jjAFYMAI1jlVrUEpukNQqhozVEPKjqrg6F4ZhqG6z49o3OHTyp9qyXaZXc44RZlR+tnMe8LqcGIAANA5whQA9FLbeVPn78caXXtatYnR+n3JBtVGn1HZ6EEa87mtResrVJYRp7G1Z3sw42T32dcAAAD8R5gCgF6a4s7U2PIEzd9YoaoxQzW69rROD3Fp5Amf6oxT+sO8MeeW/yVo4aZqLTk+VlekT+90xikY52EBAIDg4M4MAL3Udt7U5cZIXV52SqfiojTylDTaHqrSlMEdlv+VJw9WUuwoZY+c3Gk4CsZ5WAD6F8uydfCAVzv+Wq6DB7yyLGaxgVBhZgoAAiDKjNJPrzjvvKkMjyzb0uHK/1f5Vs/bsQfrPCwA/YNl2dr0Rr5OFzdofJGhnZm29k6M5xBaIEQIUwAQIBc2uLBsS1k1f/OrHXswz8MCEPkqSut1urhBy1bHyGUZum6brdXLGlRRWs+BtEAIEKYAIEh60o7dsq1zz1crJT5ZWQkTg3YeFoDId7SuUeOLDLms1lkol2VofJEhb10jYQoIAcIUAATRpdqxd9Vs4p6pd2pvfTGt0QFcZGRSnHZm2rpumy2XZchn2irJtDUzKS7UpQEDEmEKALpg2ZY+q85XYdUBpcQnBzzUnN9sou2wX22u1t764qCchwUg8qWNS9DeifFavax1z1RJpq0hE+OVNi4h1KUBAxJhCgA60WK16N92vaiDOqYKz2CNrWhWVnXyJVuUX7hkr7vwRbMJAP4yTUPzl2SrorRe3rpGzUyKU9q4BJpPACFCmAKAC1i2pSd3/lL77aPavCCtw6xRobfIryV7lwpfNJsA4IRpGsqY4GaPFBAGCFMAcIFCb5Gqmr06lDG0x7NG+Uf3qOh0pfZnDNGxhMHKnzpC2tJ1+JJaD/ul2QQAAJGLMAUAF6hqqFbtyEEaXXdaheedEZVWfVopGRfPGlm2pf8u+6M+d1kyLVtTCuo1rsSlstGXXrLXk25/AAAgfBGmAOACKfHJGlUuHY11ae6WKtWOHqKUQ6eUYSZ2OmtU6C1SretzbflqqmzTUOFUW3O3VCrxuE8pEy69ZO9S3f4AAEB44+1PALjAFHemsgYla+Qp6VRclC4vO6XLjZF6cMbdnc4aVTVUq9wzuMOSwLrRsUpSHEv2AADox5iZAoALnL/87pjl1YgE9yWX33XWSCKj+oz+cfw3WLIHAEA/xl0eADrRtvzuH6b8b2WPnHzJUDTFnamsKI8Wba7VtN1eLdpcqynRKZo6MqsPK0Zn1q1bp5tuukmTJ0/WG2+80eG506dP695779W8efO0YMECvf/++yGqEgAQqZiZAoBeopFE+MrKytJzzz2nV1999aLn1qxZo7i4OG3ZskUHDx7Ubbfdps2bN2vo0KEhqBQAEIm40wNAALTNZH1t7NxuZ7LQdyZOnKgJEybINC/+9/jTn/6kW2+9VZKUkZGhqVOn6sMPP+zrEgEAEazXM1Pr1q3T6tWrVVJSogcffFBLlixpf+706dN64IEHVFhYKJfLpfvvv1/XXXddby8JAECvVVdXa8yYMe1/93g8qq2t9es13O64QJcVEomJ8aEuISIxbv5jzJxh3Jzpi3HrdZhiCQUAIFRuueUWVVdXd/rcRx99JJfLFdTre72Nsiw7qNcItsTEeB050hDqMiIO4+Y/xswZxs2ZQIybaRrdvmnW6zA1ceLEcxfrfAnFU089JanjEoqvfe1rvb0sAAB6++23HX9ucnKyDh06pISEBElSTU2NZs+eHajSAAADQFAbUARiCYUUmcsomI4NDMax9xjD3mMMey8cx3DBggX63e9+p+zsbB08eFD5+fl65plnQl0WACCCdBumQr2EQoq8ZRRMxwYG49h7jGHvMYa9190Y9mQZhVMbNmzQ008/rZMnT+rdd9/Vq6++qtdee00TJkzQ0qVLtWLFCs2bN0+maeqxxx5TXFzkvXkHAAidbsMUSygAAJFq4cKFWrhwYafPxcbG6oUXXujjigAA/UlQe/e2LaGQ1L6E4stf/nIwLwkAAAAAfaLXYWrDhg269tprtXHjRj3//PO69tprdeDAAUnS0qVLdfLkSc2bN0//9E//xBIKAAAAAP1GrxtQsIQCAAAAwEAU1GV+AAAAANBfEaYAAAAAwAHCFAAAAAA4ENRDewEAADDwWJatitJ6Ha1r1MikOKWNSwh1SUBQEKYAAAAQMJZla9Mb+Tpd3KDxRYZ2ZtraOzFeS354TahLAwKOMAUAAICAqSit1+niBi1bHSOXZei6bbZWL2vQgaLDGpEYG+rygIBizxQAAAAC5mhdo8YXGXJZhiTJZRkaX2So9tDJEFcGBB5hCgAAAAEzMilOJZm2fKYtSfKZtkoybY0eMyzElQGBxzI/AAAABEzauATtnRiv1cta90yVZNoaMjFeEzJHyettDHV5QEARpgAAABAwpmlo/pJsVZTWy1vXqJnnuvmZphHq0oCAI0wBAAAgoEzTUMYEtzImuENdChBU7JkCAAAAAAcIUwAAAADgAGEKAAAAABwgTAEAAACAA4QpAAAAAHCAbn4AAADAAGTZlgq9RapqqFZKfLKmuDNlGsy1+IMwBQAAAAwwlm3p3/PXaG9LjcpGD9LYirPKqvbo3uylBCo/EKYAAACAAabQW6S9LTX6w7wk2aah/Gxb2lytQm+RskdODnV5EYPYCQAAAAwwVQ3VKhs9SLZpSJJs01CZJ1pVDTUhriyyEKYAAACAASYlPllja8/KsGxJkmHZGlvTrJR4T4griyws8wMAAAAGmCnuTGVVe6TN1SrzRGtsTbOyBrU2oUDPEaYAAACAAcY0TN2bvfRcN78apaR7+qybX3/qIkiYAgAAAAYg0zCVPXJynzac6G9dBAlTAAAAAPpEf+siGHnxDwAAAEBE6m9dBAlTAAAAAPpEf+siyDI/AAAAAH2iv3URJEwBAAAA6BOh7CIYDIQpAAAAAH0mFF0EgyUyIyAAAAAAhBgzUwAAAAAc6U8H8DpBmAIAAADgt/52AK8ThCkAAAAAfutvB/A6MTAiIwAAAICA6m8H8DpBmAIAAADgt/52AK8TLPMDAAAA4Lf+dgCvE4QpAAAAAH7r6gBeSco/umdAdPgjTAEAAABw5MIDeAdahz/CFAAAAICAGGgd/ghTAIB+69FHH9Xf/vY3RUdHKzY2Vj/96U+VnZ0tSTp69Kh+8pOf6NChQ4qJidHjjz+u6dOnh7hiAIgsFx7aW9lwqMsOf4QpAAAiyLXXXqsHH3xQgwYN0vvvv68f/vCH+vOf/yxJeuaZZzRr1iy99tpr2rFjh5YvX65NmzbJMIwQVw0AkaGzJX1pVrzGms3Kz7Zlm8YXHf7S+2eHP8IUAKDfuu6669r/nJOTo9raWlmWJdM0tXHjRr377ruSpFmzZik6Olr5+fmaNm1aqMoFgIjS2ZK+RZtqlGoP16LNtQOiwx9hCgAwIKxdu1Zf+cpXZJqmjh07Jtu2lZCQ0P68x+NRbW0tYQoAeqjTQ3uTY3RL01TdMiy5Q4e//th8QiJMAQAi2C233KLq6upOn/voo4/kcrkkSX/84x+1fv16rV27NqDXd7vjAvp6oZKYGB/qEiIS4+Y/xsyZcB23KWcnaFzBR8q3vljSN672rKZmT9AVydmhLq9Pxq3XYYrNvQCAUHn77be7/ZgtW7boueee0+uvv66RI0dKkkaMGCFJqq+vb5+dqqmp0ejRo/26vtfbKMuy/aw6vCQmxuvIkYZQlxFxGDf/MWbOhPO4pUSlKdPlkX3eob2Tojw6fvyUflP1dkjPmArEuJmm0e2bZr0OU2zuBQCEq/fff19PPvmkfv3rXyslJaXDcwsWLNBbb72lf/mXf9GOHTvU1NSkqVOnhqhSAIg8Fx7am5yWpHdr/qZfVv7PgDhjSgpAmGJz7xcsy1ZeqVfe3Gq546I1bZxbpklwBIBQeeCBBzRo0CDdc8897Y+9/vrrGjFihH784x9r+fLleueddxQTE6Onn35aptk/b/YAECznH9qbf3RPp2dMFRzdK8Mw2tun96c9VAHdMzWQN/dalq0X3/hUJ4srNbOoQBsyp+rDiam6e8lVBCoACJGPP/64y+cSExP1+uuv910xANDPddqQwhOt35dsUG30mX45W9VtmAr15l4pMjb4frqnVg37q/TM6mcUZVm6bdsm/fi796ncO1VXTfZvDT6+EK4bLiMJY9h7jGHvMYYA0P+lxCdrbMXZDmdMpVc3qc6w9Yd5YzrMVhV6i/rFIb7dhqlQb+6VImODb37xYeXszVOUZUmSoixLM/bmqaB4psYmDg1xdZEpnDdcRgrGsPcYw97rbgx7ssEXABD+prgzlVXtkc5rSDHKitUnKb6LZquqGmr6RZjq9dxa2+beNWvWdLm5V1K/39yblhSvXZnZajm33r7FNLUzc5pSk3g3FgAAAP1fW0OKe9L/UT8+c5XuSf9HfWPsjRpb1yLj3MSIYdkaW9OslHhPiKsNjF7vmWJzb6tp49z6cGKqfrTsPl1RlK/PMrN12cQUTRvnDnVpAAAAQJ84vyGFJFm2payav3WYrcoa1NqEoj/odZhic28r0zR095KrlFc6XvWNX9JNdPMDAADAAHdh+/SUdA/d/NA50zSUM2EkeywAAACAcy6crepP+kckBAAAAIA+RpgCAAAAAAcIUwAAAADgAGEKAAAAABwgTAEAAACAA4QpAAAAAHAgIlqjR+JZTZFYczhiHHuPMew9xrD3LjWGkTy+kVz7+frL19HXGDf/MWbOMG7O9HbcevL5hm3bdq+uAgAAAAADEMv8AAAAAMABwhQAAAAAOECYAgAAAAAHCFMAAAAA4ABhCgAAAAAcIEwBAAAAgAOEKQAAAABwgDAFAAAAAA4QpgAAAADAAcJUAD366KNasGCBFi1apMWLFys/P7/9uaNHj+quu+7S/PnztWjRIu3evTuElYa3srIy3XrrrZo/f75uvfVWHTx4MNQlhb1jx47pu9/9rubPn6+bbrpJd999t+rr6yVJubm5WrRokebPn6+77rpLXq83xNWGtxdffFGTJk1ScXGxJMbPX2fOnNHDDz+sr371q7rpppv0r//6r5L4uQ433K+c43u5e9yTeo97kX9Ceu+xETDvvfee3dzc3P7nuXPntj+3YsUK+6WXXrJt27a3b99uz5s3z7YsKyR1hrvbb7/dfuedd2zbtu133nnHvv3220NcUfg7duyY/fHHH7f//amnnrIfeOAB2+fz2TfccIO9fft227Zt+6WXXrJXrFgRqjLDXkFBgb106VL7uuuus/ft28f4OfD444/bP//5z9t/vx05csS2bX6uww33K+f4Xu4e96Te4V7kv1DeewhTQVJfX29PmTLF9vl8tm3bdk5Oju31etufv/HGG+3du3eHqrywdfToUfuKK66wW1pabNu27ZaWFvuKK67oMHbo3saNG+1vf/vb9u7du+0bb7yx/XGv12vn5OSEsLLwdebMGfsb3/iGXVlZ2X4DY/z809jYaF9xxRV2Y2Njh8f5uQ5v3K96ju9lZ7gn9Rz3Iv+F+t7DMr8gWbt2rb7yla/INE0dO3ZMtm0rISGh/XmPx6Pa2toQVhieampqlJSUJJfLJUlyuVwaNWqUampqQlxZ5LAsS2+++aauv/561dTUKDk5uf25hIQEWZal48ePh7DC8PT8889r0aJFSklJaX+M8fNPZWWlhg8frhdffFF///d/r9tvv107duzg5zrMcb/qOb6X/cc9yT/ci/wX6ntPVEBfrZ+75ZZbVF1d3elzH330Ufs/1h//+EetX79ea9eu7cvyAEnS448/rtjYWC1ZskRbtmwJdTkRYdeuXSooKNB9990X6lIims/nU2VlpSZPnqz7779fu3fv1ve//309//zzoS5twOF+hXDBPannuBc5E+p7D2HKD2+//Xa3H7NlyxY999xzev311zVy5EhJ0ogRIyRJ9fX17e/21dTUaPTo0cErNkJ5PB7V1dXJ5/PJ5XLJ5/Pp8OHD8ng8oS4tIqxcuVLl5eV65ZVXZJqmPB5Ph/9Q1dfXyzRNDR8+PIRVhp/t27erpKREc+fOlSTV1tZq6dKluv322xk/P3g8HkVFRWnhwoWSpOnTp2vEiBEaPHgwP9d9jPtVcHCP8g/3JP9wL3Im1PcelvkF0Pvvv68nn3xSa9as6TA9K0kLFizQW2+9JUnasWOHmpqaNHXq1FCUGdbcbreysrK0YcMGSdKGDRuUlZXVYckJOvfss8+qoKBAL730kqKjoyVJU6dOVVNTk3bs2CFJeuutt7RgwYJQlhmWvve972nbtm1677339N5772n06NFas2aNli1bxvj5ISEhQbNnz9Zf//pXSa1dlLxerzIyMvi5DjPcr5zhHtVz3JP8x73ImVDfewzbtu2AvuIAdvXVV2vQoEEd/pFef/11jRgxQkeOHNHy5ctVXV2tmJgYPfroo5o5c2YIqw1fJSUlWrFihU6ePKlhw4Zp5cqVGjduXKjLCmv79+/XwoULlZGRocGDB0uSUlJS9NJLL2nnzp16+OGHdebMGY0ZM0a/+MUv2t+FRueuv/56vfLKK5o4cSLj56fKyko9+OCDOn78uKKionTvvfdqzpw5/FyHGe5XzvG93D3uSYHBvajnQnnvIUwBAAAAgAMs8wMAAAAABwhTAAAAAOAAYQoAAAAAHCBMAQAAAIADhCkAAAAAcIAwBQAAAAAOEKYAAAAAwAHCFAAAAAA4QJgCAAAAAAcIUwAAAADgAGEKAAAAABwgTAEAAACAA4QpAAAAAHCAMAUAAAAADhCmAAAAAMABwhQAAAAAOECYAgAMCC+++KImTZqk4uJiSVJubq4WLVqk+fPn66677pLX6w1xhQCASBMV6gJ64tixU7Isu8NjbnecvN7GEFXUc9QZeJFSK3UGVqTUKUVOreFSp2kaGjFiaFCvUVhYqNzcXI0ZM0aSZFmWli9frieffFKzZs3Syy+/rFWrVunJJ5/063U7uz91JlzG2h/U3HcisW5q7juRWHd/qbkn96eICFOWZXd6s+rJDSwcUGfgRUqt1BlYkVKnFDm1RkqdvdHc3KzHHntMzzzzjO644w5JUkFBgWJiYjRr1ixJ0uLFizV37ly/w1RX96euPjbSUHPficS6qbnvRGLdA6VmlvkBAPq1559/XosWLVJKSkr7YzU1NUpOTm7/e0JCgizL0vHjx0NRIgAgQkXEzBQAAE7s2rVLBQUFuu+++4Ly+m53XI8/NjExPig1BBM1951IrJua+04k1j1QaiZMAQD6re3bt6ukpERz586VJNXW1mrp0qW6/fbbVV1d3f5x9fX1Mk1Tw4cP9+v1vd7GHi0LSUyM15EjDf4VH2LU3HcisW5q7juRWHd/qdk0jW7fNGOZHwCg3/re976nbdu26b333tN7772n0aNHa82aNVq2bJmampq0Y8cOSdJbb72lBQsWhLhaAECkYWYKADDgmKapp59+Wg8//LDOnDmjMWPG6Be/+EWoywIARBjCFABgwHjvvffa/zxz5kytX78+hNUAACIdYQoIM5ZtqdBbpKqGaqXEJ2uKO1OmwYpcAIhklmWrorReR+saNTIpTmnjEmSaRqjLAtBLhCkgjFi2pX/PX6O9LTUqGz1IYyvOKqvao3uzlxKoACBCWZatTW/k63Rxg8YXGdqZaWvvxHjNX5JNoAIiHGEKCCOF3iLtbanRH+YlyTYN5Wfb0uZqFXqLlD1ycqjLAwA4UFFar9PFDVq2OkYuy9B122ytXtagitJ6ZUxwh7o8AL3AW91AGKlqqFbZ6EGyz71TP6rLmgAAIABJREFUaZuGyjzRqmqoCXFlAACnjtY1anyRIZfV+rvdZRkaX2TIW9cY4soA9BZhCggjKfHJGlt7Vsa5c2sMy9bYmmalxHtCXBkAwKmRSXEqybTlM1t/t/tMWyWZttxJPT/0GUB4YpkfEEamuDOVVe2RNlerzBOtsTXNyhrU2oQCABCZ0sYlaO/EeK1e1rpnqiTT1pCJ8UoblxDq0gD0EmEKCCOmYere7KXnuvnVKCXdQzc/AIhwpmlo/pJsVZTWy1vXqJl08wP6DcIUEGZMw1T2yMk0nACAfsQ0DWVMcNNwAuhnAhKmjh07pp/85CeqqKhQdHS00tPT9dhjjykhIUG5ubl66KGHOpww73bziwQAAABAZAvI2iHDMLRs2TJt2rRJ69evV2pqqlatWiXLsrR8+XI99NBD2rRpk2bNmqVVq1YF4pIAAAAAEFIBCVPDhw/X7Nmz2/+ek5Oj6upqFRQUKCYmRrNmzZIkLV68WBs3bgzEJQEAAAAgpAK+q92yLL355pu6/vrrVVNTo+Tk5PbnEhISZFmWjh8/HujLAgAAAECfCngDiscff1yxsbFasmSJtmzZEpDXdLs7P4chMTE+IK8fbNQZeJFSK3UGVqTUKUVOrZFSJwAA4SigYWrlypUqLy/XK6+8ItM05fF4VF1d3f58fX29TNPU8OHD/Xpdr7dR1rlDTNskJsbryJGGgNQdTNQZeJFSK3UGVqTUKUVOreFSp2kaXb5pBgBAOAvYMr9nn31WBQUFeumllxQdHS1Jmjp1qpqamrRjxw5J0ltvvaUFCxYE6pIAAAAAEDIBmZnav3///8/enYc3ed55o/8+zyPLuwHLxpbxIi8xNiBjO0zSZt6GQEphegwk17xnoITmNIVe11w9OUnalzRuk4E0aacxTSbdkraMIZ00nLSTtychOBOWbFDCZKFgvEPwJoNkg2WIbfAmPff5Q9jxInmRtfv7+SexZOn5WSTIX/3u+3fj97//PQwGAzZv3gwASE1NxQsvvIDdu3dj165dY0ajExERERERBTuPhKlbbrkF586dc3pfcXExDh486InLEBERERERBQyPT/MjIiIiIiKaCximiIiIiIiI3MAwRURERERE5AaGKSIiIiIiIjcwTBEREREREbmBYYqIiIiIiMgNDFNERERERERuYJgiIiIiIiJyA8MUERERERGRGximiIiIiIiI3MAwRURERERE5AaGKSIiIiIiIjcwTBEREREREbmBYYqIiIiIiMgNDFNERERERERuYJgiIiIiIiJyA8MUERERERGRGximiIiIiIiI3MAwRURERERE5AaGKSIiIiIiIjcwTBEREREREbmBYYqIiIiIiMgNDFNERERERERu0Pi7ACIiIm/77ne/i4sXL0KWZURFReFf/uVfkJ+fj+bmZpSWluLatWuYP38+ysrKYDAY/F0uEREFCYYpIgoZQlVhb6uC3doKRZcBJa0AkswGPAFlZWWIjY0FALzzzjv40Y9+hNdffx27du3Cli1bsHHjRhw4cAA7d+7Eyy+/7OdqiYgoWPC3DCIKCUJVcePoM7he+XN0h+3G9cqf48bRZyBU1d+lUQAYDlIA0NvbC0mSYLVaUVdXh5KSEgBASUkJ6urq0NXV5a8yiYgoyLAzRUQhwd5WBVt/LbofqAAUgf6VNYjb57hdk1Ho7/IoADz++OP48MMPIYRAeXk5LBYLkpKSoCgKAEBRFCxcuBAWiwXx8fHTek6dLmba109MjJ36mwIMa/adYKybNftOMNY9V2pmmCKikGC3tmIwqwVQhOMGRWAwuwURVhPDFAEAfvrTnwIA3njjDezevRsPP/zwrJ/Tau2Fqoopvy8xMRZXrvTM+nq+xJp9JxjrZs2+E4x1h0rNsixN+aEZl/kRUUhQdBnQNhkAu+S4wS5B22iAokv3a10UeO655x58/PHHSE5ORkdHB+x2OwDAbrfj8uXL0Ov1fq6QiIiCBcMUEYUEJa0AmoiliNtXgoj3jIjbVwJN5FIoaQX+Lo387Pr167BYLCNfv/fee5g3bx50Oh3y8/NRUVEBAKioqEB+fv60l/gRERFxmR8RhQRJlhG1phT2tipEWE1QitI5zY8AAH19fXj44YfR19cHWZYxb948/O53v4MkSXjyySdRWlqKF198EXFxcSgrK/N3uUREFEQYpogoZEiyDE1GIfdI0RgJCQn4z//8T6f3ZWdn47XXXvNxRUREFCr4kS0REREREZEbGKaIiIiIiIjcwDBFRERERETkBoYpIiIiIiIiNzBMERERERERuYFhioiIiIiIyA0MU0RERERERG5gmCIiIiIiInIDwxQREREREZEbGKaIiIiIiIjcoPF3AURE5DlCVWFvq4Ld2gpFlwElrQCSzM/NiIiIvIFhiogoRAhVxY2jz8DWX4vBrBZoKw3QNCxF1JpSBioiIiIvYJgiIgoR9rYq2Ppr0f1ABaAI9K+sQdw+x+2ajEJ/l0dERBRyPPZRZVlZGVavXo3Fixfj/PnzI7c3Nzdj06ZNWLt2LTZt2oSWlhZPXZKIKKgJVYWttRIDpw/A1loJoaqzej67tRWDWS2AIhw3KAKD2S2wW02zL5aIiIgm8FiYuvvuu7F//34sWrRozO27du3Cli1bcPjwYWzZsgU7d+701CWJiILW8JK865U/R3fYblyv/DluHH1mVoFK0WVA22QA7JLjBrsEbaMBii7dM0UTERHRGB5b5rdixYoJt1mtVtTV1eGll14CAJSUlODpp59GV1cX4uPjPXVpIqKg42pJns1UCUmS3RogoaQVQNOwFHH7gMHsFmgbDdBELoWSVuDln4aIiGhu8uqeKYvFgqSkJCiKAgBQFAULFy6ExWKZUZjS6WKc3p6YGOuROr2NdXpesNTKOj0rWOoEpq71akM7rma3TFiSp/3bqxgKs2AgqxnhZzMR2VQA/f98EpKsTOu6YstPcKPxDAY7WqC9y4Co7KJJHxtMrykREVGgCYoBFFZrL1RVjLktMTEWV670+Kmi6WOdnhcstbJOzwqWOoHp1WqLTIa20oD+O2scgcouQXshHYN2C7q/c9DRrbqzBmKfQPvpk1MOkJgwEv2WNbDJMm5Yb8yqTl+QZcnlh2ZERESBzKthSq/Xo6OjA3a7HYqiwG634/Lly9Dr9d68LBFRwHO2JE+2L0R/3icTulURVtOkYYoj0YmIiPzDq2FKp9MhPz8fFRUV2LhxIyoqKpCfn8/9UkQ050myjKg1pbC3VSHCaoJSlA4hVKhnL6PfPqpb1WiAUjT5AAmORCciIvIPj4Wpn/zkJzhy5Ag6OzvxwAMPYP78+Xjrrbfw5JNPorS0FC+++CLi4uJQVlbmqUsSEQU1SZahySgcCTxCVaE553qAxISlfDeHU7gaiR7R2QoAI98vL1oG9VLNyNdCd4c/fmwiIqKQ4bEw9cQTT+CJJ56YcHt2djZee+01T12GiChkOetWDQemyZbyKboMx/6rlWM7WkPiY/Rf/E/H958xQDoZDRF1feTxlqbl0KzcwaWAREREbgqKARRERHPF+G7VsMmW8jnbf6VIGbCjdeT7bYs6Efn+MvQ88M7I46WXJES5uRTQVZeMiIhoLmGYIiIKAi6X8t0cTjG+o2XrbEGf9tjI9yuX52Eo1zzm8QPZzQifYriFMxx4QURE5MB3PSKiIKDoMqBtMgB2yXHD8HAKnWM4xXBHK7x4g6OzlWAY8/32hZ8j7HzKmMeHN2aOPH4mRnfJ+ldXo/uBCtj6amFvq/LAT0pERBQ82Jkir1NVgaomK0wdPUhPikVBlg6yLPm7LCK/cWeJnLOlfKOHU0z5/RcMkAajEbevZOTxkfMKXD5+MlN1yYiIiOYKhinyKlUV+M0rn6D7fBuKGqpRkWfE8dw0PLj1NgYqmpOmu0TOWeByNZzCmQnDLIrTR6b5DT8+ufgOdE5yqK8rrgZeTDXCnYiIKNQwTJFXVTVZ0X2+Dc+VPweNqmLriSP4/vYdqGrKRmFOgr/LI/I5m6kSts/rMGD8DHb9NfR/pQZxfxh7JtRkgcvZcApXnA2zkEd9LcmKWz/DTLtkREREoYphirzK1NGDooZqaFQVAKBRVRQ3VKGto5hhiuYcoaroP/VHiLDrkOwKIo7nQ5zJxGDW2CVygX4I72Qj3ImIiOYSvvORV6UnxeJMnhG2m79k2WQZp/MKkJYU6+fKiHzP3lYFVWlHz7b30L+qFr3f+gBSdyS09WMHQbjak2S3mvxTuBPjB14wSBER0VzEzhR5VUGWDsdz0/D97TtQ3FCF03kFmJebioIsnb9LI/I5u7UVgzmmMSHJltWByLrsMUvkprsniWc9ERER+RfDFHmVLEt4cOttqGrKRltHMdZzmh+FsOFwc7WhHbbI5AnhxmlIumBA+O33jf2+aexJ4llPRERE/scwRV4nyxIKcxK4R4pC2uhwczW7BdozBiinMxCWfhuUBAOUtALnISlqKTTpY/dBTWdPUqDvqyIiIpoLGKaIiDxgTLiRBJTLMRBX+9Gn/QDaysyRrtF0Bzc4m8Q35no864mIiMjvGKaIiDxgdLjRfJYMqTcCPd9552bXqHZM12gm481d4VlPFOxUVcDU1IXOjl4kJMUgPSueS8CJKOgwTBERecDocKO0z4ct8zIgOYKV0j4ftvgrsHW2eqxrxLOeKJipqsDhV6rRd74H2Q0STucJ1OfGYu1WIwMVEQUVhikiIg8YHW5s8VegXI6FciUOUm8EbJmXoVyJhe3qxxBF6z0yIIJnPVEwMzV1oe98D7aXh0NRJaw6IVC+vQempi4YcjjtlYiCB8MUEZEHjA434X0WXGs/ClxtHbXUrw5x+yI8OiBiqn1VRIGqs6MX2Q0SFNXRhVJUCdkNEqwdvQxTRBRU+BEmEYUEoaqwtVZi4PQB2ForIVTV5zUMh5v4r/wTtNl3YijXEtAH7xL5S0JSDBrzBOyy4/8PuyzQmCegS4rxc2VERDPDzhQRBb1APHNJSTBAW5mJ/pW1HBDhZ1evXsUPfvADmEwmaLVaZGRk4KmnnkJ8fDwqKyuxc+dODAwMYNGiRfj5z38OnY6dEW9Lz4pHfW4syrc79kw15glE5sYiPSve36UREc0IO1NEFPRGjyXvX12N7gcqYOurhb2tym81KWkF0EQsRdy+EkS8Z0TcvhIOiPATSZKwfft2HD58GAcPHkRaWhqeffZZqKqKRx99FDt37sThw4exYsUKPPvss/4ud06QZQlrtxpR/K082L63CMXfyuPwCSIKSgxTRHOIUFX0nq2E9eAB9J71z1I4b3B15pI/l9QN76GKLnoUcUOPIbroUb92yuay+fPn4/bbbx/5urCwEGazGTU1NQgPD8eKFSsAAJs3b8ahQ4f8VeacI8sSDDk63Pr3GTDk6BikiCgocZkf0RwhVBUXnv0V2s59jmMdhViZdABpiz9A4jM/8ndpsxaoZy5JsjzSibJbWwGAE/f8TFVVvPrqq1i9ejUsFgtSUlJG7ouPj4eqqrh27Rrmz58/refT6aa/xycxMXbG9foba/adYKybNftOMNY9V2pmmCKaI65XV6Ht3Oe479QzsAsN9rRtxn48hrzTZwDDYn+XNyuBeuZSIO7lmuuefvppREVFYevWrTh69Oisn89q7YWqiim/LzExFleu9Mz6er7Emn0nGOtmzb4TjHWHSs2yLE35oRnDFNEcMWBqxbGOQtiF4397u9DgWEcR7mhuQUSQh6lAPXNp9F4ux3j0GsTtg0fHo9P0lZWVobW1Fb/73e8gyzL0ej3MZvPI/V1dXZBledpdKSIiIn40SjRHhKdnYGVSJRTJBgBQJBtWJp1BdKbBr3V5yvBY8vDiDdBkFPo9SAHe28sVCGPgg82//du/oaamBi+88AK0Wi0AYNmyZejv78epU6cAAH/605+wbt06f5ZJRERBhp0pojki2liAtMUfYD8ew7GOIqxMOoO0xfOxoLgInV03/F1eQBGqCntbFezWVii6DLe7XN7Yy8WlgzP32Wef4fe//z0MBgM2b94MAEhNTcULL7yA3bt3Y9euXWNGoxMREU0XwxTRHCHJMnJ2PAR9dRWWt5kQnnYPoo0FkBTF36UFFE+GFW/s5eLSwZm75ZZbcO7cOaf3FRcX4+DBgz6uiIiIQgXDFNEcIskyYpYXImY5f+l2xZNhxRt7uVwtHYywmhimiIiIfIxrQoiIRvHemVVTT3ybDkWXAW2TAbDfPJNneOmgzr9j4ImIiOYidqaIiEbx5D4nb+xvCtQx8ERERHMRwxQR0SieDCve2N8kyTIi7/4Bhs68ibDWz6AsugVhRRs4fIKIiMgPGKaIiEYZv89JLkwFAAxWHpzxZD9v7G8Sqoq+d3d/0e1qMsDW1cBpfkRERH7AMEVENM7wmVVKWoHLZXoAphyf7o3R6JzmR0REFDgYpoiIXHAVXGymSgyeOzTlXiivjEbnND8iIqKAwTBFROSCq+Cibfp0Wt2hmY5Gn85hwd7odhEREZF7GKaIiFxwFVwQJ6bsDo0PRtrCkkn3NE138h+n+REREQUOhikiIhdcBRdN1m3Qnv2ry+6QUO0zHok+3b1Q3jgImIiIiNzDMEVE5MRwZ0lJWAKNmoeIQQVKUcZIB0hzznV36EbjmRkPiZjJXqjhARncI0VERORfDFNERONMWHLXZIAmYim0RetHOkCTdYcG25tnPCSCe6GIiIiCD8MUEdE401lyN1l3SJucCe2xmQUj7oUiIiIKPgxTRETjzHb8eFR2ETQfzywYcS8UERFR8GGYIiIaZ7ZL7iRZcSsYcS8UERFRcGGYIiIaxxNL7hiMiIiIQh/DFBHROFxyR0RERNPBMEVE5AQ7S0RERDQVfsxKRERERETkBp90ppqbm1FaWopr165h/vz5KCsrg8Fg8Pp1y8rfw7nOL75enAA8tn21169LRBRsVFXA1NSFzo5eJCTFID0rHrIs+bssIiLyIlWoqLU24GKPGamxKViqy4MssdcyEz4JU7t27cKWLVuwceNGHDhwADt37sTLL7/s1WuWlb8H06V+pPZ24/bGOnycvQSmgTiUlb/HQEVEPiNUFfa2KtitrVB0GQG590pVBQ6/Uo2+8z3IbpBwOk+gPjcWa7caGaiIiEKUKlT8onov6m0WNCeHIdM0hHyzHo8YtzFQzYDXXymr1Yq6ujqUlJQAAEpKSlBXV4euri6vXvdcJ6Dr7cav//hLfOvEYfz6j79E/PXuMZ0qIiJvEqqKG0efwfXKn6M7bDeuV/4cN44+A6Gq/i5tDFNTF/rO92B7eTi+ejwc28vD0Xe+B6Ym7/49TURE/lNrbUC9zYI31ySharkOb65JQv2QGbXWBn+XFlS83pmyWCxISkqCoigAAEVRsHDhQlgsFsTHx0/rOXS6GKe3JybGTvq42xvroLn5S4tGVfGlC3X4y20Lp3ycp/n6eu4KljqB4KmVdXpWoNYpVDtuNJ7BYHsztMmZELoiJCbG4vpnp9AzUIfuByoARaB/ZQ3mvSQhuvszRN+ywt9lA3C8pvWVFuQ0yFBURxdKUSXkNMjo6x1y+pqrqsCFhstov/Q5khfNQ07eQnawiIiCzMUeM5qTwyBu/v0tZAnNei0u9lhgTFji5+qCR1BM87Nae6GqYsxtiYmxuHKlZ9LHfZy9BFtPHoVGVWGTZXyU4/gPY6rHedJ06gwEwVInEDy1sk7PCtQ6h7tPtv5aDGa1QHvMgKgzy6FZuQODTQ0YyGx2HPwLAIrAQFYzrjadw435i/1ZNoAvXtPIGC3q81TcdUJAUSXYZYELeSqKY8ImvObjlwS+nyfw0SyXBMqy5PJDMyIi8o7U2BRkmoZQbRQQsgRJFci0DCI1Q+/v0oKK18OUXq9HR0cH7HY7FEWB3W7H5cuXodd79w9qcQJgGojDg/c/jC9dqMNHOUvQFR2HxQlevSwRzTH2tirY+mvHdJ+klyREtVVB0WVAW2lA/8oaR6CyS9A2GqAUpfu77DHSs+JRnxuL8u2OgNSYJxCZG4v0rImrB0YvCVRUCatOCJRvdywJNOTo/FA9ERG5Y6kuD/lmPXDEjGa9FpmWQeSHOYZQ0PR5PUzpdDrk5+ejoqICGzduREVFBfLz86e9xM9dj21ffXOaXwT+cttCAJzmR0SeZ7e2YjCrZWz3KbsZ4VYTtIUl0DQsRdw+YDC7BdpGAzSRS6GkFfi15vFkWcLarUaYmrpg7ehF8STT/Do7epHdII1ZEpjdIMHa0cswRUQURGRJxiPGbTen+VmQmqHnND83+GSZ35NPPonS0lK8+OKLiIuLQ1lZmS8uy+BERF7nrPsU3pgJpTAdkiwjak0p7G1ViLCaoBSlB+Q0P8ARqAw5uikDUUJSDE7nCawatSSwMU+gOInL9IiIgo0syTAmLOEeqVnwSZjKzs7Ga6+95otLERF53GTjzZW0ggndp8h5BSPdJ0mWockohCaj0J8/gsfMZEkgERFRqAuKARRERP4yYcBEpQGahqWIWlMKSZaddp+Si+9Ap/XGrK4bqIfozmRJIBERUahjmCIimoSzARNx+xy3D3ebxnefJFmZ1TUD/RDd6S4JJCIiCnWBt3CfiCiAOBswMZjdArvV5LVrTnaIrqoKtFyw4tSHrWi5YJ1wbAQREZEqVFR31uHt5ndQ3VkHVQTWYfGhhJ0pIqJJ+GO8uauJeZ3tPag/eSlgO1ZEROR/qlDxi+q9qLdZ0JwchkzTEPLNejxi3DbppL7J9geTawxTRESTcDZgwtvjzV1NzEtVhUfOeBrej1VfaUFkjJZ7noiIQkittQH1NgveXJMEIUuoNgrgiBm11gaXU/um2h9MrjFM+YmqClQ1WWHq6EF6UiwKsnT8ZYYoAPljvLmriXmSLM36jKfR+7FyGmTU56nsbhERhZCLPWY0J4dB3Pw7XcgSmvVaXOyxuAxT09kfTM4xTPmBqgr85pVP0H2+DUUN1ajIM+J4bhoe3Hobf5khCkC+Hm/uamKeqalr1mc8jd6PpagS7nKzu0VERIEpNTYFmaYhVBsFhCxBUgUyLYNIzdC7fIyr/cERVhPD1BQYpvygqsmK7vNteK78OWhUFVtPHMH3t+9AVVM2CnMS/F0eEXmQuyPOnU3M88QZT672Y82ku0VERIFrqS4P+WY9cMSMZr0WmZZB5IelYKkuz+Vj/LE/OFQwTPmBqaMHRQ3V0KiOySoaVUVxQxXaOooZpohCiKdHnHvijCdX+7Fm0t0iIqLAJUsyHjFuQ621ARd7LEjN0GOpLm/S4RP+2B8cKhim/CA9KRYVeUZsPXEEGlWFTZZxOq8A65Ni/V0aEXnQ+CV17g6MGG22ZzyN7m7lNMi4kKfOuLtFRESBTZZkGBOWuNwjNZ4/9geHCoYpPyjI0uF4bhq+v30HihuqcDqvAPNyU1GQxSU2RKEkEJfUje5u9fUOoTgmjNP8iIjmGFdj0H25PzhUMEz5gSxLeHDrbahqykZbRzHWc5ofUVCaaj9UoC6pG+5uJSbG4sqVHr/W4gtlZWU4fPgwLl26hIMHDyI3NxcA0NzcjNLSUly7dg3z589HWVkZDAaDf4slIvIyjkH3LIYpP5FlCYU5CdwjRRSkXO2HWrNlGc7XdaDx/BXoEqMRcUsMyrf3uj0wgmbv7rvvxv3334/77rtvzO27du3Cli1bsHHjRhw4cAA7d+7Eyy+/7KcqiYh8g2PQPYthiojIDa72Qx3YdxpK2yAy64EzeQKRuTEo+r8Wo+vydbcGRtDsrVixYsJtVqsVdXV1eOmllwAAJSUlePrpp9HV1YX4eIZdIgpdHIPuWezlERG5wel+qHoJ1y19+Pa/a/HV4+HYXh6OvvO9kCQJt/59Bgw5XM4bKCwWC5KSkqAoCgBAURQsXLgQFovFz5UREXmXosuAtskA2G++Hw2PQddxDLo72JkiInKDs/1Qn+WqSDMF1sAJ8i6dbvr73xITg29iK2v2nWCsmzX7jifrFro7YGlaDuklCQPZzQhvzETkvAIkF98BSVY8dp1gfK3dqZlhiojIDc4O0FXSItCl9MMuB9bACZpIr9ejo6MDdrsdiqLAbrfj8uXL0Ov1M3oeq7UXqiqm/L5gHPbBmn0nGOtmzb7jjbo1K3cgqq0K4VYTlELHGPRO6w2PPf/4mlWh3jz3yozU2JQpz73yB2evsyxLU35oxjBFROQGZwfophoW4Oj/W4O93+lFVj04cCKA6XQ65Ofno6KiAhs3bkRFRQXy8/O5X4qI5gRfjkFXhYpfVO9Fvc2C5uQwZJqGkG/W4xHjtoALVO5gmCIicpOzA3TXbjXic2sfms5fCZiBE8Mj3K+090CoApIsITE5dkZL1ILZT37yExw5cgSdnZ144IEHMH/+fLz11lt48sknUVpaihdffBFxcXEoKyvzd6lERCGn1tqAepsFb65JgpAlVBsFcMSMWmvDtA8VDmQMU0REHiTLEnKXJGFBYpS/SwHwxQj3G+e7oQ6oEBKwuFGD0/kCjafaseqflvg97HnbE088gSeeeGLC7dnZ2Xjttdf8UBER0dxxsceM5uQwiJvvNUKW0KzX4mKPJSTCVPD31oiIyKXhEe53vatBmE3CP78cha/+1TFpsLv2c5iauvxdIhERhbDU2BRktg9Burm/VFIFMi2DSI2d2R7VQMXOFBFREBlestfZ0YuEaSwjHB7hfjlBIKtVmTDKnZMGiYjIm5bq8pBv1gNHzGjWa5FpGUR+mGMIRShgmCIiChLDS/b6zjsmCJ7OE6jPjcXarUaXgWp4hPvKd2X89Us23HVy1KTBfIEiThokIiIvkiUZjxi33ZzmZ0Fqhj4gp/m5i2GKiChIDC/Z214eDkWVsOqEQPn2Hpiaulx2l4ZHuH+AbqgDAr+7/wYWN2rQmC8wb+l8ThokIiKvkyUZxoQlIbFHajyGKSKiIDG8ZG8mhwKPHuHe2d4EvQj0AAAgAElEQVQDVRUYkiUUJ8fi1tszYLX2+vJHICIiCikMU0REfjDTvU/AF0v2Vp2Y2aHAzka4D99ORERE7mOYIiLyMXf2PgFfLNkr3+54HA8FJiJyEKoKe1sV7NZWKLoMKGkFkOTQ2JPjTapQb+5lMiM1NiWk9jL5CsMUEZGPubP3CRi7ZM/a0RswhwITEfmTUFXcOPoMbP21GMxqgbbSAE3DUkStKWWgmoQqVPyiei/qbRY0J4ch0zSIvKZYfFfJQliCgYF0mhimiIh8zJ29T8NcLdkjIpqr7G1VsPXXovuBCkAR6F9Zg7h9jts1GYX+Li9g1VobUG+z4M01SRCyhGqjgHi7BX8T78FYOY+BdJr46hAR+VhCUgwa8wTssuMAw+G9TzqOKScimjG7tRWDWS2A4vg7FYrAYHYL7FaTX+sKdBd7zGhODoO4ubpByBJaUmNwMb0X3Q9UwNZXC3tblZ+rDHwMU0REPpaeFY/I3FiUbx/AO3cOoHz7APc+ERG5SdFlQNtkAOw3lzzbJWgbDVB06X6tK9ClxqYgs30IkuoIoZIqYGj/HEkLOhlIZ4DL/IiIfIx7n4iIPEdJK4CmYSni9gGD2S3QNhqgiVwKJa3A36UFtKW6POSb9cARM5r1WhgudiMr1oys5LYvAmkRA+lUGKaIiPyAe5+IiDxDkmVErSmFva0KEVYTlKJ0Dk+YBlmS8Yhxm2OaX/clJFw7iRyzgM22zGOBdC5MC2SYIiIiIqKgJskyNBmFHDgxQ7Ikw5iwBMaEJRCGu2+Ol/dMIJ04LXAI+WY9HjFuC6lAxTBFRERERDTHeTqQOpsWiCNm1FobYExY4pFrBILQiYVERERERBQQnE0LbNZrcbHH4ufKPIthioiIiIiIPMrZtMBMyyBSY/V+rsyzuMyPiIiIiIg8avy0wEzLIPLDHEMoQgnDFBERERERedSYaYE9FqRm6DnNj4iIiIiIaDpGTwsMVaEVDYmIiIiIiHyEYYqIiIiIiMgNDFNERERERERuYJgiIiIiIiJyAwdQEBEFAFUVMDV1obOjFwlJMUjPiod886BDIiIiCkyz7kwdOHAA69evx5IlS/DKK6+Mua+vrw+PPPII1qxZg3Xr1uH999+f7eWIiEKOqgocfqUap//QgLDnL+H0Hxpw+JVqqDcPOiQiouAlVBW9ZythPXgAvWcrIVTV3yWRB826M5Wfn4/nn38ee/bsmXDf3r17ERMTg6NHj6KlpQX33Xcfjhw5gujo6NlelogoZJiautB3vgfby8OhqBJWnRAo394DU1MXDDk6f5dHRERuEqqKC8/+Cm3nPsexjkKsTDqAtMUfIGfHQ5Bk7rYJBbP+U8zNzUVOTg5kJ/9BvP3229i0aRMAwGAwYNmyZTh+/PhsL0lEFFI6O3qR3SBBUR3L+hRVQnaDBGtHr58rIyKi2bheXYW2c5/jvlPP4Lemrbjv1DNoO3cN16ur/F0aeYhX90yZzWYsWrRo5Gu9Xo/29vYZP49OF+P09sTEWLdr8yXW6XnBUivr9KxgqROYWa3ZuYk4ln8J9hMCiirBLgs05QN35SZ6/WcOpteUiCjYDJhacayjEHbh+JXbLjQ41lGE5W0mxCwv9FkdQlVhb6uC3doKRZcBJa2AnTEPmTJM3XvvvTCbzU7vO3nyJBRF8XhR41mtvRP2DiQmxuLKlR6vX3u2WKfnBUutrNOzgqVOYOa1ztNFIvyWGJRv70F2g4TGPIHIW2IxTxfp1Z85UF5TWZZcfmhGRBTMwtMzsDLpAPa0bYZdaKBINqxMOoPwtHt8VoNQVdw4+gxs/bUYzGqBttIATcNSRK0pZaDygCnD1Ouvv+72k6ekpODSpUuIj48HAFgsFtx+++1uPx8RUSiSZQlrtxphauqCtaMXxZzmR0QUEqKNBUhb/AH24zEc6yjCyqQzSFs8H9HGAp/VYG+rgq2/Ft0PVACKQP/KGsTtc9yuyfBddyxUeXWZ37p16/DnP/8ZRqMRLS0tqK6uxnPPPefNS9IcJ1QV16urMGBqRXh6BqKNbGNTcJBlCYYcHQdOEBGFEEmWkbPjIeirq7C8zYTwtHt8/ruJ3dqKwawWQLm5yksRGMxuQYTVNBKmuAzQfbMOUxUVFdi9eze6u7vx7rvvYs+ePdi3bx9ycnKwbds2lJaWYs2aNZBlGU899RRiYriUg7yDE3OIiIgo0EiyjJjlhT7dIzWaosuAttKA/pU1jkBll6BtNEApSgfAZYCzNeswVVJSgpKSEqf3RUVF4Ve/+tVsL0E0LaMn5tiFBnvaNmM/HoO+uspvf4ERERER+ZOSVgBNw1LE7QMGs1ugbTRAE7kUSppjqSGXAc6OV5f5EflSoEzMISIiIgoUkiwjak0p7G1ViLCaoBSlj1nGN51lgFMZv0xQ6O7w0k8TeNi7o5DhmJhTCUWyAcCoiTnpfq6MiIiIKBCICbcougxomwyA/ebQo+FlgLrp/f4kVBXXj/wM1z9+Ftc7ynH942dhfm0XhKp6sO7Axc4UhYxAmJhDc4uqCpiautDZ0YsETuAjIqIANNWeqKmWAU7FZqqEvbMOalwv7GmdkJpk9JurIJkqEWYo9vJP538MUxQyAmFiDs0dqipw+JVq9J13nA11Ok+gPjcWa7ca/V0aERHRiKn2RE21DNCZ0cv6bJfqIaJvoPdbHziWCt5Zh9jyu2Fr+pRhiijY+HtiDs0dpqYu9J3vwfbycCiqhFUnBMq398DU1IWkpDh/l0dERARgenuiJFmGJqNwWnukJnS6rmZhqLB9zPMP3WJB+BUv/UABhh/ZExG5obOjF9kNEhTVsaxPUSVkN0iwdvT6uTKaqebmZmzatAlr167Fpk2b0NLS4u+SiIg8ZrZ7osYb3enqX12NG1//BGHnU8Y8f9j5VGiy/s4zP0CAY5giInJDQlIMGvME7LLjkzi7LNCYJ6BL8s9Zeqoq0HLBilMftqLlghWqOnGTMTm3a9cubNmyBYcPH8aWLVuwc+dOf5dEROQxSloBNBFLEbf364h4bxni9n7d5Z4oVaio7qzD283voLqzDqpQJ9x/1nIaryaE4c1PVuGzS+kYzG2HkARi/33tyPNHLVgBTfrcWCXEZX5ERG5Iz4pHfW4syrc79kw15glE5sYiPSve57VMtn+LAzEmZ7VaUVdXh5deegmA4+zEp59+Gl1dXYiP9/2fJRGRNwghgCEFysV4YEhxfD2OKlT8onov6m0WNCeHIdM0hHyzHo8Yt0GW5JH7zyqtuJieC735Oio7FsOw4BK+KwtEpv4jIoc0UIrTkVx8BzqtN/zwk/oewxQR0SSGJ/Zdae+BUAUkWUJisiM0rd1qhKmpC9aOXhT7cZrfZPu3DDk6n9cTTCwWC5KSkqAoCgBAURQsXLgQFovF62Hq+ZffQ7X5i6+NKcD37l/t1WsS0dxjb6uCfaAO3f/sGEABu4S4fWLCoby11gbU2yx4c00ShCyh2iiAI2bUWhtgTFiCWmsDaocu4tC6NAhZQo1Rh7uPtqH1WiouREdixa33jAytkGTFXz+uzzFMERG5MKbjUy/hXLYNkgBM4TLqc+OwdqsRhhyd3wPLZPu3/F1bqNPppr+sMzExduTfn/5dBS409yO1txu3N9bh4+wluDAQh9/95Rj+5Z9LvFGqW0bXHCyCsWYgOOtmzb4zm7qvNrTjanbL2AEUOS3Q9Xdgwajn7bpsRbM+DOLmh4JCltCcosVV1YrExFh0XbaiVR8+5v52fRQSrvTjRvYqLEya57Ga/cWdmhmmiIhcmNDx+VCLvd/ow50nNDiGwOn8JCTF4HSewKoTAooqjezfKvbT/q1gotfr0dHRAbvdDkVRYLfbcfnyZej1+mk93mrtndb+tMTEWFy50jPy9Sef2ZHa241f//GX0Kgqtp48igfvfxiffBYx5vv8aXzNwSAYawaCs27W7Dvu1j08vnzI3AptZyb6/0cNEOboTGkvGNBflDTmeeNlHTIvDqF6mYCQJUiqQKZ5EAsydLhypQfxsg4ZlgFUG7+4P9lyAzGDEuKVhDHPFYyvtbOaZVma8kMzhikiIhecdnxaFVxOEAHV+Qmk/VvBRqfTIT8/HxUVFdi4cSMqKiqQn5/vk/1StzfWQaM6NndrVBVfulCHv9y20OvXJaLgIVQV1z87hYGmBii6jCnPfxr9uNHjy8OupiDuNyUYLGiBtsn5obxLdXnIN+uBI2Y067XItAwiPywFS3V5I/cvNafCfsiEtkWR0JtvIHJAxeIYw8j3BApVqKi1NuBijxmpsY6fQZa8M3ePYYqIyAWnHZ8MO+78KAzH7lYDpvMjy1LA7N8KRk8++SRKS0vx4osvIi4uDmVlZT657sfZS7D15FFoVBU2WcZHOUt8cl0iCg7DgahnoA4Dmc3QVhqgaViKqDWlUwYqpwf17v06YjrvR1jR7U5DmSzJeMS47WYIsSA1Qz8mhAzfX9NZj9OXq4BIoCjDiKW6vAnBxR+GA1Rb9yWculqLNulzNCdrJwzS8DSGKSIiF8Z0fEbtmfrgbhuicuMCqvMjy1JA7N8KRtnZ2Xjttdd8ek1jCnBhIA4P3v8wvnShDh/lLEFXdByMKT4tg4gCmNNAtA8jgyOGl/HZra0TulZOD+rNMSFiSD/pwbyyJMOYsATGBMeHO0JVYTNVjrnGsoR8SJKEiz1mSJDwy+p9aLC3j5kA+NNVj0z6s3m6czR6EuHlGIE4dRBH1qU7HaThaQxTRD4gVBXXq6swYGpFeHoGoo3Ta9OTf43u+HS298CgCsiyhISb0/zY+SF3fe/+1Ten+UWMLO3jND8iGs1pIMpuQYTVBCWtYMwyvvFdK0WXAW2lAf0ra0Ym+GkvGIBUGwZOH5jWksHxSwW1lQbIDUvw7/qFI+PTM0z9kPuH8Ob6dAhFHgkuZ9prkR5mcPq8U41gH/190w1coycR5tVfRU/MuEEaei0u9lgYpoiCkVBVXHj2V2g79zmOdRRiZdIBpC3+ADk7HmKgCgLs+JC3MDgR0WScBqJGA5Si9Cm7VkpaATQNSxG3DxjMboH2ggFSfzT6zX9xGr6ccXYN88sRqB8cxJtrU0a6PmsOtyG5ow+WlOiR4NJytQ3pCw1On3eqEezAxMCV0dqP5KYo/FPm/wFjwpIJoepijxnNyY4AdW1BOJbWdKFW/WJQRuqlG1hkSPbon88whikiL7teXYW2c5/jvlPPwC402NO2GfvxGPTVVYhZPjdOByciIqKZGQ5E816SMJDVDG3jF4MjBisPuuxaaTIKIckyotaUwt5WhQirCUi1od/8F5fhyxlnnbG2hF40p4wdj25JicL8rgFYUqIhqQIZ5n5cmt+BarnOaTdpdPAZfo7xnSNngWvN4Ta80PSfyLOkjeliqUKFXdiR3XIdnbpwmPVRyLqg4GuHTLi0KBrJ7TcQNqhCYOrJq+7gx+JEXjZgasWxjkLYheOzC7vQ4FhHEQbaTH6ujIiIiKZLqCp6z1bCevAAes9WQtycxuktw4EoeeW/IHbgB0D0P6JvYAl6qyohhmwI+ywVsN9cbj7ctdKlj3m8JqMQ4cUbAEVxGr7sVte/iyi6DGibDGOukdYZg0zzAKSbR0IMd31uaepBwVkr/uHQRcgDQ9gbdR6/Mv1v/KJ6L1Qx9nVKjU1BZvvQmOfItAwiNfaLIymcBS7zoiicM0ShfsjRxQK+6GAduPYRLhiiYKyyYu3hNkT3DGIoTIZdkVFr1KHZEANzb4e7fxSTYmeKyMvC0zOwMukA9rRthl1ooEg2rEw6g/C0e/xdGhEREU2Dv5bsS7KMqKwinN3z9si170z4C1ISL2N+poD82NeBvE5EqwuhiZo47nzYZEsGXZmwVLDRgPmRWcjXLhwZn77o0nWEDdhxJTEcOY3dGNRIE/ZPjR/8MH4Ee7q5D2lSPPLjc0e+JzU2BZmmoXFnWvWhdtkCdHw+gPdMfwXgCFOODlYyhCyhxqjDPxy6iPAhFW+sWwShyJBUgduqupGaMb3zA2eKYYrIy6KNBUhb/AH24zEc6yjCyqQzSFs8H9FG53/hEXmCqgrH4IyOXiRwVDoR0az4asm+s4FVV0+fmXDtPxY8jK6rkThiWYU76z5BWpqMnCd/4DLYOQtGzs6aGm38UkGlKB1KWgEekYCaznrsP/8XXJbtOLghA0KRsaTGCsUuIBRHDa4GP8iSjIeWPYCfnf415BYr2hPCoPR8jl/VvDSyfG84cNkOt8GUEoGk9hvoi1SQ1diNmN4hHFxkRY3pf2OhLRzNizRjOlgXF0XhyyYZG452OD0vy9MYpoi8TJJl5Ox4CPrqKixvMyE87R5O8yOvUlWBw69Uo++84xDf03kC9bmxWLvVyEBFROQGV0v2l7eZPBamXHW/UotzJ1z7eNeX0G/X4g/mTdhzcQv2yzuQUlvjshZXwWiq30WGlwqO3lclAZAkCdekQbRmxI6Ep6vxETCetaJmVDcp0zLotCNU33UeJrkHb65PG/ne0V2s4TOt/qP2TzjRVAVbmIzeGA3mfT40ZuR5yWEzsi4KVBeMveY/Zv0jLvZeQmN7K7IXZGCd4W6vHdrL3+aIfECSZcQsL4SuZANilhcySJHHqapAywUrTn3YilMnWnDjfDe2l4fjq8fDsb08HH3ne2Bq6vJ3mUREQcmxZL8SimQDgFFL9l0vk5up0d2v35q24r5Tz6Dt3DUIoY65dpg0iK8uOIG0CAvumH8KQkg4dvnWKfdij95DNTykwl0Xe8xoTwhDckffyN6n9qRIRPTbUXLYjIIqKzYcaXfZEZpsCMUwWZKxIrkQcmQkzhYmQDsocGlR9JjHtKZEIElEY8ORdhSc/eKa71pO4sC1j3Ew2YoD1z7Gr2pemrB3y1PYmSIiCnLjO1Gf3aJC2FRIw/uMVQnZDRKsHb0c8U5E5AZfLNl31f36sqwgbfE87MdjON5RiK8nvIvPh2JxeTAB2xb9GRsTjyBjfifC0+6d8hqeOiw3NTYFC1uBzigFdx+9iPbkSKReuo60iIW4N+NruCa6sCBD5/L5ne2JctbFciz3SwFqzLgcK2PRpeuoNerGPOb/zP6fNw8RtiA1Qw9VqPhN2/836eh1T2KYIiIKcqamLvSd78H28nAoqoRVJwR+d/8NnM+yIa8xDHZZoDFPoDgpxt+lEhEFJV8s2Xc1sCom+xvIWbUW+uoq5H/6Meo+jMf9NbthFxqUX9qMl43fQ+qi8CmD3cTDcgeR1joPKxYsRVrcohkFq+GQU3/9Ei7HaXBL83WkhifgsaL/G+euXoCYYgr5+CEUrvY1DS/3q7U2oK3bjFNyDSKOtI95zLKEfMiSPBKU3m5+Z8rR657EMEVEFOQ6O3qR3SBBUR1vHIoqYXGjBm+tG8LFahWNeQKRubFIz4r3c6VERMFreMm+t86IdNX9WlBchM6uG4hZXogBUyuOX0ke0706cfU2FP+dNGWwc3Z209pDJvzNdhILTRLyzfox5zdNZnTIudhjQepiPfLjc/GrmpccYU0fhsyLQy6fc8LjM/Quw9xwUDImLME6sXrKx0y36+UpDFNEREEuISkGp/MEVp0QUFTJ0YnKF8hblQrbV2UUc5ofEVHAc9n9UpSR73HavUquRHj61MetONundHFRNOwaGR99ecGMl8KNDjkAUN1ZNzasLZt8ed34x7tzTWem2/XyFIYpIqIgl54Vj/rcWJRvd+yZGu5ErfgfBgYoIqIgMlX3azZ7t5ye3dTeh1pj/MhSuLZuMwC4tadqsqES3lhe58pMul6ewDBFRBTkZFnC2q1GmJq6YO3oZSeKiChEzWbv1viOTcqlXvTEhMGSHOVYCmcewCmpBq9fO3lzT5XrZXrjqUKFXdiRZu7z2fK6ybjT9XIXwxQRUQiQZQmGHB2n9RGFIGcHufKIjbnL3b1bY4Y59FzC36QamK5/joLqLqSb+7DQFoU27ed4c03yjKbgjQy2GDLDJuxYe8iES4uikWUZ8uryukDBMEVEREQUoFwd5Jqz4yEGKi8J5fA6umPztYxV+NnpX0NusaI9IQxhV3rQlBw942V6I4MtvpYMASDFfB1f+lsXSpK/gq9nrvHa8rpAwTBFREREFKBGH+RqFxrsaduM/XgM+uoqr02Vm8umE15DJWzVd52HSe7Bm+vTIGQJKRd7YayyombcOU5TLdMbv1fKnBqDC10DUPo1IR+kAIYpIiIiooDl6iDX5W0mhikvmCq8hlKncCQEAdCbr2PetQEodoF/OHQRFxdFIsM8gHxt6pTL9JwNtsiyDCE13fd7pfwhuP7UiYiIiOYQxyjsSiiSDQBGDnINT0v3c2WhyVV4HWgzARgbtn5r2or7Tj2DtnPXcL26yqd1ClVF79lKWA8eQO/ZSghVnfFzpMamINMyiL8/YcHSGisUu4AqA+HXB5B8qReKTYWY6vRd3BxsodFjw5F2FJy1Ov4ZlRbye6WGsTNFREREFKBmMwqbZs7pOU5JZxCe5jjHKRA6hZ7qji3V5SG9JQ79vZ04si4dQpZQa9Tha4dMiOiz40pCGMSNqQdQOBtFftfiv4PVet0TP27AY5giolkJlbXjRESBaDajsGnmpgqvU4UtX/DUPjpZknGrbhmOhX86ZujEpUXRMLT0IK5nCJcXhE/rnKjxo8jlOfTfJ8MUEbktlNaOExEFKndHYdPMTRVeA6FT6MnuWFrsIqS1/HXCQb6dCREI77cj+cogUhfPjb1P7mKYIiK3ccoUERGFmsnCayB0Cj3ZHVuqy0Nmazy+dvNsqOT2PvRFKojpGUT4oIrU8IVzZu+TuximiMhtgbB2nIiIyJf83Sn0ZHdMlmT8qOhB/Oz0rxHRdBkdCyMQ9/kgIgZUpEUsxA+L/585Md58NhimiMhtgbB2nIiIaC7xdHdMI2vw+K0Po6azHqcvVwFRQJHBCGPCEgapaWCYIiK3BcLacSIiornG090xWZJRkLgUBYlLPfJ8cwnDFBG5LRDWjhMRERH5C8MUEc2Kv9eOExEREfkLPz4mIiIiIiJyA8MUERERERGRG2a9zO/HP/4x/vu//xtarRZRUVF4/PHHYTQaAQCdnZ34wQ9+gEuXLiE8PBxPP/00li9fPuuiiYhmSlUFTE1d6OzoRUJSDNKz4iHfPPGdiIiIyB2zDlN33nknfvSjHyEsLAzvv/8+vve97+Gdd94BADz33HNYsWIF9u3bh1OnTuHRRx/F4cOHIUn8BYaIfEdVBQ6/Uo2+8z3IbpBwOk+gPjcWa7caGaiIiIjIbbNe5rdq1SqEhYUBAAoLC9He3g5VVQEAhw4dwubNmwEAK1asgFarRXV19WwvSUQ0I6amLvSd78H28nB89Xg4tpeHo+98D0xNXf4ujYiIiIKYR/dM7d+/H3fddRdkWcbVq1chhEB8fPzI/Xq9Hu3t7Z68JBEFMaGq6D1bCevBA+g9Wwlx84MYT+vs6EV2gwRFdXShFFVCdoMEa0evV65HFKpUVaDyQife/LAZlRc6oarC3yUREfnVlMv87r33XpjNZqf3nTx5EoqiAADeeustHDx4EPv37/dshQB0uhintycmxnr8Wt7AOj0vWGplna4Jux1/27kbTTVd+KB9Oe5KfhNZy07g1qd+AOnm3yvjuVtndm4ijuVfgv2EgKJKsMsCTfnAXbmJXvvZ+WdPoUZVBX7zyifoPt+GooZqVOQZcTw3DQ9uvY3LZYlozpoyTL3++utTPsnRo0fx/PPP4w9/+AMSEhIAAAsWLAAAdHV1jXSnLBYLkpOTZ1yk1do74dOvxMRYXLnSM+Pn8jXW6XnBUivrnFzv2Uo0Vltx36lnYBca7GnbjP3iMejeP+n0zKrZ1DlPF4nwW2JQvt2xZ6oxTyDylljM00V65Wfnn/3MyLLk8kMzChxVTVZ0n2/Dc+XPQaOq2HriCL6/fQeqmrJRmJPg7/KIiPxi1sv83n//ffzsZz/D3r17kZqaOua+devW4U9/+hMA4NSpU+jv78eyZctme0kiCgEDplYc6yiEXTg+07ELDY51FGGgzeTxa8myhLVbjSj+Vh5s31uE4m/lcfgE0QyZOnpQ1FANzc3luBpVRXFDFdo6/B/IiYj8ZdZh6oc//CGGhobw0EMPYePGjdi4cSOuXr0KAPhf/+t/4ZNPPsHXvvY1/PjHP8bu3bshyzzaioiA8PQMrEyqhCLZAACKZMPKpDMIT0v3yvVkWYIhR4db/z4DhhwdgxTRDKUnxeJMnhG2m+/jNlnG6bwCpCVxqSgRzV2zHo3+0UcfubwvMTERf/jDH2Z7CSIKQdHGAqQt/gD78RiOdRRhZdIZpC2ej2hjgb9LIyInCrJ0OJ6bhu9v34HihiqczivAvNxUFGTp/F0aEZHfzDpMERG5Q5Jl5Ox4CPrqKixvMyE87R5EGwsgsXtNFJBkWcKDW29DVVM22jqKsT4pFgVZ7PIS0dzG31qIyG8kWUbM8kLoSjYgZnkhgxR53IEDB7B+/XosWbIEr7zyypj7+vr68Mgjj2DNmjVYt24d3n//fT9VGTxkWUJhTgLW/30mCnMSGKSIaM5jZ4qIiEJWfn4+nn/+eezZs2fCfXv37kVMTAyOHj2KlpYW3HfffThy5Aiio6P9UCkREQUjfgxMREQhKzc3Fzk5OU6HH7399tvYtGkTAMBgMGDZsmU4fvy4r0skIqIgxs4UERHNSWazGYsWLRr5Wq/Xo729fUbPMZPzsYLxgGTW7DvBWDdr9p1grHuu1MwwRUREQevee++F2Wx2et/JkyehKIpXr+/sUHlnAuWA5Jlgzb4TjHWzZt8JxrpDpebpHCrPMEVEREHr9ddfd/uxKSkpuHTpEuLj4wEAFosFt99+u6dKIyKiOYB7poiIaE5at24d/vznPwMAWlpaUF1dja985St+roqIiIJJUHSmXI1eDZaRrKzT84KlVtbpWcFSJxA8tQZCnd6soaKiAtEQ7uMAACAASURBVLt370Z3dzfeffdd7NmzB/v27UNOTg62bduG0tJSrFmzBrIs46mnnkJMzPT3QAEzqz0QXuuZYs2+E4x1s2bfCca6Q6Hm6fwMkhBi6sXeRERERERENAaX+REREREREbmBYYqIiIiIiMgNDFNERERERERuYJgiIiIiIiJyA8MUERERERGRGximiIiIiIiI3MAwRURERERE5AaGKSIiIiIiIjcwTBEREREREbkhqMLUb3/7W6xfvx733HMPNm7ciP/6r/8aua+vrw+PPPII1qxZg3Xr1uH999/3Y6XAj3/8Y6xbtw4bNmzA5s2bUV1dPXJfZ2cnvv3tb2Pt2rXYsGEDzp4967c6Dxw4gPXr12PJkiV45ZVXxtwXaK9pc3MzNm3ahLVr12LTpk1oaWnxaz3DysrKsHr1aixevBjnz58fuT3Q6r169Sq+853vYO3atVi/fj0efPBBdHV1AQAqKyuxYcMGrF27Ft/+9rdhtVr9Wut3v/tdbNiwAffccw+2bNmC+vp6AIH3mg77zW9+M+bPP9BeTwBYvXo11q1bh40bN2Ljxo3461//CiAwaw0VwfSeNVqwvH+NFkzvZaMF6t9powXLe9xowfR+N1qwvfeNFgzvg6N59D1RBJHu7u6Rf29vbxdFRUXi2rVrQgghfv3rX4vHH39cCCFEc3OzuOOOO0Rvb69f6hRCiPfee08MDg6O/Pvdd989cl9paal44YUXhBBCfPrpp2LNmjVCVVW/1Hnu3Dnx2WefiUcffVT88Y9/HHNfoL2m3/zmN8Ubb7whhBDijTfeEN/85jf9Vston376qTCbzWLVqlXi3LlzI7cHWr1Xr14VH3300cjXzzzzjPjhD38o7Ha7+OpXvyo+/fRTIYQQL7zwgigtLfVXmUKIsf+vHz16VNxzzz1CiMB7TYUQoqamRmzbtm3kzz8QX08hxIT/PoUQAVtrqAim96zRguX9a7Rgei8bLRD/ThsvWN7jRgum97vRgum9b7RgeR8czZPviUHVmYqNjR359xs3bkCSJKiqCgB4++23sWnTJgCAwWDAsmXLcPz4cb/UCQCrVq1CWFgYAKCwsBDt7e0jtR46dAibN28GAKxYsQJarXbMJ3++lJubi5ycHMjyxP8UAuk1tVqtqKurQ0lJCQCgpKQEdXV1I580+dOKFSug1+vH3BaI9c6fPx+33377yNeFhYUwm82oqalBeHg4VqxYAQDYvHkzDh065K8yAYz9f723txeSJAXkazo4OIinnnoKTz755Mhtgfh6uhJMtQajYHrPGi1Y3r9GC5b3stEC8e80Z4LlPW60YHq/Gy1Y3vtGC/b3wdHcrVvj7cI87dVXX8V//Md/oL29Hf/6r/+KBQsWAADMZjMWLVo08n16vR7t7e3+KnOM/fv346677oIsy7h69SqEEIiPjx+5f7jWgoICP1Y5USC9phaLBUlJSVAUBQCgKAoWLlwIi8Uy5rUMFIFer6qqePXVV7F69WpYLBakpKSM3BcfHw9VVXHt2jXMnz/fbzU+/vjj+PDDDyGEQHl5eUC+pr/85S+xYcMGpKamjtwWqK8nAOzYsQNCCNx66634/ve/H9C1hopgfM8aLVjfv0YL1Nc6EP9Om65gqj0Y3u9GC4b3vtGC7X1wNE+9JwZUmLr33nthNpud3nfy5EkoioJvfOMb+MY3voFz585hx44d+PKXvzzy5uRL06kVAN566y0cPHgQ+/fv92V5I6ZbJ80tTz/9NKKiorB161YcPXrU3+U49dOf/hQA8MYbb2D37t14+OGH/VzRWGfOnPn/2bv3gKjq/H/8z3POMCgyqAw4DHIHEcRBxEtbbZm3tF1b2/38astsP9tH6vvpul3c1f2sv6y2tmy77NrWtqbVr9Vt+/bZLZMssZumVmZKIDKi3AZkGGVQAUWBOef3B0IgA8yMczkDz8dfisOcF6POmec57/frhYMHD2L58uWBLsUlmzZtgtFoRFtbG5588kk8/vjjmD9/fqDLCmrBdM7qKVjOXz3xXEaeCobzXU9qP/f1FGznwZ68eU5UVZh69913XX7sxIkTMW7cOOzduxcLFixAbGwsjh071p3SrVZrr1u83uZKrdu3b8cLL7yAN954A1FRUQDQfRJtbGzsVWtMTEzA6uyPv1/TgRiNRthsNjgcDkiSBIfDgePHj/dZeqAWaq53zZo1qK6uxiuvvAJRFGE0Gnt9SGlsbIQoiqq5enTDDTfgkUceQUxMjKpe02+++Qbl5eWYO3cuAKC+vh7Lli3DbbfdpsrXs+t10mq1WLJkCe666y784he/UGWtwSKYzlk9Bcv5q6ehci7rSc3nicEES+3Bdr7rSa3nvp6C7TzYkzfPiUG1Z+ro0aPdv66pqUFpaSnS0tIAAAsXLsTbb78NAKiqqkJxcTGuuuqqgNQJAJ999hmeeuopbNiwodetT6Cz1n/+858AgH379uHcuXOYPHlyIMockJpeU71ej8zMTOTn5wMA8vPzkZmZqYpb3M6otd7nn38eBw8exEsvvQStVgsAmDx5Ms6dO4d9+/YBAP75z39i4cKFAavxzJkzsFqt3b//9NNPMXr0aNW9pnfeeSd27dqFTz/9FJ9++iliYmKwYcMG5OXlqer1BDr36zQ3NwMAFEXB1q1bkZmZqbq/+6EmmM5ZPQ2F81dPan2t1fae5o5gqD0Yznc9Bcu5r6dgOg/25O1zoqAoiuLTir3oV7/6FY4ePQqNRgNJkpCXl4cf/ehHADpfmJUrV6K0tBSiKOLXv/415s2bF7Baf/CDHyAkJKTXP/Y33ngDY8eOxYkTJ/DrX/8adXV1CA0NxWOPPYbc3NyA1Jmfn49nnnkGTU1NCAkJwciRI/Haa68hLS1Nda9peXk5Vq5ciaamJkRERGDNmjVISUkJWD1dnnjiCRQUFKChoQFjx47FmDFj8MEHH6iu3iNHjmDRokVISkrCiBEjAABxcXF46aWXsH//fqxevRrnz5/H+PHj8cc//rH7arS/NTQ04O6770ZraytEUcTo0aOxYsUKZGVlqe417WnOnDl45ZVXkJ6erqrXE+j8IH/ffffB4XBAlmWkpqZi1apVGDdunOpqHUqC6ZzVU7Ccv3oKpnNZT2p+T+sSLOe4noLlfNdTsJ77elLzebAnb58TgypMERERERERqUVQLfMjIiIiIiJSC4YpIiIiIiIiDzBMEREREREReYBhioiIiIiIyAMMU0RERERERB5gmCIiIiIiIvIAwxQREREREZEHGKaIiIiIiIg8wDBFRERERETkAYYpIiIiIiIiDzBMEREREREReYBhioiIiIiIyAMMU0RERERERB5gmCIiIiIiIvKAxltPtGbNGmzbtg3Hjh3Dli1bkJ6eDgCYM2cOtFotQkNDAQDLly/HVVdd5a3DEhERERERBYTXwtTcuXPxi1/8ArfeemufP1u7dm13uCIiIiIiIhoKvBampk+f7q2nIiIiIiIiUj2vhamBLF++HIqiYNq0aXjooYcQERHhj8MSERH51MmTZyDLSkCOrdeHw25vCcixPcWa/SMYawaCs27W7B+BqlkUBYwdO2rAx/g8TG3atAlGoxFtbW148skn8fjjj+PZZ5916zns9paAnaw8ER2tw4kTzYEuw22s27+Cse5grBlg3f7kSc2iKECvD/dRRb4ly0pAz0/BdG7swpr9IxhrBoKzbtbsH2qt2efd/IxGIwBAq9ViyZIl2L9/v68PSURERERE5HM+DVNnz55Fc3PnFUpFUbB161ZkZmb68pBERERERER+4bVlfk888QQKCgrQ0NCA22+/HWPGjMErr7yC++67Dw6HA7IsIzU1FatXr/bWIYmIiIiIiALGa2Fq1apVWLVqVZ+vv/fee946BBERERERkWr4fM8UERERERHRUMQwRURERERE5AG/zJmiwSmyDEdNERz2akj6REjx2RBEZl0iIiIiUhd+bv0ew5QKKLKMs9ufRse5ErSlVEFbmASNOQth81cO23+YRERERKQ+/NzaG8OUCjhqitBxrgRNt+cDkoJzsw4i4rXOr2sScwJdHhERERERAH5uvdjwi48q5LBXoy2lCpAuTHaWFLSlVsFhtwS0LiIiIiKinvi5tTeGKRWQ9InQViQBDqHzCw4B2vIkSPqEgNZFRERERNQTP7f2xmV+KiDFZ0NjzkLEa0BbahW05UnQjMyCFJ8d6NKIiIiIiLrxc2tvDFMqIIgiwuavhKOmCCPsFkhTE4Z1VxQiIiIiUid+bu2NYUolBFGEJjFnWG7cIyIi/5AVGSV2M2qb6xCni0WWPgOiMDw/ABGR5/i59XsMU0RERMOArMj4U/EGlHZYURkTgmRLOzLrjHjAtIyBiojIQwxTREREw0CJ3YzSDiven2+AIgooNilAQR1K7GaYoiYFujwioqDES1FERETDQG1zHSpjQqCInR24FFFApVGL2mZrgCsjIgpeDFNERETDQJwuFsn17RDkztkwgqwg2dqGOJ0xwJUREQUvLvMjIiIaBrL0GcisMwIFdag0apFsbUNmSGcTCiJ/k2UFlopGNNhaEGUIR0JKZKBLIvIIwxQREdEwIAoiHjAtu9DNz4q4RCO7+VFAyLKCbRuL0VrWjFSzgP0ZCkrTdVj64BWBLo3IbXwHJSKioLRmzRrMmTMHEydORFlZWffXKysr8fOf/xwLFizAz3/+c1RVVTn9fofDgcceewzz5s3D/Pnz8c477/ip8sARBRGmqEm4LnkuTFGTGKQoICwVjWgta0be+lDM2xmKvPWhaC1rxlHz8UCXRuQ2vosSEVFQmjt3LjZt2oTx48f3+vrq1auxZMkSbNu2DUuWLMEjjzzi9Pu3bNkCi8WCgoICvP3223jxxRdRW1vrj9KJhrUGWwtSzQIkubMZiiQLSDULqD/WFODKiNzHMEVEREFp+vTpMBp7N0+w2+04dOgQFi1aBABYtGgRDh06hMbGxj7fv3XrVtx4440QRRGRkZGYN28ePvroI7/UTjScRRnCUZ6hwCF2NkNxiArKMxTEjI8IcGVE7uOeKSIiGjKsVisMBgMkSQIASJKEcePGwWq1IjIyss9jY2Nju39vNBpRX1/v13qJhqOElEiUpuuwPq9zz1R5hoKR6TqkZYyD3d4S6PKI3MIwRURE5CG9Pjygx4+O1gX0+J5gzf6h9pqXPngFjpqPo/5YE2aPj0BaxjiIoqD6up1hzf6h1poZpoiIaMgwGo2w2WxwOByQJAkOhwPHjx/vsxyw67F1dXXIzs4G0PdOlSvs9hbIF+Y2+Vt0tA4nTjQH5NieYs3+ESw1j40Ow9joMACd/5eCpe6eWLN/BKpmURQGvWjGPVNERDRk6PV6ZGZmIj8/HwCQn5+PzMzMPkv8AGDhwoV45513IMsyGhsb8fHHH2PBggX+LpmIiIIYwxQREQWlJ554AldffTXq6+tx++2348c//jEA4NFHH8XGjRuxYMECbNy4EY899lj399xxxx0oLi4GACxevBhxcXG49tprcdNNN+Gee+5BfHx8QH4WIiIKTlzmR0REQWnVqlVYtWpVn6+npqb2OzPq1Vdf7f61JEm9ghYREZG7eGeKiIiIiIjIAwxTREREREREHmCYIiIiIiIi8gDDFBERERERkQcYpoiIiIiIiDzAMEVEREREROQBhikiIiIiIiIPcM4UERFREJAVGSV2M2qb6xCni8U1+hkBO3aWPgOiwOuxREQMU0RERConKzL+VLwBpR1WVMaEINnSjh0NX+Puif/p81Dj7NiZdUY8YFrGQEVEwx7DFBERkcqV2M0o7bDi/fkGKKKAYpMCYXsNSuxmmKIm+f3YKKjzy7GJiNSOl5SIiIhUrra5DpUxIVBEAQCgiAIqjCGobbYG5NiVRq1fjk1EpHYMU0RERCoXp4tFcn07BFkBAAiyghRrO+J0xoAcO9na5pdjExGpHZf5ERERqVyWPgOZdUagoA6VRi2SrW3IHpWALH1GQI6dGRLrl2MTEamd18LUmjVrsG3bNhw7dgxbtmxBeno6AKCyshIrV67EqVOnMGbMGKxZswZJSUneOiwREdGQJwoiHjAtu9BRz4q4RCOumTgDdvuZgByb3fyIiDp57Z1w7ty52LRpE8aPH9/r66tXr8aSJUuwbds2LFmyBI888oi3DklERDRsiIIIU9QkXJc8F6aoSRBF/4WZPsdmkCIiAuDFMDV9+nQYjb3XT9vtdhw6dAiLFi0CACxatAiHDh1CY2Ojtw5LREREbpAVGcUNh/Bh5ccobjgEWZEDXRIRUdDy6Z4pq9UKg8EASZIAAJIkYdy4cbBarYiMjHT5efT6cF+V6DPR0bpAl+AR1u1fwVh3MNYMsG5/Csaa1cSXA3I5M4qIyLuCogGF3d4C+UIXoWAQHa3DiRPNgS7Dbazbv4Kx7mCsGWDd/uRJzaIoBOVFM1/wddjhzCgiIu/y6WUoo9EIm80Gh8MBAHA4HDh+/Hif5YBERETUO+wUmSLxTVY4DjdXYWvldpeX4w20jI8zo4iIvMunYUqv1yMzMxP5+fkAgPz8fGRmZrq1xI+IiGi46A47AK7cbcWkQydxJHkU/tW4G38q3jBooOq6s7XW8r94LvQbrLX8b6/v48woIiLv8toyvyeeeAIFBQVoaGjA7bffjjFjxuCDDz7Ao48+ipUrV+Lll19GREQE1qxZ461DEhERDSlxulgkW9rRoD+Dka0OfDIvDooooMSkQOPCcrzBlvFxZhQRkXd5LUytWrUKq1at6vP11NRUvPPOO946DBER0YBqa2txzz33dP++ubkZLS0t2Lt3b6/Hvfjii/jHP/6BcePGAQByc3OxevVqv9YK9G44MT7ciAwpBuK+ahxJHuV0Od5AYWqgZXxdLc05M4qIyHuCogEFERGRq+Li4rB58+bu3z/55JPde3cvdsMNN2DFihX+Kq2PPg0natqRqTFiUcxV+HfdHpSYFCii8P1yvMSBl+N13dkqHuD7umZGseEEEdGlY5giIqIhq62tDVu2bMGGDRsCXYpT/S3LmxdxBUxn4qFxczkel/EREfkXwxQREQ1Zn376KQwGA7Kyspz++QcffIBdu3YhOjoa9913H6ZOnerW819qS/fG43ZUGi9alherxSmlEU/OfgAH6ktQdbIGSdnxmBqTBVHsvRzP2UwvV74vkIJxDhlr9p9grJs1+4daa2aYIiKiIetf//oX/uM//sPpn91888347//+b4SEhGD37t24++67sXXrVowdO9bl57/UOYiRoh7Jte0ontxjWV5dG8Ym6mG3n0FCSBISxiVdONaZXt870Eyvgb4vkIbL7LRAC8aageCsmzX7R6BqdmUOonouVREREXmRzWbDN998g+uvv97pn0dHRyMkJAQAcOWVV8JoNOLIkSP+LLFzWZ7GiJ8U1CP7Ozt+UlDPZXlEREGEd6aIiGhIevfddzFr1qx+7zTZbDYYDAYAQGlpKY4dO4bk5GR/lsjuekREQY5hioiIhqR3330Xv/vd73p97Y477sD9998Pk8mE559/HiUlJRBFESEhIXjmmWcQHR3t9zo96a4nKzK+rStGSe1RxOliGcCIiAKEYYqIiIakbdu29fnaq6++2v3rQA+R7zlfyp1A1NVO3eywosIQgmRLOzLrjHjAtKzP93t6DF/WT0Q0lDBMERER+Vmf+VL9BCJngaW/duoldnOvu1uuHsOX9RMRDXUMU0RERH7mSiDqL7BkhCehMuaidupGLWqbrb3ClKuhy1f1ExENB7x8RERE5Ge1zXX9BqIuPQNL0RQ93p9vQGl7HWTISK5vh3ChJbsgK0i2tiFOZ3T7GL6sn4hoOGCYIiIi8rM4Xeyggai/wCIKIjI1Rizebhuwnfr4cCMSrecGDV2+qp+IaDjgMj8iIiI/y9JnILPOCBTUodKoRbK1rU8gitPFItnSjmJTj4G+1jbEJ47HwqS5qO2woKS23Gk7dVmRsb1uN8Rz7Zi/rQbW2DDEH2tFZmhC9zEupYGEK/UTEQ0HDFNERER+5sp8qYECiyiImBZrQkJIktPnL7GbYXbU4/3rExBja8WYxvPQOoC5xsshCuIlN5DgfCwiok4MU0RERAEw2HypSwks3UsEJRHW2FGwxo5CiENBXYsNU6Ine6WBhCfzsYiIhhqGKSIiIpXyNLD0t0QwLrFzT9NADSQGO1awzpdSZBlniotw3lKN0IREjDJlQxDVXzcRue98UxPa3v0tcP4sEBoG7U+fQmhEhE+OxTBFREQ0xAy2p6m/sBWbYEBxw6F+g1KwzpdSZBlHn12LmsOnscOWg1mGzYif+DnSlt/PQEU0xJxvasL5f98FWdeK9lwrQsqMOP/vu4Cf/dUngYphioiI3CbLCooq7LDYmpFg0CE7RQ/xwl0O8j1ZkfFtXTFKao86DT2DLRF0FrYyNEZ8Yv1ywKAUrPOlzhQXoebwady672k4FA3W1dyMTVgBY3ERwqfkBLo8IvKitnd/C1nXiuY7PgEkBedmHYJu3Ty0vftbhP7nS14/HsMUERG5RZYV/GXjXjSV1WCquRj5GSbsTI/HvUtnBrq0YaHr7pDZYUWFof+7Q4MtEZxnvAKRx4tw5UlgaoIJAgS8WPOvAYPSpSwPDKTzlmrssOXAoXR+7HEoGuywTcWUGgvDFNFQc/4s2nOtgNQ5ugGSgvaJdZC+9M0yP97bJiIitxRV2NFUVoPn1j+HX+78CM+tfw6ny2pRVGEPdGnDQtfdoc3zeg/zLbGbXfr+rjD2Ys2/sHFsFXafP4JPrF+itmXwQbzBOl8qNCERswyFkIQOAIAkdGCW4QBC4xMCXBkReV1oGELKjIDjwmoJh4CQw7FAaJhPDsc7U0RE5BaLrRlTzcXQyDIAQCPLyDUXocaWG+DKhodLvTtU3HAI5tYaHEkaiZORI1A8eSywvQ7pSgKS6/tvWgEE73ypUaZsxE/8HJuwAjtsUzHLcADxE8dglCk70KURkZdpf/oUzv/7LujWzUP7xDqEHI6F2DIC2p895ZPjMUwREZFbEgw65GeYsHRXATSyjA5RxP6MbFxv0AW6tGFhsE59A5EVGf+38gOclWSIsoKsg41IKZdQGaOFeF5CpmbgoBSs86UEUUTa8vthLC7ClBoLQuNvYDc/oiEqNCIC+Nlf0fbubzuX9oWGQfszdvMjIiKVyE7RY2d6PB7KW45ccxH2Z2RjdHocslP0gS5tWOi6OyRst6IiJsStu0MldjPqpbPYfm08FFFAyWQFc7fXIPqUA/FpsViYPGfQoBSs86UEUUT4lBzukSIaBkIjInzSbMIZhikiomHMWVc+AAN26hNFAfcunYmiilTU2HJxPbv5+VXX3aHaDgtKasvdHuZbbRzRa4mgLSYMqRap+zmCMSgREQUKwxQRUZDxVlvy/rryKYqC5iO1Tjv1XXzcnLQob/945AJREDEt1oSEkCS3vs/ZEsGkuvO4MfUm1S/VIyJSI4YpIqIgMlBbcncDVc+ufBpZxtJdBXhg2cM4pwnBKz2+9lDechSWp+CLPeWor7BB39iALyOjsCPFgPtuu4x3pIKI0wYS2jhMjsoMdGlEREGJYYqIKIg4C0AP5S1HUUWq23eJnHXlm24uRmlsQp9Ofd8cmojqyhPQNzVh0rFqHNBoUVUporC8AbkTor3+c5JvBGsDCSIiteK7JxFREOm/LXmz28+VYNDhQIYJHRc6mnWIIvZlmGCPjOr1tf0Z2TjV0oaIlmY8+9bL+M9d2/DsWy9jdEsL9pUe994PR37RtS/quuS5MEVNYpAiIroEvDNFRBREBmtL7s5+Kmdd+camx0FRlO6vfZuRDSEhBmda25HQeAKC0jmsVSPLmFFhxsGpEyHLiuqW+s2ZMwdarRahoaEAgOXLl+Oqq67q9ZjW1lb89re/RUlJCSRJwooVKzB79uxAlEvkE7KswFLRiAZbC6IM4UhIiVTd/1WiYMcwRUQUYJcagLrakru7n6q/rnzAhUYT9VOhKamDbLHistJifJ2aiSd/cht+9/7foQgCvkrLREdZDf6ysd2jPVu+tnbtWqSnp/f75xs2bEB4eDi2b9+Oqqoq3HrrrSgoKMCoUaP8WCWRb8iygm0bi9Fa1oxUs4D9GQpK03VYsNSkuv+rRMGMYYqIKIAGCkDO9AxAlvpcTJYViGJn+FFkxe39VKIoICctqtefy3Ln3af6xlZ0VFvxwmvPdz7f7gLc+4sHsObHt8A6NgqxJxuw4u//wK+XPezRnq1A+/DDD/H0008DAJKSkjB58mTs3LkT1113XYArI7p0lopGtJY1I299KCRZwOxdCtbnNcNS0YikNM6EI/IWhikiogAaqKHEfIPzae2iKHTeodpTjqayGuSYi/F2Vi7OjB6NBaXO9lPluhx0eoa7EadPY9oxS6/n+0H5IeycmI3//uR9TKs6DElR3D6GvyxfvhyKomDatGl46KGHEBHR+/Wsq6vD+PHju39vNBpRX1/v1jH0+nCv1Oqp6GidV55HlmUcqC9B5ckaJI+Nx9SYLIiib/ZSeatmfwrGmltb2pBmFiHJnXehJFlAmllEa0u7qn8eNdfWH9bsH2qtmWGKiCiA+m8okTvg93WFsGc2PI9nFi1BeFMTUmuq8HVqJpbudr6fyhU9w93+xHT844p56Ngjdj/fvgwTRI0GudVlkBTFo2P4w6ZNm2A0GtHW1oYnn3wSjz/+OJ599lmvH8dub+m+k+dv0dE6nDjhfuORi8mKjD8Vb0BphxWVMSFILm5HZqkRD5iWeb05hbdq9qdgrXlkuBalGTKu2aVAkgU4RAVHM2Tkhoeo9ucJ1teaNfteoGoWRWHQi2YMU0REATRYQ4n+dIWw7xImwB4+Gs++9TIERcGTP7kN9/7iAfyg/BD2ZZjgMERBVhSXm0T0DHfTqg5jW/YM/Grp/ZhRacb+zL4NKnru2VITo9EIANBq5wwjwgAAIABJREFUtViyZAnuuuuuPo+JjY3FsWPHEBkZCQCwWq247LLL/FqnGpTYzSjtsOL9+QYoooBikwIU1KHEboYpapLT75EV+UJ79TrE6WLZXl2FElIiUZquw/q8zj1T5RkKRqbrkJASGejSiIYUhikiogAaqKGEQ1ZQeLTBaWOKrhCmaWuH4XQj/nfGNUg5XoeVWzbiuR/fjG1Xzsao06dx5Y5PsdV2ArtcHOx7cbj7Tf4/cM+dK3Hslzfh+kxDrwYVPZtWqGlD+9mzZ+FwOKDT6aAoCrZu3YrMzL5DaRcuXIi3334bJpMJVVVVKC4uxnPPPReAigOrtrkOlTEhUC78HSqigEqjFrXNVqdhqs+dLEs7Mut8cyeLPCeKAhYsNcFS0Qi7rQW57OZH5BMMU0REATRQR70/vLQDDQcrnXbmy07RY8eEOGwNGYnRLc0wnrLjH1fMw0fZM2EbZ8Co06fxyt+e7rzb1U8jCmddBJ2FO2OqAXk/ntTrQ9jFTSvUxG6347777oPD4YAsy0hNTcXq1asBAIsXL8a6detgMBiwbNkyrFy5EvPnz4coinj88ccRHh7YPVCBEKeLRbKlHcUmBYooQJAVJFvbEJdodPp4T+5kqZE7XTSDlSgKSErTs+EEkQ8xTBERBZizjnqFRxtgL6nqtzOfKAq4+vJUnDpcgz/9/c+doWnPdtz7iwdwLioKs3Z/NmAjioG6CDoLd8H0ITM+Ph7vvfee0z/bvHlz96/DwsKwdu1af5WlWln6DGTWGYGCOlQatUi2tiEzpHPpnjPdd7IAGOvOYMzJ8ziuA2qa6oImTLk7RoCIqD8MU0REKmSxNSNnkM58NSdaML3sYJ9ue7U/nIxCuwkdA+zDGqiLYFewU+udJ/IuURDxgGnZhT1QVsQlGgfcAxWni0VydRt0p60Yec6BesNIRJxuwz7xIBYqc4Jiqd9g//6JiFzll3e8OXPmYOHChVi8eDEWL16ML774wh+HJSIKCvKFvVHv765E4dEGyLKC+Ohw7E2bhI4L7ak7RBFfp2UhLvr7ZWgJBh0OZJh6PWZ/ZjZmZoxDxIWlem9cvRAP5S3v0ySi/y6CwdXhibxDFESYoibhuuS5MEVNGjAQZUamY1ybFuEt7fhkXhwOTolCwcIE1OA0SuxmP1btOf77J1IPRZbRUV2I8/s3o6O6EMqF/5fBwm93pgabRE9ENBz1t9zoih8ko3nESDx8y93IrT6C/YkT0DxiJJQeK5D6a14xJS0KU9KiBlyq52kXQRreZEXG2oOvo0FpwbHxo1xuWqE2/PdPpA6KLOPs9qfRca4EbSlV0BYmQWPOQtj8lRB8NOvO27jMj4gogPpbbrR/TDjmHvwWk2oqUTnOiFv3fIyS+CQcOz4ZuROiAfRuXmGpz8VkWYEodj5ndop+wKV6A3URJOpPV/OJb6bpMenQSZTIrjWtUBv++ydSB0dNETrOlaDp9nxAUnBu1kFEvNb5dU1iTqDLc4nfwtRgk+gHEugJ855Q65TmwbBu/wrGuoOxZkC9ddsL65Br7r3vaZq5GA1Xm1CYacLSXdsws9KMDlHEpmt/glvTx/X5WWbpw7HyuU/QUGtHZnU5imPH46usJPzPPbMgDbCZ/tEH5+Jbsw2Vxy7H0vGjMS3DMODjXaXW15ouXVfzibrYUUiubMLc7bWojxmJpLpzyNTG99u0Qm3666LJ5hNE/uWwV6MtpQqQLgw/lxS0pVZhhN3CMNXTpU6iD+SEeU8E42RpgHX7WzDWHYw1A+quWx+uRX7GZNy6a1v3cqNvM0yYNEJCuzEaDyx7GNMPF3deOZ8Qh0R9WK+fRZYVPP3qbpwrr8Wco4dQmDgB+vp6HFeAT79OHHQzfXL0KCRHjwIANNpbLvnn8eS1dmXCPKnD923Ugd1XGhFbdwaX7bPjeuPV+FHy/KBoPtHFWRdNIvIvSZ8IbWESzs062BmoHAK05UmQpiYEujSX+SVMuTKJnohoOHK23KgpIgKHCg5ghvkgdmVNxe7Z83Dj/AxMudASvaeiCjvaqqx48c3v26M/fMvdiLXWosbWzA+K5FXO2qhP1CUFXZAiInWQ4rOhMWch4jWgLbUK2vIkaEZmQYrPDnRpLvN5mHJ1Ej0RkZrIsgJLRSMabC2IMoQjISXSJ0uALl5uNNmh4GDBfjzfvYdqGx7KWw5BzHR6fIutGTMuao8+tfoIPplyGaZzMz15mbtt1ImIBiKIIsLmr4Sjpggj7BZIUxMgxWcHTfMJwA9haqBJ9EREaiTLCrZtLEZrWTNSzQL2ZygoTddhwVKTx4FKlhUUVdhhsTUj4aL9GT2XG72/uxK5Tls25zq9y5Rg0CE/04Slu7/vSvZVWhbGGsdwMz35RFcb9WDo2kdE6ieIIjSJOUGzR+piPg9TA02iJyJSI0tFI1rLmpG3PhSSLGD2LgXr85phqWhEUpr7AaW/9uf3Lp3ZJ5y527K51zLB0iLsTZ+MkUlG/Oa/LudmeiIiIh9ja3Qioos02FqQahYgyZ1hRJIFpJoF2G0tHoWp/tqfF1Wk9rnb1DMcTTMX49sM04Atmy9eJvhTdiWjAJAV+cLSvzrE6WK59I+Ihg2GKSKii0QZwrE/Q8HsXQokWYBDVFCeoSDX4FnHOYutGVNdXLrXMxw1tlyO68O1g4YjdiWjQJIVGX8q3oDSDisqY0KQbGlHZp0RD5iWMVAR0ZDHMEVEdJGElEiUpuuwPq9zz1R5hoKR6TokpER69nz9LN37oQPYt7u6T4OLrnCk5pbuRF26Bvm+P98ARRRQbFKAgjqU2M3cV0VEQx7DFAU1WZHxbV0xSmqPcmnJMOPLbnuiKGDBUhMsFY2w21qQe4nP76z9uSFiHE4W1CGyu8FFOGIuj0XN8ZbuBhVEwaBrkK9y4f+HIgqoNGpR22xlmHKTv7qIEpH3MExR0OpaWmJ2WFFh4NKS4cQX3fYuJooCktL0Hu2RcvZcPfc1/dABnCyo69Xg4q+/bEJReTUml3zb3aDi0QfneuEnIbo0iizjTHERzluqEZqQiFGm3m2Lvx/kq0ARBQiygmRrG+ISjQGsOvj4432NiLyPYYqCFpeWDF/e7rbnDz33Ne3bXY3IixpcZJRJmNzxNa756uPuBhXfmm1Ijh4V4MppOFNkGUefXYuaw6exw5aDWYbNiJ/4OdKW398dqJwN8s0M6VwpQK4Lxvc1ImKYoiDGpSXDl7e77flbV4OLWbtlVCbIqDM4UDzxPK77tA7A9w0qKo9dzjBFAXWmuAg1h0/j1n1Pw6FosK7mZmzCChiLixA+pXMmDAf5ekewv6+R5xRZhqOmCA57NSR9YtANrR3u+DdFQStOF4vk+nYIsgIA3y8t0XFpyVAXZQhHeYYCh9j5d9/VbU/vYbc9f0tIicSICeH48/9pxSdXnUeHBghxSNif/UPIgtDdoCJ5/OhAl0rD3HlLNXbYcuBQOq+9OhQNdtim4nyNBUDnh8CW7wpxMn8Lko+1YWHibJiiJgU0SMmygsKjDXh/dyUKjzZAvnCOULtgf18jzyiyjLPbn8aZwj+iKeQZnCn8I85ufxrKhe6vpH68M0VBq2tpibDdioqYEC4tGUa83W3PV/rbTC6KAjIvH4/Ww824Y+OIziU9e7R4+Rdp+NuiJSg1jsfo9DhMyzCg0d4S6B+DhrHQhETMMmzGupqb4VA0kIQOzDIcQGj8DS4tAfQ3dwZkq02wvK+RdzlqitBxrgRNt+cDkoJzsw4i4rXOr2sScwJdHu+auYBhioJW19KS2g4LSmrLubRkGPF2tz1fuHgz+bfpMr42hmDmwlQkpuphP3EGaWViryU9meUhOPj/XI3rZ3QO6ZVU9PPQ8DTKlI34iZ9jE1Zgh20qZhkOIH7iGIwyZbu0BPBiisOBlu8K+21mcancGZCtNsHwvkbe57BXoy2lCpAu3EGVFLSlVmGE3RLwMNV116zjXAnaUqqgLUyCxpyFsPkrGah6YJiioCYKIqbFmpAQkhToUsjPvNltzxecbSZft/QsvtpYCnPqaGT8IBYHLh4MnKngyhnxqv2ZgsnJkyfxm9/8BhaLBVqtFomJiXj88ccRGdn7Kv/KlSuxZ88ejB07FgCwcOFC3HXXXYEoWZUEUUTa8vthLC7ClBoLQuNv6A5A/S0BnFJjcRqmFFnGt488g/Jiu8/uZLkzIFuN1P6+Rt4n6ROhLUzCuVkHOwOVQ4C2PAnS1IRAl6b6u2ZqwTBFROQid2bAONtMnl6hgaYDMDuagcuBkW4s6ZFlBUUVdlhszd1zqHjFun+CICAvLw+XXXYZAGDNmjV49tln8Yc//KHPY++8804sXbrU3yUGDUEUET4lp09AGmgJoDNniotQcbDRrTtZ7upvQPb1Bp1Xnp/I26T4bGjMWYh4DWhLrYK2PAmakVmQ4rMDXZqq75qpCcMUEZEL3J0B09Wxr+edp7KUDmQc0SDFDDQeP+Pykp5g3gcSKGPGjOkOUgCQk5ODt956K4AVDT0DLQF05rylGp/XT3H5TpYnnA3IHp0exyHYpFqCKCJs/ko4aoowwm6BNDVBNfuS1HzXTE0YpoiIXNC1bO+/NmhRmSBD0+ZAkXQa1eV2JE/ou3yoazP5umVNmGAWcTi1A4IClKV0oHk0cPW4US4v6QnmfSBqIMsy3nrrLcyZM8fpn7/++ut4++23ER8fj4cffhipqal+rjA4DbQE0JnQhERcE/O+y3eyPHHxgOzreReXgoAgitAk5qjubo+a75qpCcMUEZELGmwtSDED/1p0Hs3hClKqJYScUfDNR+VITO37Ya1rM/k3X1ShUFODRQVapFdooAjAK79sBdzo1hzs+0AC7fe//z3CwsKcLuV78MEHER0dDVEU8d577yEvLw8ff/wxJEly6bn1+sC2rY6OVsHyNcNVLj0savYVsH+2C//ASnxen4NrYgqRMjkKSbOvgODi6+2q+YYIrz6fKl5nNwVjzUBw1j2Ua1aWPIGz5QfQZquC9pokhKVOhSB69/+rq9T6OjNMERG5IMoQji+zZIxoApa9NRKSLOCaPVqsW3YOlopGp3eXRFGApBGRU6JBRnlI5xcVYOJRCY0nziA53bUgxH0gnluzZg2qq6vxyiuvQHRyx8RgMHT/+oYbbsBTTz2F+vp6jB8/3qXnt9tbAjbHKDpahxMnmgNybE9Ne/w30H+2B9k1FoTGL8YoUzYaGs8GuqwBBePrHIw1A8FZt9pqdqWVuds1j5kIjJmIDgBn7YH5/xqo11kUhUEvmjFMERG5ICElEl+O0yKl2NGrqcSEwyLstpZ+l+o52ztVnqEg141BnNwH4pnnn38eBw8exLp166DVap0+xmazdQeqL774AqIo9gpY5F2CJDltZkFEl46tzAODYYqIyAWiKOAH81Ox/5gZs/e4Hoy8MYiT+0Dcd+TIEfztb39DUlISbr75ZgBAXFwcXnrpJSxevBjr1q2DwWDAihUrYLfbIQgCwsPD8de//hUazfA6NSqyjDPFRT6b/SQrMkrsZtQ21yGrPQ1xmgTOAyTyAbYyD4zhdcYgIroEiWl6mDMi3GpnbqloRFRKBJQkHdoXCsiN0Xk0iFMUBeSkRXGPlIsmTJiAw4cPO/2zzZs3d//6jTfe8FNF6qTIMo4+uxY1h0+7NfupvwB28ddHTp6MP5e8jtIOKypjQpBUtAsGx0jclPxjmKImMVQReRFbmQcGwxQRkYu6mkq42s68Zyv1ruCVe0Ui7yiRapwpLkLN4dMuz35SZBkt3xWi5q1/w3pCws4Tud0BLPWhe1H+/F96BbOxKR/AvKAD7y+IgSIKKDYpmL+tBi9V/F9kWOPxgGkZAxWRl7CVeWAwTBERucHVduZdrdTz1odCkgXM3qVgfV5zv80qiALhvKUaO2w5Ls1+6rqLdeKwFU2tWtxe8kyvADY2//0+wexNeTnCrpChXLiAoIgC6saHwSGKUGrrUGI3wxQ1ye26fb00kSgYsZV5YDBMERH5QIOtBalmoVezilSzMGCzCiJ/C01IxCzDZpdmP3Xdxdp2bBa0YnufADbhqLlPMPvi+DSYjuyAICtQRAGCrCDG2ooSUyQqHQpqm60wRU1yKxx5ujSRaKhT8wDgoYyvLhGRm2RZQdVRO/btrkbVUbvT1thRhnCUZyhwiJ1/1tWsQu9GFz8iXxtlykb8xNHYNH0F7krYiE3TVyB+4hiMMvW9kt11F+vw2VTMHP0dJKEDALoD2Mi0CZhlKOz19WtiChFqiMGibXUwfdeAudtr0Bomod4wEsnWNsTpjN3haO/azVj7N2Dv2s04+uxaKBfmql2s59LEv1qW4tZ9T6Pm8CmcKS7y3QtFquLKe/Bw1TUAODT3J9Ak5jBI+QHvTBERueHivVD7MxSUpuuwYKmp116ori5+r+Y1IdIK1CQoGGUcibiksQGsnqg3QRSRtvx+GIuLMKXGgtD4G/q9K9R1F2t9zU34SfR2rJu0Et80TcE14/YjfmIkIhf9BPFlFmzCCuywTcUswwHETxyDWYvuRXbjYbxTno/jgojjOi1+st2GzJBYZOkzcKbIvX1b7ixNpKHH1fdgIn9hmCIicoOzvVDrbm/Cvl1VmP7DpO6TuSgKmL9kMrZs2I+GjlZMKZJw9Pw5bP9HMRYszeZJn1RDEEWXZj913sX6HH/Hb7HTloOMMRYsTfgKxltuQnh2zoDBLDs6C5OjMlHbYUFJbTniEo3I0mdAFES3w5E7SxNp6OF+VFIbhikiIjc42ws14bCI70bUwl7V3OvqaE1FIzoqW/F/3hjZedLfreCVXzah+qgdyelscU7BpW9YWtLnLtZAwUwUREyLNSEhJKnX190NR12h7uI7YM6WJtLQw/2opDYMU0REbogyhGN/hoLZu74f3FuR6MCPPwrBjrm9r46Wm08gvUzqddKfWCah/PAJhikKSq7exXKHu+HInaWJNPQ4ew8ebHg6kS8xTBERuaFrL9S625sw4bCIikQHIloEpFdoUDte7nN19EhKB2bv0Xaf9I+kdGAM90oTdfMkHF0c6rrmX7FV+tDX9R7s6vB0Il8b0mGqec/bwMEPv//C5Ougu+LngSuIiIJe1+Defbuq8N2IWvz4oxCkV2igCOhzdTQ1Mxo795/AhltakVotoTzRgTPhwLTM6AD+BESe8eZsJ2fP5ekdL7ZKH17cGZ5O5A9DNkw173kbStn7kPWtaE+3IqTMCLHsfTQDDFREdElEUcD0HybBXtWMHXObUTtednp1NDFVj+jk0Thd0QTLeAfORQDRyaORmMp1/RRc3A0sXXeKWvbtBSAgfMYMhGfnePRcg+nZKt2VboAU/Fwdnk7kD0M2TOHgh5D1rWi+4xNAUnBu1iHo1s2DdPBDgGGKiFwkywosFY1osLUgqscVUFeujoqigIW3ZXc/ZjKvoFKQciewKLKMI3/8M06Zq9B4PgJ7Tk/D1Tv/jUTTTkQ//T/9PtfY99+DIElu3/Viq3QiCqShG6YAtKdbAenC5gRJQfvEOkhfTgxsUUQUNAabZ+LK1VFeQaWhwJ3Acqa4CA1l9bCf0+POQ0/BoWjwau0t2CguR9SfX8S5cx19nuvz+hzotnyOfNtst+9UsVU6EQXSkF5MHFJmBBwXrgA7BIQcjg1sQUQUVHrOM5m3MxR560PRWtbZsY9oOOkMLIWQhA4A6A4s2vFxaPmuEPYtm9HyXSEUWcZ5SzWOtURi7+kpvcPXiWn4OL8BlV9V4Kqx3/R6rqvG7sVTR+7EXy1Lceu+p1Fz+BTOFBe5VFtnN8DR2DR9Be5K2IhN01ewVToR+c3QvTM1+TqIZe9Dt24e2ifWIeRwLMSWEcDk6wJdGREFCc4zIerkrH15XPpo1G/f2WfvU8z8qzE+fA9GiN9h/bHv7xbNGP0dNhy7Gd+czsa7uf+NTbm/xo4T03C1fh8cHSL2nJoOwP1lemyVPvT0t7yaSI2GbJjSXfFzNAOQDn74/dI+dvMjIjdwnglRJ2eBRVFkfPPilj57n2LmKYiKHYnQ2nr8f5Mfxq5T03DF6P2oO2/AV6emQoaErSdm4//cYMOUGAFKx1QUbSmCICiAAo+W6fli/hUFxmDLq4nUZsiGKeBC1z6GJyLyEOeZEH3v4sBi37K5e++TCAcuG10Ie8tIWP/+d1gaRuGLxvmYF/kFbjJ8gFOO0fh/Sx6GDAmS0IGrDYXQzbgB4VNyoMgy4sssLg/tpaGt5/JqSRYwe5eC9Xm9B6ITqcmQDlNERJeC80yI+tfV+GF9zU34fdpziNY24pvT2Rhz/DRqz8XgbzW3Yl3tEqybtALGEQ34e+4K7DgxrU9Yuviul3b8TwABaPxgCwfwDkNcXk3BhmHKCUWW4agpgsNeDUmfCCmeb+REwxW78RE517WP6h38Ck2tobi95NnOzn3HbsG6SSvxgzEHsOfUdOw9PRXZcil+OH8srkgdgY7Ivnuauu56jTJluzSDypsDhElduLyago1fwlRlZSVWrlyJU6dOYcyYMVizZg2SkpL8cWi3KbKMs9ufRse5ErSlVEFbmASNOQth81fyjZqIiIKarMgosZtR21yHOF0ssvQZEIX+z20DPb7rjlL4hlfxynuGXp379p7OwYSwKnx9OgczRxdCH3YGuhkLET/vKpw40dzv8VyZZ+Xtob9DjSwrKDtkQ3nZiaBs3sDl1RRs/BKmVq9ejSVLlmDx4sXYvHkzHnnkEbz55pv+OLTbHDVF6DhXgqbb8y8M+z2IiNc6v65J5MZWIqJg4MpFPIfDgSeeeAJffPEFBEHAnXfeiRtvvDEwBfuBrMj4U/EGlHZYURkTgmRLOzLrjHjAtMxpoHLl8YIoQjfzMsz6ajPW1d7S3bnv6rFfo6I1Aa9nLUdkaBPGpCe5tAdqoHlWYaYpKKqww77vWyilp3Db/jWDDhD2JllWUFRhh8XWjASDDtkpetWFlK7mDeePtCC5FEHZvIHLqynY+DxM2e12HDp0CK+//joAYNGiRfj973+PxsZGREaq7yqDw16NtpSqXsN+21KrMMJuYZgiIgoSrlzE27JlCywWCwoKCnDq1CnccMMNuPzyyxEXFxegqn2rxG5GaYcV7883QBEFFJsUoKAOJXYzTFGTPH68s7bpseNHIiseEIQ4hE+bgfApOZc0gFcbtxh/2bgXTWU1mFv5BT48NdulAcLeIstK9/GnmouRn2HCzvR43Lt0pqo+5A+V5g1cXk3BxOdhymq1wmAwQJIkAIAkSRg3bhysVqsqw5SkT4S2MAnnZh3sDFQOAdryJEhTEwJdGpFfOVveQxQMXL2It3XrVtx4440QRRGRkZGYN28ePvroI+Tl5QWqdJ+qba5DZUwIlAsf/hVRQKVRi9pmq9Mw5erjvTnnyVkwi584BuVh49FUthPPrX8OTdFhOJc1Aq8Kt/QKXO60UndXUYUdTWU1eG79c9DIMpbuKsBDectRVJGKnLQonx3XXWzeQOR/QdGAQq/336ZDRX8FrBVTILwu4HxqJULLkzFydDZicq+AIEouP090tM6HVfoO6/YvtdYtyzIe2/0XFLXWoCImBCk17chuiMfqqHsvuWZZlnGgvgSVJ2uQPDYeU2OyIPphn4NaX+vBBGPdga7Z1Yt4VqsVsbGx3b83Go2or6/3e73+EqeLRbKlHcUmBYooQJAVJFvbEJdovOTHe2vOU3/BbMuX1ZhqLoZGljHW1oKUpGN4c/KD+OLUTFyp34/4iZE+baVusTV3Hx8ANLKMXHMRamy5qgpTbN5A5H8+D1NGoxE2mw0OhwOSJMHhcOD48eMwGp2/eTtjt7dAlhUfVtmbZtZyhNUUIdRugZSTACk+Gw32sy5/f3S0bsANtt7kzc6D/qzbm1i39xU3HMJ3Z2u+X94zWYFSYMGB+hIkhCR5/Lx99mAUtyOztP89G96i5td6IMFYtyc1i6Lg14tm3hTout0JrtfoZ2BHw9cQttegwhiCFGs7skcl4JqJM5xe0HD38V6t2XBVr9+a0sfhH5nZ6NhVAI0sY8o35fj4xmm4rek97DTMxIT/vA3jDKM9rmkwFx+/QxRxIDMbt6aPC/jFg570+nCU76vHhjtOI7VUQHmmgtFZYzDtskRVLUcciJpeT1exZv9Qa80+D1N6vR6ZmZnIz8/H4sWLkZ+fj8zMTFUu8esiiCI0iTlu7ZHqGWrOpGRAiZjg865C7DxIvtLf8p6qkzVIGJfk8fO6u2eDyBOuXsQzGo2oq6tDdnbnHY2L71S5wt8X+3ryJLjePfE/LyzftSIuwYgsfQbs9jNee7wvagaARH0YdBPicP/tD2Hm4WIcSJyAqJbTuGyvGWWhiSg52oAUg2sftNxtqx4dres+/kN5y5FrLsL+jGyMnhCHRH2Y6i54zL5pEk7bW1FRdgJTLzRvsNtbAl2WS4bLBaRAY82uc+Vin1+W+T366KNYuXIlXn75ZURERGDNmjX+OKzfXBxqzu9MhhQ6yeehhp0HyVf6W96TlB1/Sc/r7p4NIk+4ehFv4cKFeOedd3Dttdfi1KlT+Pjjj7Fp06YAVe0foiDCFDXJ5f9v7j7eV0RRwL1LZ2Lzrmh8OmIk7vrofzGzwgxFELA/IxvXuxGkPGmr3nX8oopU1Nhycb1Ku/kBnbWmTzJgbHRYoEshGhb8EqZSU1Pxzjvv+ONQAdEn1DgOIuI1xeehhp0HyVey9BnIrDMCBXWoNGqRbG1DZkgspsZkXdJVaXf3bBB5qr+LeHfccQfuv/9+mEwmLF68GN999x2uvfZaAMA999yD+PhLu2BAviOKAhb/MBk1VSfw1tzrcXh8YucdovQ4ZKe41lzBlTlWAx0/Jy1KVXukiCjwgqIBhdoFKtSw8yD5iiiIeMC07PvlPYmdy3sutVFEfyGNnQLJ2/q7iPfqq692/1qSJDz22GP+LIsu0aXeIRpojlX4lByns6ScCYaZU0TkHwwgaADrAAAgAElEQVRTXhCoUCPFZ0NjzkLEa0BbahW05UnQjMyCFO+7jkY0fPhieU+/Ic2HzSeIaGi5lDtE/c2xCo2/od9ZUo8+OLfXc3R0yHjqtS9xynoSmZZyfGccr8qZU0TkHwxTXnBxqAmtSIY0cpLPQ40gigibvxKOmiKMsFsgTU24pG5+RP6glj0YRDR09ddkor85VqNM2fiun1lS35ptSI4eBaDzjtQzG/agvbwWc44eQmHiBETZbDgBQXUzp4jIPximvODiUDN21kSc8UM3v65ju9t5kIiIyBXOhner/U7yYE0m+hswXF3fjKmlF82SKi1Cee3l3WGqqMKOtiorXnzzz50t0vdsx8O33I1Yay1qbM0MU0TDEMOUl/QMNaOidTgbZC0nidQkGD/AEQ01febCWdqRWef7uXCXarAmE/0NGJZlBV+nZmLp7u9nSX2VOgk/vBCugM7hvTPKDvYKXFOrj+CTKZdhuosdBYloaGGYIiJVCdYPcERDTbDOhRusyUR/RBGAouDhW+5GbvUR7E+cAEGRIfXYB5Vg0CE/09Q7cKVlYaxxjMsdBYloaOEnEyJSlZ4f4Iqm6PH+fANK2zs/wBGR/ww0F07NOptMFEISOgCgR5OJgZtCJcZEICQ0BDd/9QlGtLfh5q8+gSZUi9S4Md2PyU7RIyI9Hg/lLccbVy3E/bc/hJGp4/Hb/7qczSeIhinemSIiVen6AAcISD80CsZjI9DqUFBzmoN9ifwpWOfCDdRkYiDZKXrsTI/HW7geueYivDX3eoxJj8O0DAMa7S0A+rZm/ynbohMNewxTRKQqcbpYJFe3Y+aOOGQeCoOpNASl6ZE4kxoKOVnhhxYiPwnWuXADNZkYSH8zrKSL3nM4vJeIemKYIiJVydJnIOtAGgzFI3HPa+GQZAFzdoVifd55WCoakZTGfQlE/hDMc+H6azIxGAYlInIXwxQRdVNDFz1REHHlyCugLauDJHdeEZZkAalmAXZbC8MUkR8Fai5cf3OiiIjUhmGKiACoq4tedIwO+zMUzN6lQJIFOEQF5RkKcg3hfq2DiPxvsDlRRERqwjBFRADU1QY5ISUSpek6rM9rRqpZQHmGgpHpOiSkRPq1DiLyDVlWUFRhh8XWjISLmjgMNieKiEhNGKaICMDAbZD9HaZEUcCCpSZYKhpht7Ug1xCOhJRINp8gGgJkWcFfNu5FU1kNppqLkZ9hws70eNy7dCZEUfB4ThQRUSDwfrlKKLKMjupCnN+/GR3VhVB6TFwn8oc4XSyS69shyAoAfN8GWReYNsiiKCApTY9pVyYiKY2th4mGiqIKO5rKavDc+ufwy50f4bn1z+F0WS2KKuwAPJ8TRUQUCLwzpQKKLOPs9qfRca4EbSlV0BYmQWPOQtj8lVwfTn4TrG2QidTG4ejAyZMn0NHR5tPjHD8uQvbShTeNRouxY6MhSb7/WGCxNWOquRiaC7VrZBm55iLU2HKRkxbl8ZwoIqJAYJhSAUdNETrOlaDp9nxAUnBu1kFEvNb5dU0ilzSQfwRzG2S1kmUFlopGNNhaEMWlisPGyZMnMGJEGEaNioEg+O7vW6MR0dFx6WFKURScOdOEkydPICrK93eiEww65GeYsHRXAQRFwd6UDHximomrHApkWYHo4ZwoIqJAYJhSAYe9Gm0pVYDUubwKkoK21CqMsFsYpsivAtUGeSiSZQXbNhajtayzicb+DAWl6TosWGpioBriOjrafB6kvEkQBIwaFYGWllN+OV52ih470+PxYN5ydJxvAwQBc4v24kB7K2qqTlzYO+XZnCgiIn/jZR4VkPSJ0FYkAY4LJ16HAG15EiQ914eTf8iKjOKGQ/iw8mMUNxyCrHDP3qWyVDSitawZeetDMW9nKPLWh6K1rBmWisZAl0Z+ECxBqos/6xVFAfcunQnTtVMhajR48c0/45df9N07RUQUDHhnSgWk+GxozFmIeA1oS62CtjwJmpFZkOK5Ppx8T03zpYaSBlsLUs0CBw8TOSGKAiRJwIwjB/vdO0VEFAwYplRAEEWEzV8JR00RRtgtkKYmQIrn+nDyDzXNlxpKogzhHDxMqmGxVOPJJx/F6dOnMXr0aKxa9RjiA9wdr+feKY0so0MUsT8jG9cbdAGtS624B9N/+FqTOximVEIQRWgSc7hHivxOTfOlglF/J11vDh6WZQWF5Q3YV3ocADAjYxympEXx5N6Pxx57DF9++SW0Wi3CwsLwu9/9DiaTqc/j/v3vf+MPf/gDxo8fDwCIi4vDSy+95O9yAQw8xNYbnn32KfzsZzdiwYIfYdu2rfjjH/+AtWtf8drze6Jr79RDecuRay7C/oxsjE6PQ3YK79xejHsw/YevNbmLYYpomIvTxSLZ0o5ikwJFFL6fL5UYmPlSwWSwk643Bg/LsoIX//41qitPIKKlGTMqDuPd9Cx8MSmxe8gp9Xb11Vfjf/7nfxASEoLPPvsMDz74ID7++GOnj73iiiuwdu1aP1fY22BDbC/VyZONKCsz44UXOoPivHkL8MILz+DkyZMYO3bsJT+/p7r2ThVVpKLGlovrfRAih4qeezAlWcDsXQrW53XuweSyYe/ia03uYpgiGuY4X8pzg510uwYPX8oJuKjCjvoKG/RNTXj2rZehkWUs3VOAB5Y9jM27oiFJgk/uZASz2bNnd/86JycH9fX1kGUZokqXTvccYquRZSzdVYCH8pajqCLVK3uHbDYboqLGQZIkAIAkSYiKisbx47aAhimgM1DlpEVxj9QguAfTf/hak7vUeWYhIr/pmi91f+KNePj8TNyfeCObT7hooJOut1hszdA3NmBq9ZFeG/Wnm4ux67NDkF54A/lvfI6/bNwLWVa8dtyhYtOmTbjmmmv6DVJ79+7F4sWLceutt+Lzzz/3b3EX9D/Etjkg9ZD6RBnCUZ6hwCF2/h/v2oOp5x5Mr+NrTe7inSki4nwpD/mjyUSCQYcvI6NwQKPFrXu2d2/U/yp1Eu766H9xeXmp1+9kqN1Pf/pT1NXVOf2zPXv2dN+B+eCDD7BlyxZs2rTJ6WOvueYa/OhHP8KIESNw6NAh3HHHHXjzzTeRmprqci16fd+/6+PHRWg0rl+MSI6NwOaLGzFkZuOG2IhBn8eV48TGGtHQcByCoECSJDgcDjQ0nEBsrLHX94uiiOho3zd/8McxvC3QNev14SjfV48Nd5xGaqmA8kwFo7PGYNplif3ekQ50zZ4KdN3D5bVmzd7DMEVE5CFvNpnoT3aKHjtSDKiqFPGrpfdjRoUZX03IgiA7MLPCDGD4tZR+9913B33M9u3b8cILL+CNN95AVJTz1yQy8vu/p0mTJiE3NxdFRUVuhSm7vaXPHUFZltHR4fqstqzESHx2cSOGCXHISowc8Hk0GtGl40REjEFaWjo++ujDCw0oPsSECROh043u9f2yLOPECd/eDYuO1vn8GN6mlppn3zSpew/m1At7MO1253fB1VKzu9RS91B/rVmz60RRcHrRrCeGKSIiD3mrycRgx7jvtsu6u/kdm5WNqREjULL9ABRBABSFLaUv8tlnn+Gpp57C66+/jri4uH4fZ7PZYDAYAADHjh1DYWEh7rrrrv+/vTuPi+o+9wf+mTMDbiAiIgyKrCoIGLea5cZaUSO9dcFX603c8mujyb0mMTEuFeNN26QxLmmbpNEk16vGtrGJ9/ZGbYg1akyMSo0aNYKyiLI6gDAugBthzvn9gTNhYBiG4Zwzc8bP+y9hhnMejsx35jnf7/N81QrTRo1GDMuWvYhXX/013n9/EwIDA/HSSy/LdmxSh6MaTLbwVoYc9a5072AydQ+SRBGWsjOwmEugD4ninlZEnaDGm64g6DBiYChGDAwF0PQBqrykhi2l27BixQr4+fnhueees31v69atCA4OxsqVK5Gamorx48dj27Zt+Pzzz23LAhcvXowhQzyz1FXpRgxRUdH47//+kyLHJs9w1k2UiNTDZOoeI4kibu5bg8bbZ9EQWwz/09Ew5CWh+8QMT4dGpFlq3x1mS2nnjh492uZjq1atsv178eLFWLx4sRohEXVYe+OKs26iYWE9PRg50b2FydQ9xlJ2Bo23z6L2F5mAXsLtsTnouaXp+wgb4+nwiDTHUxs8sqU0ke9yZVxRo5soEbWPa7vuMRZzCRpiiwH93YJpvYSGuGJYzKUejYtIq5rfHZ7wVRfM39QFtwqa7g4TEbnDlXGFLbyJvAOTqXuMPiQK/hejAcvdO+YWHfwvREMfMsCjcRFpFe8OEylLFCWcLqzB348U4XRhjWz7qSl1XDnO4cq4MiC2N7oNCsSm+Xew/4d3sGn+Hdm7iRJR+7jM7x6jjxwKQ14Sem4BGuKK4X8hGoZuSdBHDvV0aESapMZeU0T3KlGUsP6DY6gtKMPwvGxkJqTgq0GReHbO6E4to1XquHKdw5VxRY1uokTUPiZT9xidIKD7xAxYys6gq7kU+uED2M2PqBPU2GuK6F515qIZtQVl+P2m38MgirJtUK3UceU6h6vjClt4E3kek6l7kE4QYIgaBkPUME+HQqR5Hb07LIoSzlw0o7SqDgPYhY9UsH79mzh48AAqKkz4858/QmxsvKdDcllpVR2G52XDIDZtLizXBtVKHVeuc3DWiUg7OB1BRNRJ1rvDI/8lCtHxbSdH1mU/mVu/hP6Nrcjc+iXWf3BMkVoN0hZJFNFYchp3Tu5CY8lpSHc/gMthzJgfYf36jQgPN8p2TLUMCAvEqYQUNN5dPWHdoDqykxtUK3VcOc/h6rhCRJ7FmSkiIoW03CfmqiQqvrSItMfZ/n9yLMG+7z7trkIYGhuCrwZFyr5BtVLHVfscau9xR0StKZpMZWRkICsrC8HBwQCAtLQ0LFiwQMlTEhF5BUf7xNwIM2CYwkuLSHuc7f/njcuxRUnEWXMeyutM6B8YgaSQBAg6ZRa6KLVBtRobXyt9Dmd7URGRehSfmXrqqacwZ84cpU9DRORVmu8Toxd1GHdYwsZ5t3E2aSQaD++FQRRty36myLi0iLSnrf3/uppLvS6ZEiURb2ZvRm5jBYrC/RBT+h0STUYsSpmnaEKlxAbVamx8reQ5HI0xm+Y37UUVFtaz08fnrBeRa7jMj8iHqXkH2Re4++HB0c852idmYL6AynEhii77Ie3Rh0TB/3Q0bo/NaUqorPv/Dfe+/f/OmvOQ21iBv08MgyTokJ0iAXtNOGvOQ0qfIZ4Or12+1ABGyT3unM16afV6ESlF8WTq/fffx/bt2xEZGYklS5YgLi5O6VMSETxzB1nL3P3w0NbPJTwYgVMO9on5ycTBuC4Mtlv2AwCnC2t84gMedZyW9v8rrzOhKNwP0t2/T0nQocjoj/K6ik4nU0onOmrsLaUmJfe4czbrxTbsRPY6lUxNnz4dJpPJ4WNZWVl44YUXEBoaCkEQsHPnTsyfPx/79++HXq/v0HlCQrS3+WVoqDaX7TBudSkZ9zembORZ7O8g6/ZVoLyxFCMj3F9T76lrLYoSCvMuo/LSdYT3C0J8Qt8OfQBqL+6Cc1W4c77e7sPDf8+rw5H9hUge3q/N8zn6uc1P1iNoUjcEJffC5ievIy5XhwuJEoKSemHUg9F2x7GIEl7bcBDms8UYnpuNTxNTcDQpGi8+M9aluL2RFmP2JKX3/3vzzddx8OAXuHLFjEWLnkHPnkH44IP/cetY/QMjEFP6HbJTJEiCDjpRQkxFA/pHOe8UaE2UzKdNCAnwb5UoqZHoqLG3lJqU3OPO2awXkykie51Kpnbs2OH08bCwMNu/09PTsXr1alRWVqJfv34dOo/ZXK+p1sGhoYGorq7zdBgdxrjVpXTcZ8sLcTHM/g7yxXA/nC2/gAF+0W4d01PXuuXszxcJEo52YMmJK3FfKKhGTC6gk4CCmEZU9hXRu0LCtU8q8MVXl9s8n/Xnmn/oiM0FigprMO7fhtj2iRl+d/mf2Wy/BOd0YQ1qcopsH/BmH/4Mi+cvxYGvozDxwRjN/W278zciCDpN3jSTk5L7/y1atAyLFi2T5VhJIQlINBmBvSYUGf0RU9GARL+mJcRtaZ4ojcjLQWZCcqtESY1ER429pdSk5F5USs56EfkaRZf5VVVV2RKqQ4cOQRAEuwSLiJTj7h1kb6TGkpM+YQH4JkFEdfBt1AdIiCnRozpERLfbOjyx2R9b5jk+n7MPHdZ9YpzF6OwDHpG3EXQCFqXMu1uLWYH+UcZ2azGbJ0o6ScKgS8V4x28Gdh0uwrSHYyAIOlUSnQFhgchMSMEcH2oA48oY4w4lZ72IfI2iydTy5cthNpuh0+kQEBCAd999FwYDe14QqcGdO8jeSo0lJwNie+ObAV1xpeEm/uPP3ZuStix/bJp5E4dHfwf/6yIKz11udee3sx86fPEDHvk2QScgpc8Ql2ukrImSTpLw2tQ5MAcEYfy3X+P47ZsoK67Gs3NGIzI0AJ8MSlb0ddCRfZ+a12+lDOqLqJDumqyrcpeSs15qYCdCUpOimc3WrVuVPDwROeHOHWRvpcaSE0HQYcCQPvD/zGRL2nQSYDEAefGNGFhkQOFRMz67lo2Js5JRXnzV9kZt/dqdDx1qbOxJ5EnWGwaDL5XAHBCE3334TtNSvqx9eGH+Uuw43AcnzlzCzS7d8Pyc5/CDi3n4elAS+sj8OnB136eW9Vt/TRyKwIH9Nduowl1KzXopjZ0ISW2cJiLyYR29g+yt1FpyEhoeiJOJEsYdaUraCmIbIQH4923Wmaqm5YW7tpyErvROqzdqdz50qLF5KJEnWW8YvOM3A+O//dq2lE8nSWi804Bvd3+DhwvO4lRUPPSiBX6N3+G7Ll3x8IOxsr8OXNn3qWX9VqPGG1V4C7Vmi9iJkNTGZIqIvJ7cS07aelNvmbSdTmnEsDMG++WFuTp863cLizZ1k+2NWo3NQ4k8xXrDYNfhIpy4cxNzsvbBIIo4FpsAQIe3t75xd6ZKwJKZT2Ng1SV8d/YbXLqcghEDQ1WP19caVXgDOWeL2kvK2ImQ1MZkiog0Qa4lJ+29qVuTtprKOvidrkR+XAPGHfG3LS8sGCQislS+N2qu7ad7gSDoMO3hGFSZrmLRvCUYlZuNA0OGI/XcSfukpeQ8LoRFyFov1dH9q1jHKD+5ZotcScrYiZDUxmSKiHyeKEooLjSjpqoeokXEzYJaPLmpq8M3dWvSBgAlleUIuipg88xbiC3RIz++EZKxC67ov4NF6PwbNdf2071EEHR48ZmxWPN+V+TWXscj2cdxIjYBjXdnqhoFAcdiE3GnRw8Y48Ls6qXc3dDXnf2rWtYxnkociqCBna/fUnpTYm8m12yRK0kZOxGS2phMEZFPE0UJ/7Pha1zPuYa4PB3ODxQhNYrQ3d26rq039ZqqesTnCUg95I/CaAsq+4oINQsImNIXNUV1srxRc22//DIyMpCVlYXg4GAAQFpaGhYsWODwuRs2bLDtlzh9+nQ888wzqsWppuvXr+G3v/0VLl0qh5+fH/r3H4Bly160XSM16QUdRg8JQ+axIMw49gWK+hqxZObTGF5SiGODkyFF9MWMtCEYFtfHlmi4mhA5Slbc2b+qZR3jbBm6+Tn6HXZHhiMpKQJR4T19PrGSa7bIlaRM650ISXuYTBGRTyu9eAV1Z6/bJSzvPX4TBbGNSLjg1+ab+vdv/sCgIgPiSiRsmi8ixtgTI/8lWpY3aq7tV8ZTTz2FOXPmOH3O8ePHsWfPHmRmZgIAZsyYgdGjR+MHP/iBGiG2Ikri3c6bJvQPjJC186ZOp8OsWY9jxIhRAIANG97Ce++9jRUrfiXL8TvKOvOzbN4SDM87g5KIATgyfgJmTEzAffF9Wr2WXEmI2kq4omJD3ap/al7HKMdm5Y5+h2cfX4TqY98g29iv3dkyJai5xFiu2SJXkzKtdiIkbWIyRUQ+w9GHg5qqesTm2icsgy8Y8GnadyjPFtt8U3f25i/XGzXX9nvO7t27kZ6ejq5duwIA0tPTsXv3bo8kU6Ik4s3szchtrEBRuB9iSr9DosmIRSnzZEmoevYMsiVSAJCUlIwdO/6v08d1V8uZn0fbWfLmSkOIthIuMToUp7yg/snR7/BA4Vl0+64Byz79SPVugWovMZZrtohL+MgbMZkiIp/Q1oeDhAci8G2ihB81T1gSJSSM64/GCUKbb+pqLBXhBwNlvP/++9i+fTsiIyOxZMkSxMXFtXpORUUFRo8ebfvaaDTi+PHjHT5XSEjrxPfyZQEGg+tJ0JnqPOQ2VuDvE8MgCTpkp0jAXhPyrhVgaKjzbQ06ch4AEEURO3f+H374w7GtflYQBISGKp9kWM8xMaynS89PGdQXf00cisZmCdGpxKGYPaiv7Vjm0yaMyMuxS1ZG5mXD/6cPok9yDJY8uRQjcrNxMjEFoUnRSL0/GvoOvJY7e10c/g5RAzE7a78t1iv1D9rOI4oSCvMuo/LSdYT3C0J8Qt8Ojz3OYi44V4U75+vtZuw3P1mP6+ZbGDQkrFO/qzNhLvyft3et57zw0N1rU4tx/Xq6dW3kpsbrRm6MWT5MpojIJ7RVf4QHgcCkIGyaf80uYRn1cHS7b8BKLxVxNWG7lwvXW5o+fTpMJpPDx7KysvDCCy8gNDQUgiBg586dmD9/Pvbv3w+9Xq9IPGZzPURRsvueKIpobBRdPkbJtXIUhftBuvt/Kgk6FBn9UXLtEoYEJ7T5cwaD0KHzAMDvf78W3bp1w/TpM1r9rCiKnV7O1h53lsxFhXRH4MD+9htbD+yPqJDutmOFBPgjMyEZsw9/ZktWvklIwZRAf6T+2wicuRiF0srhSBKbXnef/7MIkg4ov1zf7mtKjmV+dr9D7hkcjRuCiKs1GFmc/32sAf6orq5rdWPoiwQJRzs4a9RezBcKqhGTC7sZ+9hc4GJBNYJDu3fqd+0MV691cGh3W5xmc73SYTklx9+H2hiz6wRB5/CmWXNMpojIJ7RVf3Tl8g382zP345uvS7yyGLm9hM2dbmS+zNowoi1hYd/fVU9PT8fq1atRWVmJfv362T3PaDTaJWUVFRUwGo3yBuui/oERiCn9DtkpEiRBB50oIaaiAf2j5I1n/fo3UV5eirVr34AgyFOPpZSWNxCenvUD5BS3vbF1yw58JxOGImhQf9vzhsaG4KusC7bX0Y74JNR37YbUnBOqvKaaL20srRwB/3MmVJca8Jcxk+xiBdRpTMMlxkTyYTJFPkXJIm7ybs4+HGi5GNmdbmT3sqqqKltCdejQIQiCYJdgWaWlpeHVV1/F7NmzAQA7d+7ESy+9pGqsVkkhCUg0GYG9JhQZ/RFT0YBEv6bxSy7/9V8bkJ+fi9dffwv+/v6yHVcJzm4guNqBr2XC5eh1tGTm00gqK8ZclV5TzZtaTH4oGmcumh3GqkZjGi4xJpIPkynyGUoXcZN389UPB64U39P3li9fDrPZDJ1Oh4CAALz77rswGJre6lauXInU1FSMHz8e999/Px555BH85Cc/AdA0i9W8hkpNgk7AopR5d28EVaB/lFHWG0EXL17AX/7yPiIjB+A//uMJAIDRGIHVq38ny/Hl1t4NhLaWvTZPVlpy9DoaXnIehwYPxcjifNVfU85iVWPWiO3DieTDZIp8xlmz4yLus+Y8pPRxXsRN2uerHw4GhAUi0wu6kWnF1q1b23xs1apVdl8vXLgQCxcuVDgi1wg6ASl9higyVsXGxuHw4ROyH1cpzm4gDI0NcWvZq6PX0fHYRDToDVg1dS4uh4VjqEXC348UuVWXKGddo1o3hrQ8Y0/kTZhMkc8orzM5LOIur6tgMnWP8MUPB85qQYh8kbMbCO4ue7W+jhbNW4JRudk4FRWP8Otm/DLzr3hu7vOo6x6As3tPulWXKHddo6/eGCLyVUymSNNEScQ3pmycLS+ERbIgprJB8SJuIjW1VwtC5Guc3UDI/Gex25vwPjtnNDZlBiC39jpmZ+3HyOJ86CUJ0TWVKAHw+z+/2eG6RFGUsOtwEUqKqrHg80yMvpgnS12jL94YIvJVTKZIs6w1UnmWClwM80NMRQN63JEwdW+lYkXcRJ7grL6CyNc4u4HQ3rJXZ8vtBEGH0UPCkHksCCNKCqCXJDQKAnIjopB67mSHEzTrjNSV3FKk5mdj+wPjsT95FF78+weK1WA52picN1aIPIvJFGmWoxqpqZ9VYFrwA9DfMchexE1EROpo6waCs1krV5bbWX/+uV8sxuj8bJyKGog+dddwOmogGrP2dagu0brk8K33/9D0c1n7sGTm0zgWm6BIXWNbG5N3ZP8pIpIfkynSLIc1UhFdoL9jwI9jxns4Ou/E1vFEpGXOZq1OF9a0W09l/fldh0NxoGs3LNjzN4wsyseaKXPw7OOL8MCFcziZ6FpdYlsdAt9Jm4HomD6y1zWqsf8UEXUckynSLLU2uvQVvtg6nkteiO49bc1atdUFsLRyhO1x69K/aQ/HoKy4Gh+On4L8vChUh4XDf0A4LFNHY0q4a3WJjpYcHhucgjHjEjHt4RjZxyI19p8ioo5jMkWaZd3oUrevAhfD/Xy+Rqqzs0oOW8d/dgm7i/ZBr9NrbqaKS16IXLdixRKYTCYIgg7dunXHCy8sw8CBgz0dlqzaqqfCORPO7KlotfSv+QzXVDcauzhachgyqL9dIiVny3Q19p8ioo5jMkWaZd3osryxFGfLL/h0jVSj2IjXTq1HkXQFZRFdEVl8GzElvfHi8GdhEFx7GbdaFgngtvQd/u/KEZRFdGt3pqp550S1Ei9nM09c8kK+RBJF3Mg+gzulJegyIAo9UoZCJ8j3+lq58mUEBDR96D506EusXv0KtmzZJtvxvYGj5EYfGQZLaUWbS/8609ilvU6bcrdMV3L/Kc7yE7mPyRRpmqATMDIiBQP8oj0dimJEScTqk2/jvFSDvWkDbLNKk/aUYvXJt7Fy5PMuJTUtl0VGmG4AAHZP6tfuJsetOieqsKJiXj0AABR/SURBVESwvZknLnkhXyGJIgp/90eU5V/HwaphGBu2C5GDv0T80udkS6isiRQA1NfXQ+eDN50cJTcllbUw7NvX4U59HTlnWwmZu3tiOTuXEvtPcZafqHOYTBF5ubPmPJQ3mHEpuodds43yfj3QrajGYfLjiHVZJPaaUGT0R1xRPQpjeri0ybHDJYJtJF5yaW/miUteyFfcyD6DsvzrmH1iDSySARvLHsM2LIcx+wwC7hsm23nWrPktjh07CgD43e/+KNtxvYmj5MZZK/XmnC3Jc2e5Xls1XJ1J5JTYf4qz/ESdw2SKyMuV15lQ2ccPERU3cbZZs43wyluoDHWc/DhiXRbZVHdVAYuxEbsqjyLHhQYeDjsntpF4yaW9mScll7wQqelOaQkOVg2DRWp6S7ZIBhysGo77ykplTaYyMl4CAOzZ8yneeectn0io2ktynLVSb3mctpbkWdxcrtfenljegrP8RJ3DZIrIy/UPjEDfEqBWr8Mje0pxqV8PhFfewq1uevStldA/2vXuhYJOQEqfIUjpMwSiJKIgu9Q2U+WsgUd7nROVaLne3syTUkteiNTWZUAUxobtwsayx2CRDNDrGjE27BS6RKYrcr60tJ9g3brXcP36NQQF9VLkHGpwpSapvbomK2dL8oLMN9tdrucoqXMlkXN1xkvJmibO8hN1DpMpIg/oSDOHpuV5Eci9U47GxkbEXqzF5b7dEFYrIdG/n9vdC1vOVDlr4OGsc6JSLdddmXlSYskLkdp6pAxF5OAvsQ3LcbBqOMaGnULk4F7okTJUluPfvHkTdXW1CAsLBwAcPvwVevbsiZ49g2Q5vqe4WpPkrK7JytmSPHN9g9Ples6SOjkaVChd08RZfqLOYTJFpDJHzRwSLoVjYsS/4FJ9RavkqnnSU1ZrgggLBJ2AyOh+nZ4Baj5T1d7z2uqcmF1zTpF6Ks480b1CJwiIX/ocjNlncF9ZKbpEpsvaze/27Vt46aUM3L59C4KgR8+ePbF27RvQ6bT9WpKzJsnZkrygoG7Y1sZjoihh1+EiXMktxVvv/6FDHQNdTQaVrmniWEvUOUymiFTWqplDsgh8UoxzpZdQYuzqcGbH1aRHSW11TlSynoozT3Sv0AkCAu4bJmuNlFXv3iHYuHGr7Mf1NDlrkpwtyesTGohPHDyWHN0b6z84hpKiaqTmdzypczUZdFjTlKvDmePlTddBhsSHYy2R+5hMEamsZfIRXnULt7oI2PdIhCqd8uSub2qvnoqISE7WOqOSyjpIA4x4Yf5SjHTSXMIVzmqr9G08Zp1ZWvB5JrY/MB6NWfs6lNS5mgw6qmnKj2tE6P46nDybxzbmRB7GZIpIZS2Tj+Art1ER0V2VTnlK1De1bLnurJEFEVFntKwz0iWkQB8ZDkva/8OU8J4utSxvi7PaKkePWWeWRl/Mw/7kUVgy82kMLzmPY4NTEOJCUudqp0G7mqZcHfLjGtH7qoCfZXaFpAPbmBN5GJMpIpW1bOYQW3oTd/RwqUV5ZymxX1RHGlkQEXVGW3VGA8YnyLIJb0c0n1l68e8f4FhsAt5Jm4Ex4xIx7eGYdpM6VzsNNq9pOnO8HKH76/CzzK4QJB0ggW3MiTyMyRSRylo2c4iIC8PnFf+EvwozO0rVN3lDTRcR+T4lNsJ1l6OZpeiYPi4lUlaudBq0Ps+aLJ08mwdJB0AC25gTeQEmU0Qe0LKZQ0qfIarM7LC+iYi0zJs2wnV1ZklObGNO5H2YTBF5AbVmdljfRL7u5z//Oa5evQoAsFgsOH/+PHbt2oWEBPu/8a+//hpPPfUUoqOjAQD+/v743//9X7XDpQ5ytc5ILa7OLFm5ukmvs/OxjTmRd2EyRXQPYX0T+bqtW7fa/r1//368+eabrRIpq7i4OHz88ccqRUZyaGs2CABOF9a4naSowdVNetvDNuZE3oXJFNE9hvVNdK/429/+hp/+9KeeDsOrbNmyEVu2bMSf//wRYmPjPR2OW1rOBsmVpDgiihKOnatEdsHlTidprm7SS0TawmSKiIh8TnV1Nf75z3/itddea/M5xcXFmD59OgwGA2bNmoXp06d3+DwhIa0L/y9fFmAwdGy2VxQllFwwo7qyHqHhAYiKc+1De0fOk5eXi3PnchAeboRe3zpGQRAQGqp87ZHc5zh2rhJ158vtkpQlTy5FiTkZo4eEu31ciyjhtQ0HYT5bjOG52fg0MQVHk6Lx4jNjoXcjoTKfNmFEXo5d84yRedm4Uv+gItddjf9LJWgxbsasDm+NmckUERFpxvTp02EymRw+lpWVBb1eDwDYuXMnxowZg969HRfmJyUl4eDBgwgMDERZWRl+8YtfICwsDA899FCH4jGb6yGKkt33RFFEY6Po8jFEUcJnH2TjVkFTU4HjCRJyXNiI1WAQXD5PQ0MDXn99DX7zm1VYuPDfYbG0jlEURVRX17kctztCQwNlP0d2wWUMyz1jl6QMzz2DnIIRiAnt4fZxTxfWoCanyJakzT78GRbPX4oDX0e5NZMUEuCPzIRkzD78ma15xjcJKZgS4C/7NVHiOqtBi3EzZnV4KmZB0Dm8adZcp5OpXbt2YdOmTbhw4QJefPFFzJkzx/bYrVu3sGLFCpw9exZ6vR7Lly/HuHHjOntKIiK6R+3YscOl53388cf45S9/2ebjAQHfvzlGRkZiwoQJOHnyZIeTKTmUXryCWwV1mL+pC/SiDuMOS7JvxLpp03t45JEfw2iMkOV43kSpDn9yt2H3tuYZRCSPTidTiYmJeOONN7Bx48ZWj23evBkBAQHYt28fiouLMXv2bOzduxc9erh/p4iIiMiZkydPoq6uDj/84Q/bfM7ly5cRGhoKnU6Ha9eu4ciRI3j++edVjPJ7NVX1iMvTQS82zULpRZ2sG7Hm5JxBfn4uFixY2OljeSOlkhS5kzRPtFInIuV1OpkaNGgQgKa11i394x//wJo1awAA0dHRSE5OxldffYUf//jHnT0tESlIEkXcyD6DO6Ul6DIgCj1ShkLn4DVO5I0+/vhjpKen25b8Wb311lvo27cvZs6cib179+LDDz+EwWCAxWJBeno6JkyY4JF4+4QF4GSChHGHJehFnewbsZ46dRLFxUWYMWMqAKC6+jIWL16IF1/8NUaPfkCWc3iSUkmKNUlb8uRSDM+1T9LcbXHe0VbqROT9FK2ZMplM6Nevn+1ro9GIyspKJU9JRJ0kiSIKf/dHlOVfx8GqYRgbtguRg79E/NLnPB0akUteffVVh99vPvM0Z84cu2XpnqT0Rqxz5/4cc+f+3Pb1z342BevWvaHZbn6OKJGkWJO0EnMycgrs27Ar1T2QiLSn3WTK1WJfJbVX+OWNvLXjSHsYt7q8Me4rx0+gvKAWs0+sgUUyYGPZY/irLgMJpeeBsFFeGbMrGLd6tBizJ3EjVu8lCDqMHhJu18jidGENW5wTkU27yZSrxb6ORERE4NKlS7ZuShUVFbj//vs7fBxH3ZK8mRa7pACMW23eGrc5Ow9fVt4Hi9Q0PFgkA76sHIahOfno/YNRXhlze7z1WrdHi3G7E7Mr3ZJ8nZobsf7tb58ofg5fJndjCiLSNkWLINLS0rB9+3YATft5ZGdnY8yYMUqekog6qcuAKIwNOw29rhEAoNc1YmzYKXSJHODhyIiIPG9AWCBOJaSg8W4dqbUxRWQnuwcSkTZ1umYqMzMT69atQ21tLT7//HNs3LgRW7ZsQXx8PObNm4eMjAxMnDgRgiDglVdesWtHS0Tep0fKUEQO/hLbsBwHq4ZjbNgpRA7uhR4pQz0dGhGRx7HFORE11+lkavLkyZg8ebLDx7p3744//vGPnT0FEalIJwiIX/ocjNlncF9ZKbpEprObHxHRXWxxTkTNKdrNj4i0SScICLhvGALuG+bpUIg0SZIk6HTa+XAtSdqpS/YGbHFORFa81UxERCQjg8EfN27UaiZBkSQJN27UwmDw93QoRESaw5kpIiIiGQUHh+Lq1WrU119T9DyCIEC821GuswwGfwQHh8pyLCKiewmTKSIiIhnp9Qb06WNU/DxabJ1PRORruMyPiIiIiIjIDUymiIiIiIiI3KCJZX5abDeqxZgBxq02LcatxZgBxq2mjsasxd/RytOxe/r87mDM6tBizIA242bM6vBEzK6cUydppd0QERERERGRF+EyPyIiIiIiIjcwmSIiIiIiInIDkykiIiIiIiI3MJkiIiIiIiJyA5MpIiIiIiIiNzCZIiIiIiIicgOTKSIiIiIiIjcwmSIiIiIiInIDkykiIiIiIiI3MJmS0bvvvospU6YgPT0d06ZNw+7du22P3bp1C4sWLcLEiRORlpaGL774woOR2nv55ZeRlpaGqVOn4rHHHkN2drbtsZqaGjzxxBOYNGkSpk6dim+//daDkX5v165dmDJlCoYMGYIPPvjA7jFvvtYAUFRUhEcffRSTJk3Co48+iuLiYk+H1MratWuRmpqKwYMHo6CgwPZ9b4/96tWrePLJJzFp0iRMmTIFzz77LK5cuQIAOH36NKZOnYpJkybhiSeegNls9nC033v66acxdepUpKenY9asWcjNzQXg/dfbav369XZ/K958rbVOi+M1oM0xWyuvP62N11odpwHtjtVaG6NTU1ORlpaGadOmYdq0aTh06BAAL45bItnU1tba/l1ZWSkNHz5cunbtmiRJkvT2229LK1eulCRJkoqKiqSHHnpIqq+v90icLR04cEBqaGiw/Xv8+PG2xzIyMqQNGzZIkiRJx48flyZOnCiJouiROJvLz8+Xzp8/Ly1btkz6y1/+YveYN19rSZKkuXPnSjt37pQkSZJ27twpzZ0718MRtXb8+HHJZDJJ48aNk/Lz823f9/bYr169Kh09etT29Zo1a6QVK1ZIFotFmjBhgnT8+HFJkiRpw4YNUkZGhqfCbKX52LFv3z4pPT1dkiTvv96SJEk5OTnSvHnzbH8r3n6ttU6L47UkaXPM1sLrT5K0N15rdZyWJG2O1Voco1v+LUuS5NVxc2ZKRoGBgbZ/37x5EzqdDqIoAgD+8Y9/4NFHHwUAREdHIzk5GV999ZVH4mxp3Lhx8PPzAwAMGzYMlZWVtrj37NmDxx57DAAwatQo+Pv7290J9ZRBgwYhPj4egtD6T9ibr7XZbMa5c+cwefJkAMDkyZNx7tw52105bzFq1CgYjUa772kh9l69euH++++3fT1s2DCYTCbk5OSgS5cuGDVqFADgsccew549ezwVZivNx476+nrodDpNXO+Ghga88sor+M1vfmP7nrdfa63T4ngNaG/M1sLrz0pr47VWx2lAe2O1L43R3hy3wdMB+JoPP/wQf/rTn1BZWYnXXnsNwcHBAACTyYR+/frZnmc0GlFZWempMNu0bds2/OhHP4IgCLh69SokSULv3r1tj1vjHjp0qAejdM6br3VFRQXCwsKg1+sBAHq9Hn379kVFRYXddfZGWotdFEV8+OGHSE1NRUVFBSIiImyP9e7dG6Io4tq1a+jVq5cHo/zeypUrceTIEUiShE2bNmnier/11luYOnUq+vfvb/ueFq61r/CF8RrwzjFbC68/Z7QSv9bGaUBbY7WWx+ilS5dCkiSMHDkSixcv9uq4mUx1wPTp02EymRw+lpWVBb1ej5kzZ2LmzJnIz8/H0qVL8eCDD9oSKk9xJW4A+PTTT/HJJ59g27ZtaobnkKsxE7Xlt7/9Lbp37445c+Zg3759ng6nXatWrQIA7Ny5E+vWrcPzzz/v4YicO3XqFHJycrB06VJPh+JTtDheAxyzyT1aG6cB7YzVWh6jt23bBqPRiIaGBqxatQqvvPIKJk6c6Omw2sRkqgN27Njh8nMHDx6Mvn374tixY5g0aRIiIiJw6dIl212KiooKu2luJbkS9759+/DGG29g69at6NOnDwDYksArV67YxR0eHq5csHd15Fq35Mlr3R6j0YiqqipYLBbo9XpYLBZcvny51RINb6Sl2NeuXYuSkhK89957EAQBRqPR7oPelStXIAiCx+9mOZKeno5f/epXCA8P9+rrffz4cVy4cAHjx48HAFRWVmLevHmYO3euZq61N9LieA343pitpfHOES3Er+VxGvD+sVrLY7T12vn7+2PWrFlYsGABHn/8ca+NmzVTMiosLLT9u6ysDLm5uYiPjwcApKWlYfv27QCA4uJiZGdnY8yYMR6Js6UvvvgCq1evxubNm+2mgoGmuD/66CMAwIkTJ3D79m0kJyd7IkyXefO1DgkJQWJiIjIzMwEAmZmZSExM9PhSAFdoJfY//OEPyMnJwYYNG+Dv7w8ASE5Oxu3bt3HixAkAwEcffYS0tDRPhmlz48YNVFRU2L4+cOAAgoKCvP56P/XUUzh8+DAOHDiAAwcOIDw8HJs3b8b8+fO99lr7Al8brwHvHLO9/fXXHm+PX2vjNKC9sVqrY/TNmzdRV1cHAJAkCbt370ZiYqJX/33oJEmSPB2Er3j++edRWFgIg8EAvV6P+fPn41//9V8BNP1xZGRkIDc3F4IgYNmyZZgwYYKHI27ywAMPwM/Pz+6Fv3XrVgQHB6O6uhrLli2DyWRCly5d8PLLL2PEiBEejLZJZmYm1q1bh9raWvj5+aFbt27YsmUL4uPjvfpaA8CFCxeQkZGB2tpa9OzZE2vXrkVsbKynw7Lz6quvYu/evaipqUFwcDB69eqFTz/91OtjP3/+PCZPnozo6Gh07doVANC/f39s2LABJ0+exK9//WvcuXMH/fr1w+uvv267q+9JNTU1ePrpp3Hr1i0IgoCgoCAsX74cSUlJXn+9m0tNTcV7772HQYMGee219gVaHK8BbY7ZWnn9aW281uI4DWh/rNbKGF1WVoaFCxfCYrFAFEXExcXhP//zP9G3b1+vjZvJFBERERERkRu4zI+IiIiIiMgNTKaIiIiIiIjcwGSKiIiIiIjIDUymiIiIiIiI3MBkioiIiIiIyA1MpoiIiIiIiNzAZIqIiIiIiMgNTKaIiIiIiIjc8P8BHozXn2+6Q/UAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":["silhouettes = []\n","sse = []\n","\n","for c in range(2, 15):\n"," kmeans = KMeans(n_clusters=c).fit(preprocessing.normalize(df_clust_0))\n"," sse.append(kmeans.inertia_)\n"," silhouettes.append(silhouette_score(df_clusters, kmeans.labels_))"],"metadata":{"id":"DFGbevLSxefC"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["plt.scatter(range(2, 15), sse);"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":268},"id":"r4zGutucz2iT","executionInfo":{"status":"ok","timestamp":1652688170616,"user_tz":-180,"elapsed":835,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}},"outputId":"0e11923e-5d31-4116-f9f2-2f72eb92388c"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["<Figure size 432x288 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXgAAAD7CAYAAABgzo9kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAaGElEQVR4nO3dfUzV5/3/8df5iNApIjciHIvVjkRHrTerpoZMx0q9W6JCWJiJrb8lc7JWp3YdidbGab1ph22MWjqd1qxdsi6NmeKsaJHQr1XmOvedNUrtTZiuVDhUjxoECUzO5/eHg6+Um3MOnsM55/L5+Keccy7g/fb0vPx4netcl8O2bVsAAONYoS4AABAcBDwAGIqABwBDEfAAYCgCHgAMRcADgKEIeAAwVFSoC7jb9etN8nj8X5aflBQrt7sxCBX1P3oJP6b0IdFLuOprL5blUELC4B4fD6uA93jsPgV8+/eagl7Cjyl9SPQSroLRC1M0AGAoAh4ADEXAA4ChCHgAMFRYvcnqr1NVLu0/Xq1rDS1KjItRXla6MselhrosAAgLERvwp6pcevvIp2q97ZEkuRta9PaRTyWJkAcA+RDwX331lZYtW9Zx++bNm2psbNTf//73TuPa2tq0adMmnThxQg6HQwUFBcrPzw98xf+1/3h1R7i3a73t0f7j1QQ8AMiHgE9LS9PBgwc7bm/evFltbW1dxh06dEhffvmlysrKdOPGDeXm5iozM1NpaWmBrfi/3A0tft0PAPcbv95kbW1t1aFDh/SjH/2oy2OlpaXKz8+XZVlKTEzUjBkzdPTo0YAV+k1JcTF+3Q8A9xu/Ar6iokIpKSkaN25cl8fq6uo0YsSIjttOp1Mul+veK+xBXla6oqM6lx8dZSkvKz1ovxMAIolfb7L++c9/7vbqPVCSkmJ9Hjv/B0MUN+QB/eHIBV293qxhCd/S//thhn4weWTQ6usvyclDQl1CwJjSiyl9SPQSroLRi88BX19fr9OnT2vLli3dPu50OlVbW6sJEyZI6npF7wu3u9Gv/RjGPRSvop9nKjl5iK5cuSlJHf+NVHf3EulM6cWUPiR6CVd97cWyHL1eGPs8RXPgwAFlZWUpISGh28fnzJmjffv2yePx6Nq1ayovL9fs2bP9LhgAEBh+Bfw3p2eWLFmic+fOSZJycnKUlpamWbNm6cc//rGWLVumkSMjf7oEACKVw7btsNlv098pmnb8Uy08mdKLKX1I9BKuQj5FAwCILAQ8ABiKgAcAQxHwAGAoAh4ADEXAA4ChCHgAMBQBDwCGIuABwFAEPAAYioAHAEMR8ABgKAIeAAxFwAOAoQh4ADAUAQ8AhvLpTNaWlha9/PLLOnXqlGJiYjRp0iRt3Lix05jXX39d77zzjoYPHy5Jeuyxx7Ru3brAVwwA8IlPAf/qq68qJiZG77//vhwOh65evdrtuNzcXK1atSqgBQIA+sZrwDc1NamkpETHjx+Xw+GQJA0bNizohQEA7o3XOfiamhrFx8eruLhYeXl5WrRokf7xj390O/bw4cOaN2+efvrTn+rMmTMBLxYA4Duvh25XVVUpLy9Pr732mubNm6ezZ8/qmWee0bFjxxQb+3+HvV65ckXx8fEaOHCgKisrVVhYqNLSUiUkJAS9CQBAV16naJxOp6KiojR37lxJ0sSJE5WQkKCLFy9q/PjxHeOSk5M7vv7e974np9OpL774Qo8//rjPxbjdjfJ4ev37plucrh6eTOnFlD4keglXfe3FshxKSort+XFvPyAxMVFTp05VZWWlJOnixYtyu90aNWpUp3H19fUdX1+4cEGXL1/Www8/7HfBAIDA8GkVzUsvvaQ1a9aoqKhIUVFR2rJli+Li4rRkyRKtWLFC48eP19atW1VVVSXLsjRw4EBt2bKl01U9AKB/eZ2D709M0dBLODKlD4lewlXIpmgAAJGJgAcAQxHwAGAoAh4ADEXAA4ChCHgAMBQBDwCGIuABwFAEPAAYioAHAEMR8ABgKAIeAAxFwAOAoQh4ADAUAQ8AhiLgAcBQPp3o1NLSopdfflmnTp1STEyMJk2apI0bN3Ya09bWpk2bNunEiRNyOBwqKChQfn5+UIoGAHjnU8C/+uqriomJ0fvvvy+Hw6GrV692GXPo0CF9+eWXKisr040bN5Sbm6vMzEylpaUFvGgAgHdep2iamppUUlKilStXyuFwSJKGDRvWZVxpaany8/NlWZYSExM1Y8YMHT16NPAVAwB84vUKvqamRvHx8SouLtZHH32kwYMHa+XKlZoyZUqncXV1dRoxYkTHbafTKZfL5VcxvZ0t6E1y8pA+f2+4oZfwY0ofEr2Eq2D04jXg29raVFNTo0ceeUSrVq3S2bNn9cwzz+jYsWOKje17IHeHQ7fpJRyZ0odEL+EqZIduO51ORUVFae7cuZKkiRMnKiEhQRcvXuwyrra2tuN2XV2dUlNT/S4YABAYXgM+MTFRU6dOVWVlpSTp4sWLcrvdGjVqVKdxc+bM0b59++TxeHTt2jWVl5dr9uzZwakaAOCVT6toXnrpJa1Zs0ZFRUWKiorSli1bFBcXpyVLlmjFihUaP368cnJydPbsWc2aNUuStGzZMo0cOTKoxfeXU1Uu7T9eLXdDi5LiYpSXla7McfzrBEB4c9i27f+kd5CE4xz8qSqX3j7yqVpvezrui46y9JMfficoIc+8YvgxpQ+JXsJVyObg73f7j1d3CndJar3t0f7j1SGqCAB8Q8B74W5o8et+AAgXBLwXSXExft0PAOGCgPciLytd0VGd/5iioyzlZaWHqCIA8I1Pq2juZ+1vpLKKBkCkIeB9kDkulUAHEHGYogEAQxHwAGAoAh4ADEXAA4ChCHgAMBQBDwCGIuABwFAEPAAYioAHAEMR8ABgKJ+2KsjOzlZ0dLRiYu7soFhYWKjp06d3GrN69Wr99a9/VUJCgqQ7R/g9++yzAS4XAOArn/ei2bFjh8aMGdPrmIKCAj399NP3XBQA4N4xRQMAhvLpTNbs7GzFxsbKtm1NnjxZzz//vOLi4jqNWb16tU6fPq1BgwZp5MiR+tWvfqX0dPZMB4BQ8Sng6+rq5HQ61draqs2bN6upqUmvvfZapzH19fVKTk6WZVkqKSnR9u3bVV5ergEDBvhcTDgeut3f6CX8mNKHRC/hKqSHbjudTklSdHS0Fi5cqH/+859dxqSkpMiy7vy43Nxc3bp1Sy6Xy++CAQCB4TXgb926pZs37/zNYtu2SktLlZGR0WVcfX19x9cnTpyQZVlKSUkJYKkAAH94XUXjdru1fPlytbW1yePxKD09XevWrZMk5eTkaPfu3UpJSdGqVavkdrvlcDgUGxurnTt3KiqKA6MAIFS8JvDIkSNVUlLS7WMHDx7s+Pqtt94KWFEAgHvHMkkAMBQBDwCGIuABwFC8CxomTlW5tP94ta41tCgxLkZ5WenKHJca6rIARDACPgycqnLp7SOfqvW2R5LkbmjR20c+lSRCHkCfMUUTBvYfr+4I93attz3af7w6RBUBMAEBHwbcDS1+3Q8AviDgw0BSXIxf9wOALwj4MJCXla7oqM5PRXSUpbwsduME0He8yRoG2t9IZRUNgEAi4MNE5rhUZY5LNWoLVAChxRQNABiKgAcAQxHwAGAoAh4ADOXTm6zZ2dmKjo5WTMydddmFhYWaPn16pzHNzc164YUXVFVVpQEDBmjVqlV64oknAl8xAMAnPq+i2bFjh8aMGdPj43v37lVsbKyOHTumS5cu6amnnlJZWZkGDx4ckEIBAP4J2BTNkSNHtGDBAknS6NGj9eijj+rDDz8M1I8HAPjJ5yv4wsJC2batyZMn6/nnn1dcXFynx2tra/Xggw923HY6nXK5XIGrFADgF58C/o9//KOcTqdaW1u1efNmbdiwQa+99lrAi0lKiu3z9yYnDwlgJaFFL+HHlD4keglXwejFp4B3Op2SpOjoaC1cuFDPPvtslzEjRozQ5cuXlZiYKEmqq6vT1KlT/SrG7W6Ux2P79T2SjPr0J72EH1P6kOglXPW1F8ty9Hph7HUO/tatW7p5884vtm1bpaWlysjI6DJuzpw5evfddyVJly5d0rlz57qstAEA9B+vV/But1vLly9XW1ubPB6P0tPTtW7dOklSTk6Odu/erZSUFC1evFirV6/WzJkzZVmWNmzYoNjYvk+5AADujcO2bf/nRIKEKRp6CUem9CHRS7gK2RQNACAyEfAAYCgCHgAMRcADgKEIeAAwFAEPAIYi4AHAUAQ8ABiKgAcAQxHwAGAoAh4ADEXAA4ChCHgAMBQBDwCGIuABwFAEPAAYyq+ALy4u1tixY/X55593eWz16tX6/ve/r5ycHOXk5Gjnzp0BKxIA4D+fDt2WpKqqKn388cd68MEHexxTUFCgp59+OiCFIfBOVbm0/3i13A0tSoqLUV5WujLHpYa6LABB4tMVfGtrqzZs2KD169cHuRwEy6kql94+8qncDS2SJHdDi94+8qlOVblCXBmAYPEp4Ldv36758+crLS2t13G///3vNW/ePC1dulTV1dUBKRCBsf94tVpvezrd13rbo/3HeZ4AU3mdojlz5ozOnz+vwsLCXsf98pe/VHJysizLUklJiX72s5+pvLxcAwYM8LmY3g6P9SY5eUifvzfcBKOXa/+9cu/u/mD+2ZnyvJjSh0Qv4SoYvXgN+NOnT6u6ulpPPvmkJMnlcmnx4sV65ZVXNG3atI5xKSkpHV/n5ubqlVdekcvl6nXO/pvc7kZ5PLY/9UvidHVfJMbFdEzPfPP+YP3ZmfK8mNKHRC/hqq+9WJaj1wtjr1M0BQUFOnnypCoqKlRRUaHU1FTt3bu3U7hLUn19fcfXJ06ckGVZnUIfoZWXla7oqM5Pd3SUpbys9BBVBCDYfF5F052cnBzt3r1bKSkpWrVqldxutxwOh2JjY7Vz505FRd3Tj0cAta+WYRUNcP9w2Lbt/5xIkDBFQy/hyJQ+JHoJVyGbogEARCYCHgAMRcADgKEIeAAwFAEPAIYi4AHAUAQ8ABiKTyIh4Nq3Jb7W0KJEPlAFhAwBj4Bq35a4fefK9m2JJRHyQD9jigYBxbbEQPgg4BFQ3e1Y2dv9AIKHgEdAJcXF+HU/gOAh4BFQbEsMhA/eZEVA3b0tMatogNAi4BFwmeNSlTku1ajtXIFIxBQNABjKr4AvLi7W2LFj9fnnn3d5rLm5Wc8995xmzpypOXPm6IMPPghYkQAA//k8RVNVVaWPP/64x0O09+7dq9jYWB07dkyXLl3SU089pbKyMg0ePDhgxQIAfOfTFXxra6s2bNig9evX9zjmyJEjWrBggSRp9OjRevTRR/Xhhx8GpEgAgP98uoLfvn275s+fr7S0tB7H1NbWdrq6dzqdcrlc914h0I32/W44QBzomdeAP3PmjM6fP6/CwsKgF9Pb4bHeJCcPCWAloUUvvfuf/63RH45+ppb/tEm68ynZPxz9THFDHtAPJo8M+O+TeE7CFb30zmvAnz59WtXV1XryySclSS6XS4sXL9Yrr7yiadOmdYwbMWKELl++rMTERElSXV2dpk6d6lcxbnejPB7br++ROF09XAWrl7feq+oI93Yt/2nTW+9VadxD8QH/fTwn4YleJMty9Hph7HUOvqCgQCdPnlRFRYUqKiqUmpqqvXv3dgp3SZozZ47effddSdKlS5d07tw5TZ8+3e+CAW/Y7wbwzT2tg8/JyVF9fb0kafHixWpoaNDMmTP185//XBs2bFBsbN+nXICesN8N4Bu/P8laUVHR8fXBgwc7vh40aJB27NgRmKqAXuRlpXfac15ivxugO2xVgIhz9343rKIBekbAIyK173cTTBw9iEhHwAPd4OhBmIDNxoBucPQgTEDAA91gKSZMQMAD3WApJkxAwAPd4OhBmIA3WYFucPQgTEDAAz3g6EFEOqZoAMBQXMEDIcbe9ggWAh4IIT5QhWBiigYIIT5QhWAi4IEQ4gNVCCYCHgghPlCFYGIOHgih/trbnp0x708+BfzSpUv11VdfybIsDRo0SGvXrlVGRkanMa+//rreeecdDR8+XJL02GOPad26dYGvGDBIf+xtzxu59y+fAr6oqEhDhtw58bu8vFxr1qzRgQMHuozLzc3VqlWrAlshYLhg723f2xu5BLzZfJqDbw93SWpsbJTD4QhaQQACizdy718+z8G/+OKLqqyslG3bevPNN7sdc/jwYZ08eVLJyclavny5vvvd7wasUAB9kxQX022Y80au+Ry2bdv+fENJSYkOHz6sPXv2dLr/ypUrio+P18CBA1VZWanCwkKVlpYqISEhoAUD8M///G+NivedVct/2jruixk4QL/In6gfTB4ZwsoQbH4HvCRNmDBBx48f7zW88/LytHr1aj3++OM+/1y3u1Eej9/lGLUZFL2EHxP6MHEVjQnPS7u+9mJZDiUlxfb4uNcpmqamJjU0NMjpdEqSKioqNHToUMXHx3caV19fr5SUFEnShQsXdPnyZT388MN+Fwwg8NgZ8/7kNeCbm5u1cuVKNTc3y7IsDR06VLt27ZLD4dCSJUu0YsUKjR8/Xlu3blVVVZUsy9LAgQO1ZcsWJScn90cPAIBu9GmKJliYoqGXcGRKH1Lwe+nPnTF5XgIwRQMAvuADVeGHvWgABAQ7Y4YfAh5AQPCBqvDDFA2AgOivD1SZuOQzWLiCBxAQeVnpio7qHCmB3hmzfZ7f3dAiW/83z3+qyhWw32ESruABBER/7IzZXxunmXJOLgEPIGCCvTNmf8zzm7QaiCkaABGjP07AMmk1EAEPIGL0xzy/SauBmKIBEDHunucP1ioak7ZXJuABRJRgb5zWX+fk9gcCHgDu0h+rgfoLAQ8A3xDs1UDtgv2hLQIeAEKgP5ZjsooGAEKgP5ZjEvAAEAL9sRzTpymapUuX6quvvpJlWRo0aJDWrl2rjIyMTmPa2tq0adMmnThxQg6HQwUFBcrPzw9YoQBgkv5YjulTwBcVFWnIkCGSpPLycq1Zs0YHDhzoNObQoUP68ssvVVZWphs3big3N1eZmZlKS0sLWLEAYIr+WI7p0xRNe7hLUmNjoxwOR5cxpaWlys/Pl2VZSkxM1IwZM3T06NGAFQoAJskcl6qf/PA7SoqLkUN3rtx/8sPvhGYVzYsvvqjKykrZtq0333yzy+N1dXUaMWJEx22n0ymXiy08AaAnwf7Qls8Bv3nzZklSSUmJtmzZoj179gS8mN4Oj/UmOXmI90ERgl7Cjyl9SPQSroLRi9/r4HNzc/XrX/9a169fV0JCQsf9TqdTtbW1mjBhgqSuV/S+cLsb5fHY/pbE6ephypReTOlDopdw1ddeLMvR64Wx1zn4pqYm1dXVddyuqKjQ0KFDFR8f32ncnDlztG/fPnk8Hl27dk3l5eWaPXu23wUDAALD6xV8c3OzVq5cqebmZlmWpaFDh2rXrl1yOBxasmSJVqxYofHjxysnJ0dnz57VrFmzJEnLli3TyJEjg94AAKB7Dtu2/Z8TCZLr15v6NEWTlBQrt7sxCBX1P3oJP6b0IdFLuOprL5blUELC4B4fD6uABwAEDlsVAIChCHgAMBQBDwCGIuABwFAEPAAYioAHAEMR8ABgKAIeAAxFwAOAoSI64K9fv64lS5Zo9uzZmjdvnn7xi1/o2rVroS7rnhQXF2vs2LH6/PPPQ11Kn7W0tGjdunWaNWuW5s2bp7Vr14a6pD774IMPlJubq5ycHM2fP19lZWWhLsknRUVFys7O7vL/0sWLF7VgwQLNnj1bCxYs0KVLl0JXpI+66yVSX/s9PS/tAv76tyPY9evX7b/97W8dt3/zm9/YL7zwQggrujfnz5+3Fy9ebD/xxBP2Z599Fupy+mzjxo325s2bbY/HY9u2bV+5ciXEFfWNx+Oxp0yZ0vFcXLhwwZ40aZLd1tYW4sq8O336tF1bW9vl/6VFixbZJSUltm3bdklJib1o0aJQleiz7nqJ1Nd+T8+LbQfn9R/RV/Dx8fGaOnVqx+1JkyaptrY2hBX1XWtrqzZs2KD169eHupR70tTUpJKSEq1cubLjaMdhw4aFuKq+syxLN2/e2af75s2bGj58uCwr/F82U6ZMkdPp7HSf2+3WJ598orlz50qS5s6dq08++STsr3y76yVSX/vd9SIF7/Xv94Ef4crj8ehPf/qTsrOzQ11Kn2zfvl3z58+P+EPKa2pqFB8fr+LiYn300UcaPHiwVq5cqSlTpoS6NL85HA5t27ZNS5cu1aBBg9TU1KTdu3eHuqw+q6urU0pKigYMGCBJGjBggIYPH666ujolJiaGuLq+i/TXvhS813/4X4r4aOPGjRo0aJCefvrpUJfitzNnzuj8+fNauHBhqEu5Z21tbaqpqdEjjzyi/fv3q7CwUMuXL1djY+Rt63r79m397ne/029/+1t98MEH2rlzp5577jk1NTWFujTcJZJf+1JwX/9GBHxRUZH+/e9/a9u2bRHxz+dvOn36tKqrq/Xkk08qOztbLpdLixcv1smTJ0Ndmt+cTqeioqI6pgEmTpyohIQEXbx4McSV+e/ChQv6+uuvNXnyZEnS5MmT9a1vfUvV1dUhrqxvnE6n6uvr1dbWJunOX8Zff/11t1MGkSLSX/tScF//kfkncpetW7fq/PnzeuONNxQdHR3qcvqkoKBAJ0+eVEVFhSoqKpSamqq9e/dq2rRpoS7Nb4mJiZo6daoqKysl3Vm14Xa7NWrUqBBX5r/U1FS5XC7961//kiRVV1fL7XbroYceCnFlfZOUlKSMjAy99957kqT33ntPGRkZETs9Y8JrXwru6z+iD/z44osvNHfuXI0ePVoPPPCAJCktLU1vvPFGiCu7N9nZ2dq1a5fGjBkT6lL6pKamRmvWrNGNGzcUFRWl5557TllZWaEuq0/+8pe/aM+ePR1vGK9YsUIzZswIcVXebdq0SWVlZbp69aoSEhIUHx+vw4cPq7q6WqtXr1ZDQ4Pi4uJUVFSkb3/726Eut1fd9bJt27aIfO339LzcLZCv/4gOeABAzyJ+igYA0D0CHgAMRcADgKEIeAAwFAEPAIYi4AHAUAQ8ABiKgAcAQ/1/mn/RZH3bRy4AAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":["plt.scatter(range(2, 15), silhouettes);"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":268},"id":"eblTK5Lszhqf","executionInfo":{"status":"ok","timestamp":1652688175123,"user_tz":-180,"elapsed":949,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}},"outputId":"ce717077-3af5-4982-b250-7a48ddf3ec54"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["<Figure size 432x288 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYYAAAD7CAYAAABuSzNOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dfXBU5d3/8ffuJkA0pCFrHhYk0jC3YRtCbWW0jEYE1KTjxjBhOnHSiA4SfxXblLSNbp8SqDdjk06tUIl9GFEz02kZK03qAhZRag1SqS1TlCWtkyatQzYJbsgErIBs9vcHN1tPA9ndsJt9yOc1w8zmnOucvb5ZNp9zrmv3HJPf7/cjIiLyf8yx7oCIiMQXBYOIiBgoGERExEDBICIiBgoGERExUDCIiIiBgkFERAxSYt2BSDhx4gNGR8P/OobVmo7XeyoKPZp8qiX+JEsdoFri1URrMZtNzJp15SXXJ0UwjI76JxQMF7ZNFqol/iRLHaBa4lU0atFQkoiIGCgYRETEQMEgIiIGCgYRETFIisnneHXgSD87XuvGO3IGa8Z0KpfOZ0lRXqy7JSIyLgVDlBw40s9zu7s4e24UAO/IGZ7b3QWgcBCRuKahpCjZ8Vp3IBQuOHtulB2vdceoRyIioVEwRIl35ExYy0VE4oWCIUqsGdPDWi4iEi8UDFFSuXQ+01KMv95pKWYql86PUY9EREKjyecouTDBrE8liUiiUTBE0ZKiPAWBiCQcDSWJiIjBlDxjuPDFs6GRM2RpiEdExCCkYOjp6cHpdDI8PExmZibNzc3MmzfP0OaFF17g2WefxWw2Mzo6yhe+8AVWr14NwNatW9m1axdms5nU1FTq6+spKSkBwOl08sYbbzBr1iwAysrKePDBByNYopG+eCYiMr6QgqGpqYnq6moqKiro6OigsbGRtrY2Q5vS0lIqKysxmUycOnWK8vJybrjhBhYsWMCiRYtYs2YNaWlpdHV1UVNTQ2dnJzNmzADggQceoKamJvLVXcR4XzxTMIiIhDDH4PV6cbvdOBwOABwOB263m6GhIUO79PR0TCYTAKdPn+ajjz4K/FxSUkJaWhoAhYWF+P1+hoeHI1pIqPTFMxGR8QUNBo/HQ25uLhaLBQCLxUJOTg4ej2dM21deeYU777yTZcuWsXbtWgoLC8e0aW9vJz8/n7y8/xydP/PMM5SXl7Nu3Tq6u6N7yQh98UxEZHwRnXxesWIFK1asoK+vj4ceeohbbrmFgoKCwPqDBw+yefNmtm3bFlhWX19PdnY2ZrOZ9vZ21q5dy969ewNBFAqrNT3ktvc5injy+b9y5iNfYNn0VAv3OYrIzp4Z8n7iUaL3/+OSpZZkqQNUS7yKRi1Bg8FmszEwMIDP58NiseDz+RgcHMRms11ym9mzZ1NcXMzvf//7QDAcOnSIhoYGWltbDWGRm5sbeLxy5Uoee+wx+vv7mTNnTshFeL2nQr7vaVF+JqvLCsd8KqkoP5Pjx0+G/JzxJjt7ZkL3/+OSpZZkqQNUS7yaaC1ms2ncA+qgwWC1WrHb7bhcLioqKnC5XNjtdrKysgzturu7mT///OUehoaGePPNN7njjjsAOHz4MPX19WzZsoWioiLDdgMDA4FweP311zGbzYawiIYLXzxLpv8gIiKREtJQ0oYNG3A6nbS2tpKRkUFzczMAtbW11NXVUVxczPbt29m/fz8pKSn4/X5qamq4+eabAdi4cSOnT5+msbExsM+WlhYKCwt55JFH8Hq9mEwm0tPTeeqpp0hJmZJfrxARiQsmv98f2hhMHAtnKOnjkumMQbXEn2SpA1RLvIrWUJIuiSEiIgYKBhERMVAwiIiIgYJBREQMFAwiImKgYBAREQMFg4iIGCgYRETEQMEgIiIGCgYRETFQMIiIiIGCQUREDBQMIiJioGAQEREDBYOIiBgoGERExEDBICIiBiEFQ09PD1VVVZSWllJVVUVvb++YNi+88ALl5eVUVFRQXl5OW1tbYJ3P52Pjxo3cdttt3H777Tz//PMhrRMRkckX0s2Vm5qaqK6upqKigo6ODhobGw1/+AFKS0uprKzEZDJx6tQpysvLueGGG1iwYAEvvvgi//rXv9izZw/Dw8OsXLmSJUuWcPXVV4+7TkREJl/QMwav14vb7cbhcADgcDhwu90MDQ0Z2qWnp2MymQA4ffo0H330UeDnXbt28YUvfAGz2UxWVha33XYbL730UtB1IiIy+YIGg8fjITc3F4vFAoDFYiEnJwePxzOm7SuvvMKdd97JsmXLWLt2LYWFhYF9zJ49O9DOZrPR398fdJ2IiEy+kIaSQrVixQpWrFhBX18fDz30ELfccgsFBQWRfIqLslrTJ7xtdvbMCPYktlRL/EmWOkC1xKto1BI0GGw2GwMDA/h8PiwWCz6fj8HBQWw22yW3mT17NsXFxfz+97+noKAAm81GX18fixYtAoxnCeOtC5XXe4rRUX9Y28D5X+jx4yfD3i4eqZb4kyx1gGqJVxOtxWw2jXtAHXQoyWq1YrfbcblcALhcLux2O1lZWYZ23d3dgcdDQ0O8+eabXHvttQCUlZXx/PPPMzo6ytDQEHv37qW0tDToOhERmXwhDSVt2LABp9NJa2srGRkZNDc3A1BbW0tdXR3FxcVs376d/fv3k5KSgt/vp6amhptvvhmAiooK/vrXv3LHHXcA8NBDDzF37tyg60REZPKZ/H5/+GMwcUZDSaolHiVLHaBa4lXMhpJERGRqUTCIiIiBgkFERAwUDCIiYqBgEBERAwWDiIgYKBhERMRAwSAiIgYKBhERMVAwiIiIgYJBREQMFAwiImKgYBAREQMFg4iIGCgYRETEQMEgIiIGCgYRETEI6daePT09OJ1OhoeHyczMpLm5mXnz5hnabN26lV27dmE2m0lNTaW+vp6SkhIA7rvvPk6cOAGAz+fj3XffpaOjgwULFuB0OnnjjTeYNWsWcP4e0A8++GAESxQRkXCEFAxNTU1UV1dTUVFBR0cHjY2NtLW1GdosWrSINWvWkJaWRldXFzU1NXR2djJjxgyeffbZQLu9e/fyxBNPsGDBgsCyBx54gJqamshUJCIilyXoUJLX68XtduNwOABwOBy43W6GhoYM7UpKSkhLSwOgsLAQv9/P8PDwmP39+te/ZtWqVZHou4iIREHQYPB4POTm5mKxWACwWCzk5OTg8XguuU17ezv5+fnk5eUZlh8/fpwDBw5QUVFhWP7MM89QXl7OunXr6O7unkgdIiISISENJYXj4MGDbN68mW3bto1Z197eTklJCVlZWYFl9fX1ZGdnYzabaW9vZ+3atezduzcQRKGwWtMn3N/s7JkT3jbeqJb4kyx1gGqJV9GoJWgw2Gw2BgYG8Pl8WCwWfD4fg4OD2Gy2MW0PHTpEQ0MDra2tFBQUjFm/Y8cOHn74YcOy3NzcwOOVK1fy2GOP0d/fz5w5c0Iuwus9xeioP+T2F2Rnz+T48ZNhbxePVEv8SZY6QLXEq4nWYjabxj2gDjqUZLVasdvtuFwuAFwuF3a73XDUD3D48GHq6+vZsmULRUVFY/bzl7/8hZMnT3LLLbcYlg8MDAQev/7665jNZkNYiIjI5AppKGnDhg04nU5aW1vJyMigubkZgNraWurq6iguLmbjxo2cPn2axsbGwHYtLS0UFhYC588WVq5cOWaI6JFHHsHr9WIymUhPT+epp54iJSXiI1wiIhIik9/vD38MJs5oKEm1xKNkqQNUS7yK2VCSiIhMLQoGERExUDCIiIiBgkFERAwUDCIiYqBgEBERA31hIMEdONLPjte6GRo5Q1bGdCqXzmdJUV7wDUVELkHBkMAOHOnnud1dnD03CoB35AzP7e4CUDiIyIRpKCmB7XitOxAKF5w9N8qO13SFWhGZOAVDAvOOnAlruYhIKDSUlMCsGdMvGgLWjOkx6M3l03yJSHzQGUMCq1w6n2kpxpdwWoqZyqXzY9SjibswX+IdOYOf/8yXHDjSH+uuiUw5CoYEtqQoj3s/vwBrxnRMnD9TuPfzCxLyKFvzJSLxQ0NJCW5JUR5LivIS/oqRmi8RiR86Y5C4cKl5kUSdLxFJZDpjkKAuTAp7R85gjdKkcOXS+YbvZEDizpeIJDoFg4xrsr5Ed2Ff+lSSSOyFFAw9PT04nU6Gh4fJzMykubmZefPmGdps3bqVXbt2YTabSU1Npb6+npKSEgCcTidvvPEGs2bNAqCsrIwHH3wQgPfff5+HH36YY8eOMX36dB599FE+/elPR7BEuRzjTQpH+o92ssyXiCS6kIKhqamJ6upqKioq6OjooLGxkba2NkObRYsWsWbNGtLS0ujq6qKmpobOzk5mzJgBwAMPPEBNTc2Yff/whz9k8eLFbNu2jbfeeouGhgZ+97vfYTKZIlCeXC5NCotMPUEnn71eL263G4fDAYDD4cDtdjM0NGRoV1JSQlpaGgCFhYX4/X6Gh4eDduCll17i7rvvBmDx4sVMmzaNt99+O+xCJDo0KSwy9QQ9Y/B4POTm5mKxWACwWCzk5OTg8XjIysq66Dbt7e3k5+eTl/efoYZnnnmG7du3M3fuXL7+9a8zf/58Tpw4gd/vN+zHZrPR39/PokWLQi5ivJtaB5OdPXPC28abaNRyn6OIJ5//K2c+8gWWTU+1cJ+jKKq/u2R5XZKlDlAt8SoatUR88vngwYNs3ryZbdu2BZbV19eTnZ2N2Wymvb2dtWvXsnfv3og9p9d7itFRf9jbJdNYdrRqKcrPZHVZ4ZhPJRXlZ0btd5csr0uy1AGqJV5NtBaz2TTuAXXQYLDZbAwMDODz+bBYLPh8PgYHB7HZbGPaHjp0iIaGBlpbWykoKAgsz83NDTxeuXIljz32GP39/cyZMweAoaGhwFmDx+MxnGlI7F2YFJapR9evmpqCzjFYrVbsdjsulwsAl8uF3W4fM4x0+PBh6uvr2bJlC0VFRYZ1AwMDgcevv/46ZrM5EBZlZWX86le/AuCtt97i9OnTLFy48PKqEpHLputXTV0mv98fdAymu7sbp9PJyMgIGRkZNDc3U1BQQG1tLXV1dRQXF7Nq1SqOHTtmODtoaWmhsLCQ++67D6/Xi8lkIj09nYcffpjrrrsOgOPHj9PQ0EBfXx/Tp09n48aNfPaznw2rCA0lqZZ4lOh1NLTuv+TVe3+w7qYY9CgyEv11+bhoDSWFFAzxTsGgWuJRotex5vuvXnLdNufySexJZCX66/Jx0QoGXStJRC5KH1WeuhQMInJRyXS/DwmPrpUkIhel61dNXQoGEbkkXb9qatJQkoiIGCgYRETEQMEgIiIGCgYRETFQMIiIiIGCQUREDBQMIiJioGAQEREDBYOIiBgoGERExEDBICIiBgoGERExCOkiej09PTidToaHh8nMzKS5uZl58+YZ2mzdupVdu3ZhNptJTU2lvr6ekpISADZu3MiBAweYNm0aV1xxBd/+9rcpLi4G4J577qGvr4/09PM3jVi9ejWrVq2KYIkiIhKOkIKhqamJ6upqKioq6OjooLGxkba2NkObRYsWsWbNGtLS0ujq6qKmpobOzk5mzJjBLbfcwre+9S1SU1PZt28f9fX17N27N7Dtd77zHZYtWxbZykREZEKCDiV5vV7cbjcOhwMAh8OB2+1maGjI0K6kpIS0tDQACgsL8fv9DA8PA7Bs2TJSU1MBuO666+jv72d0dDSihYiISGQEDQaPx0Nubi4WiwUAi8VCTk4OHo/nktu0t7eTn59PXt7YG3r84he/4NZbb8Vs/s9Tt7S0UF5ezje+8Q0GBgYmUoeIiERIxG/Uc/DgQTZv3sy2bdvGrNu5cycvvvgiv/jFLwLLWlpasNls+Hw+fvrTn7J+/Xp++ctfhvWc493UOpjs7JkT3jbeqJb4kyx1gGqJV9GoJWgw2Gw2BgYG8Pl8WCwWfD4fg4OD2Gy2MW0PHTpEQ0MDra2tFBQUGNa9/PLL/OhHP+LZZ5/lqquuMuwfzp+JrF69mieffJLR0VHDGUUwXu8pRkf9Ibe/IJnuSqVa4k+y1AGqJV5NtBaz2TTuAXXQv75WqxW73Y7L5QLA5XJht9vJysoytDt8+DD19fVs2bKFoqIiw7p9+/bx2GOP8fTTT3P11VcHlp87d473338/8PPOnTu59tprwwoFERGJLJPf7w96qN3d3Y3T6WRkZISMjAyam5spKCigtraWuro6iouLWbVqFceOHSM3NzewXUtLC4WFhXzuc58jNTXVECbPPvss06dPp6amho8++giAnJwcvv3tb4852whGZwyqJR4lSx2gWuJVtM4YQgqGeKdgUC3xKFnqANUSr2I2lCQiIlOLgkFERAwUDCIiYqBgEBERAwWDiIgYKBhERMRAwSAiIgYKBhERMVAwiIiIgYJBREQMFAwiImKgYBAREYOI36hHRGSqOnCknx2vdeMdOYM1YzqVS+ezpGjsnSzjnYJBRCQCDhzp57ndXZw9d/5+9t6RMzy3uwsg4cJBQ0kiIhGw47XuQChccPbcKDte645RjyZOwSAiEgHekTNhLY9nCgYRkQiwZkwPa3k8CykYenp6qKqqorS0lKqqKnp7e8e02bp1K3feeSfl5eVUVlby+uuvB9Z9+OGHrF+/nttvv52ysjL27dsX0joRkURRuXQ+01KMf1KnpZipXDo/Rj2auJAmn5uamqiurqaiooKOjg4aGxtpa2sztFm0aBFr1qwhLS2Nrq4uampq6OzsZMaMGTz99NOkp6fz8ssv09vbyxe/+EX27NnDlVdeOe46EZFEcWGCORk+lRT0jMHr9eJ2u3E4HAA4HA7cbjdDQ0OGdiUlJaSlpQFQWFiI3+9neHgYgN27d1NVVQXAvHnzWLhwIX/4wx+CrhMRSSRLivL4wbqb2OZczg/W3ZSQoQAhBIPH4yE3NxeLxQKAxWIhJycHj8dzyW3a29vJz88nL+/8L6Wvr485c+YE1ttsNvr7+4OuExGRyRfx7zEcPHiQzZs3s23btkjv+pKs1vQJb5udPTOCPYkt1RJ/kqUOUC3xKhq1BA0Gm83GwMAAPp8Pi8WCz+djcHAQm802pu2hQ4doaGigtbWVgoKCwPLZs2dz7NgxsrKygPNnITfeeGPQdaHyek8xOuoPaxs4/ws9fvxk2NvFI9USf5KlDlAt8WqitZjNpnEPqIMOJVmtVux2Oy6XCwCXy4Xdbg/8Ib/g8OHD1NfXs2XLFoqKigzrysrK2L59OwC9vb28/fbblJSUBF0nIiKTz+T3+4Meand3d+N0OhkZGSEjI4Pm5mYKCgqora2lrq6O4uJiVq1axbFjx8jNzQ1s19LSQmFhIf/+979xOp0cPXoUs9lMQ0MDt912G8C460KlMwbVEo+SpQ5QLfEqWmcMIQVDvFMwqJZ4lCx1gGqJVzEbShIRkalFwSAiIgYKBhERMVAwiIiIgYJBREQMFAwiImKgYBAREQMFg4iIGCgYRETEQMEgIiIGCgYRETFQMIiIiIGCQUREDBQMIiJioGAQEREDBYOIiBgoGERExCCkYOjp6aGqqorS0lKqqqro7e0d06azs5PKykoWLlxIc3OzYd3DDz9MRUVF4N+CBQt45ZVXAPjxj3/MkiVLAus2btx4+VWJiMiEpYTSqKmpierqaioqKujo6KCxsZG2tjZDm7lz57Jp0yZeeuklzp49a1jX0tISeNzV1cW9995LSUlJYNnKlSt55JFHLqcOERGJkKBnDF6vF7fbjcPhAMDhcOB2uxkaGjK0u+aaa7Db7aSkjJ81v/71rykvL2fatGmX0W0REYmWoMHg8XjIzc3FYrEAYLFYyMnJwePxhP1kZ8+e5cUXX2TVqlWG5Tt37qS8vJw1a9Zw6NChsPcrIiKRE9JQUqTs3buX2bNnY7fbA8vuvvtuvvSlL5Gamsr+/ftZt24du3btYtasWSHv12pNn3CfsrNnTnjbeKNa4k+y1AGqJV5Fo5agwWCz2RgYGMDn82GxWPD5fAwODmKz2cJ+shdeeGHM2UJ2dnbg8U033YTNZuPdd9/lhhtuCHm/Xu8pRkf9YfcnO3smx4+fDHu7eKRa4k+y1AGqJV5NtBaz2TTuAXXQoSSr1YrdbsflcgHgcrmw2+1kZWWF1ZH+/n7+/Oc/U15eblg+MDAQeHz06FGOHTvGJz/5ybD2LSIikRPSUNKGDRtwOp20traSkZER+DhqbW0tdXV1FBcX89Zbb/G1r32NU6dO4ff72blzJ5s2bQp8+ug3v/kNy5Yt4xOf+IRh348//jhHjhzBbDaTmppKS0uL4SxCREQml8nv94c/BhNnNJSkWuJRstQBqiVeRWsoaVInn0Vi7cCRfna81o135AzWjOlULp3PkqK8WHdLJK4oGGTKOHCkn+d2d3H23CgA3pEzPLe7C0DhIPIxulaSTBk7XusOhMIFZ8+NsuO17hj1SCQ+KRhkyvCOnAlruchUpWCQKcOaMT2s5SJTlYJBpozKpfOZlmL8Lz8txUzl0vkx6pFIfNLks0wZFyaY9akkkfEpGGRKWVKUpyAQCUJDSSIiYqBgEBERAwWDiIgYaI5BRKaEC5dDGRo5Q5Y+eDAuBYOIJD1dDiU8CgYRibloX9xwvMuhKBjGUjCIJKhkuVLsZBzN63Io4VEwiCSgZBoamYyjeWvG9IuGQKJeDiXa8yX6VJJIAkqmK8VOxtF8Ml0O5cJBgXfkDH7+c1Bw4Eh/xJ4jpGDo6emhqqqK0tJSqqqq6O3tHdOms7OTyspKFi5cGLj15wU//vGPWbJkCRUVFVRUVLBx48bAug8//JD169dz++23U1ZWxr59+y6vIpEpIJmGRibj4oZLivK49/MLsGZMx/R/+7738wsS7uwKJuegIKShpKamJqqrq6moqKCjo4PGxkba2toMbebOncumTZt46aWXOHv27Jh9rFy5kkceeWTM8qeffpr09HRefvllent7+eIXv8iePXu48sorJ1iSSPJLpqGRyqXzDcNiEJ2j+QuXQ0n0W3tOxkFB0DMGr9eL2+3G4XAA4HA4cLvdDA0NGdpdc8012O12UlLCm7bYvXs3VVVVAMybN4+FCxfyhz/8Iax9iEw1yTQ08vGjeUjso/nJMBlnWEH/ins8HnJzc7FYLABYLBZycnLweDxkZWWF/EQ7d+6ks7OT7OxsvvKVr/CZz3wGgL6+PubMmRNoZ7PZ6O8Pb6xsvJtaB5OdPXPC28Yb1RJ/olXHXbfOJGPmDNp2H+X9Ex9y1aw0Vn/ezq3Xz43K80F0X5O7bp3JXbf+T9T2/98S+f/XfY4innz+r5z5yBdYNj3Vwn2OoojVNSmfSrr77rv50pe+RGpqKvv372fdunXs2rWLWbNmRWT/Xu8pRkf9YW+X6KeUH6da4k+06yjKz6T5/y0xLIvW8yXLawKJX0tRfiarywrHfCqpKD8z5LrMZtO4B9RBg8FmszEwMIDP58NiseDz+RgcHMRms4VcSHZ2duDxTTfdhM1m49133+WGG25g9uzZHDt2LHD24fF4uPHGG0Pet4jIVBPt+ZKgcwxWqxW73Y7L5QLA5XJht9vDGkYaGBgIPD569CjHjh3jk5/8JABlZWVs374dgN7eXt5++21KSkrCKkIknhw40k9D637u+noHDa37I/oxQpHJENJQ0oYNG3A6nbS2tpKRkRH4OGptbS11dXUUFxfz1ltv8bWvfY1Tp07h9/vZuXMnmzZtoqSkhMcff5wjR45gNptJTU2lpaUlcBZx//3343Q6uf322zGbzXzve98jPX3icwYisZRMXzyTqcvk9/vDH5yPM5pjUC3xoqF1/yU/RvqDdTfFoEeRkcivyX9TLcHnGPTNZ5EISqYvnsnUpWAQiaDJ+Iy5SLQpGEQiKJm+eCZTl66uKhJBFyaYdacwSWQKBpEIS5Zr8sjUpaEkERExUDCIiIiBgkFERAwUDCIiYpAUk89msykm28Yb1RJ/kqUOUC3xaiK1BNsmKS6JISIikaOhJBERMVAwiIiIgYJBREQMFAwiImKgYBAREQMFg4iIGCgYRETEQMEgIiIGCgYRETGYksFw4sQJamtrKS0tpby8nC9/+csMDQ3FuluX5cknn6SwsJC///3vse7KhJ05c4ampibuuOMOysvL+e53vxvrLk3Yvn37WLlyJRUVFdx1113s2bMn1l0KSXNzM8uXLx/zf6mnp4eqqipKS0upqqqit7c3dp0M0cVqSdT3/qVelwsi/v73T0EnTpzw//GPfwz8/P3vf9//zW9+M4Y9ujzvvPOO//777/cvW7bM/7e//S3W3ZmwRx991L9p0yb/6Oio3+/3+48fPx7jHk3M6Oiof/HixYHX4ujRo/7rrrvO7/P5Ytyz4P70pz/5+/r6xvxfuueee/zt7e1+v9/vb29v999zzz2x6mLILlZLor73L/W6+P3Ref9PyTOGzMxMbrzxxsDP1113HX19fTHs0cSdPXuW733ve2zYsCHWXbksH3zwAe3t7Xz1q1/FZDp/ga+rrroqxr2aOLPZzMmT5+/edvLkSXJycjCb4//ttnjxYmw2m2GZ1+vF7XbjcDgAcDgcuN3uuD/Svlgtifrev1gtEL33f1JcXfVyjI6O8stf/pLly5fHuisTsnnzZu666y6uvvrqWHflsrz33ntkZmby5JNP8uabb3LllVfy1a9+lcWLF8e6a2EzmUw88cQTrFu3jiuuuIIPPviAn/3sZ7Hu1oR5PB5yc3OxWCwAWCwWcnJy8Hg8ZGVlxbh3E5fo732I3vs//g9houzRRx/liiuuoKamJtZdCduhQ4d45513qK6ujnVXLpvP5+O9997jU5/6FDt27OAb3/gGX/nKVzh16lSsuxa2c+fO8dOf/pTW1lb27dvHU089xfr16/nggw9i3TX5mER+70N03/9TOhiam5v55z//yRNPPJEQp/n/7U9/+hPd3d2sWLGC5cuX09/fz/33309nZ2esuxY2m81GSkpKYLji05/+NLNmzaKnpyfGPQvf0aNHGRwc5Prrrwfg+uuvJy0tje7u7hj3bGJsNhsDAwP4fD7gfIgPDg5edGgjUST6ex+i+/5PzN9IBDz++OO88847bN26lWnTpsW6OxPywAMP0NnZyauvvsqrrxMKkm8AAAE3SURBVL5KXl4eTz/9NDfffHOsuxa2rKwsbrzxRvbv3w+c/xSM1+vlmmuuiXHPwpeXl0d/fz//+Mc/AOju7sbr9ZKfnx/jnk2M1WrFbrfjcrkAcLlc2O32hB1GSob3PkT3/T8lb9Tz7rvv4nA4mDdvHjNmzADg6quvZuvWrTHu2eVZvnw5P/nJT7j22mtj3ZUJee+99/jWt77F8PAwKSkprF+/nqVLl8a6WxPy29/+lp///OeBifS6ujpuu+22GPcquP/93/9lz549vP/++8yaNYvMzEx27txJd3c3TqeTkZERMjIyaG5upqCgINbdHdfFanniiScS8r1/qdfl4yL5/p+SwSAiIpc2ZYeSRETk4hQMIiJioGAQEREDBYOIiBgoGERExEDBICIiBgoGERExUDCIiIjB/wc+DeIpfg2NYQAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"code","source":["from sklearn import preprocessing\n","\n","fig, ax = plt.subplots(1, 2, figsize=(18, 6))\n","\n","spectral = SpectralClustering(n_clusters=5).fit(preprocessing.normalize(df_clusters))\n","draw_clustering(items=vectors2d_tsne, labels=spectral.labels_, ax=ax[0])\n","draw_clustering(items=vectors2d_pca, labels=spectral.labels_, ax=ax[1])"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":449},"id":"eZhAFyjItqRv","executionInfo":{"status":"ok","timestamp":1652686932354,"user_tz":-180,"elapsed":2532,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}},"outputId":"bc9db265-de4f-47c1-8b04-b37e66031a6f"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Number of clusters: 5\n","Number of noise points: 0\n","Number of clusters: 5\n","Number of noise points: 0\n"]},{"output_type":"display_data","data":{"text/plain":["<Figure size 1296x432 with 2 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABB4AAAFoCAYAAADw5ThIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde3xU9Z038M85ZzIJuZFkCMNAbiSQi5CYRMSWXUHwRrsodlurRdqtW/RZa3VXH6p0+zxgvTYU7bN0ta1y8eWW2r5cFyMRFa0gUluBhhAghEtuEyAZyISQhJDLnHOeP0LGXGaSuZy5f95/kZnJnN/vl5A553u+v+9XUFVVBRERERERERGRD4iBHgARERERERERhS8GHoiIiIiIiIjIZxh4ICIiIiIiIiKfYeCBiIiIiIiIiHyGgQciIiIiIiIi8hkGHoiIiIiIiIjIZxh4ICIiIiIiIiKf0QV6AO66ePEyFEUN6BgMhnhYrd0BHYOvRcIcAc4z3ETCPCNhjgDn6S5RFJCcHKfBiMhVFy9eRnJyXET8ngaTSPnbECy43v7HNfc/rrl2xjsfCbnAg6KoAQ88DI0j3EXCHAHOM9xEwjwjYY4A50nBbejnxp+f/3HN/Yvr7X9cc//jmvset1oQERERERERkc8w8EBEREREREREPsPAAxERERERERH5DAMPREREREREROQzDDwQERERERERkc8w8EBEREREREREPsPAAxERERERERH5DAMPREREREREROQzbgUeysrKsGTJEuTl5eHkyZP2xxsaGnDPPffg9ttvxz333IPGxkaH3y/LMn72s5/hlltuwa233oq33nrLq8ETERERERERUXBzK/Bw8803Y9u2bZgxY8aIx9etW4cVK1bgww8/xIoVK7B27VqH379jxw6YzWbs2rULf/zjH/GrX/0KZ86c8Xz0QU5VFNiaqtBXWQ5bUxVURdHktURERERERESeUFQFR9pq8H7DxzjSVgNF9f21p86dF8+bN2/MY1arFTU1Ndi6dSsAYNmyZXjmmWfQ3t6OlJSUEa/duXMn7r77boiiiJSUFNxyyy344IMPsGrVKi+mEJxURUHPRz+HrfcY+rMboa/Kgq52DmJvXQNBFD1+LREREREREZEnFFXB/zuyGcdtLWiYFoWZ5gEUnDPh3wp/AFHw3bWnW4EHR1paWmA0GiFJEgBAkiRMnToVLS0tYwIPLS0tmD59uv1rk8mE1tZWb4cQlOTmath6j6Hz/gpAUtG76CgStwD9f3sHkCRIhkxI6UUQRNHpa+XmaugyiwM9FSIiIiIiIgoDx6y1OG5rwbu3GqGKAo4UqsCuczhmrUXhlGt8dlyvAw/+ZjDEB3oIAIDU1IRxn79Y24qLOY2ApA4+IKnoz2mAcGQ7+orqEX14JibVF8H0rafQ4ei1sxph6LUgeYLj+NJEcwwXnGd4iYR5RsIcAc6TiIiISGtnus6hYVoUVFEAAKiigAaTHme6WoI78GAymWCxWCDLMiRJgizLOH/+PEwmk8PXnjt3DkVFRQDGZkC4wmrthqKo3g7bK6mpCbhwoWvc19gmTYO+Kgu9C48OBhRkAVEnTbi8dD9seS3oXXgU6hYVrZWfAw5eqz+dhd4S44TH8RVX5hgOOM/wEgnzjIQ5Apynu0RRCJrAPBEREQWvtITpmGkewJFCFaooQFBUzGzpR1rm2Ot3LXkdeDAYDCgoKEBFRQWWL1+OiooKFBQUjNlmAQBLly7FW2+9hdtuuw0dHR34+OOPsW3bNm+HEJSk9CLoaucMbq/IaUTUqTSoGIBtdsvVF6joz2lEjNUMffGyEa/V12VBN2kOpPSiwE6CiIiIiIiIwsYcQz4KzpmAXefQYNJjZks/CqKmY44h36fHdSvw8Oyzz2LXrl1oa2vD/fffj6SkJLz33nt46qmnsGbNGrzyyitITExEWVmZ/XseeOABPProoygsLMTy5ctx+PBh3HbbbQCAhx9+GOnp6drOKEgIoojYW9dAbq5GjNUMpNvQe/ZtQBUAXM1qqMuCVJIx5rVSSYa9/oM3VEWB3FwN2do0oqaEs8eJiIiIiIgofImCiH8r/AGOWWtxpqsFaZkmzDHk+7SwJAAIqqoGdt+Cm0Jlq8Vo9s4VV46NyGrwVeeKMZ0y6rOgi5mDSTc/gSt/Wj/m8dHjYJpzeOE8w0ckzBHgPN3FrRb+Z7V2w2CIj4jf02ASKX8bggXX2/+45v7HNdfOeOcjIVdcMlT5KqvBGWedMgYOvcsOGkREREREROQ3zK8PCN9nbMjWJvRnN47qqtEI2XLK8eNWs8/HRERERERERJGHGQ9+oioKLu96AXLnccgJlyCdngzpeAHibvvJiKwHreovSIbMwU4Zi4Z1yqjLgjRjNvT1Dh4vydByukREREREREQAGHjwijtBApu5CnJbDZTEbsjpbRDqRaCtBjZzFaKySu3vN6IuQ1UWdLWe1YEY3VVjqKZEVMmdsLXXjnlcVRX0VZbb5+HJHImIiIiIiIhGY+DBQ+4GCWz1+6HG9aD7+3sGMw0W1iBh082w1R+wBx6c1WXwpP7CeDUlhj8uFqehr/Z99Bx+ccQ81BXPahoIISIiIiIiosjEwIOH3A8SCBiY1TqitsLA7BZEXxj8UlUUDNR9gf7sBkBQoTs1DVJrEmwpF2Bra/Ko8KMgitBlFo/53uGP25qqIPfVjJlHT90hyJeuOJxj/9/eASSJGRBEREREREQ0IV4xeshp8UYnRRp12dcj6mQaIAtX30BA1Mk06LKvt2cW9Ld9hqhTRsS99VXE7C2AMCBBupAA25kvoCqKX+fRb2l08lwDek9uR2fUelyu+gV6Pvq5z8ZGREREREREoY+BBw9Jhkzo67NGBBL0dVmQDI6LNOoyihEVX4LEzV9HzCdzkbj564iKL4Euo/jL7IkHd0CNkiFejEP39/egd8kxdD3wMWS1CXJztV/noTdmOXwu6qQJPV/bj94lR9B5fwVsV475bGxEREREREQU+rjVwkPOijcOL8w43JiaC6Vf1lywZxZEqRiY1QrBJo3JQIixmj3abuHpPGJzSnD5QveI56JOpUHFAGyzW/wyNiIiIiIiIgp9DDx4aLzijeN9j6OaC8NbX8qmDsTsLQDkGr+0u3Q+D2nMc0i3offs24AqAGArTiIiIiIiIppYxAYetGgT6SyQ4K4RWQfZjRA745Hw2m0YyD03YSbFaJ7Ma7x5DH9OVRSHrThdHRsRERERERFFnogMPARbm8gxLS7/Pg0AoLSfcSmTYoiv5+VJlgcRERERERFFtogMPLjfCtP3HGYdZJXa/+lKJoM/5qVVlgcRERERERFFhsgMPDhpIRmsRRJdzWQItXkRERERERFR+IvIHHl3W2EG2vBMhvHaWIbavIiIiIiIiCj8RWbgIb0Iupg5SNyyDDGfFCJxy7KgLpLoLJNBtppHvC7U5gUMZnPYmqrQV1kOW1MVVEUJ9JCIiCiElJWVYcmSJcjLy8PJkyftjzc0NOCee+7B7bffjnvuuQeNjY0uPUdERETai8itFoEokji6RoM4Yy6Us0dd6j4xvN2mvcXm6SwgzYa+yvIR3x9KxR+DrcgnERGFnptvvhnf+973cN999414fN26dVixYgWWL1+O8vJyrF27Fm+88caEzxEREZH2IjLwAAwGH4YyAWRrEwD47CJ9zAX2oSwIn8dBjb3s0gX3iHabOY3Qn86C0BuH3nNvO/z+UCn+GIxFPomIKLTMmzdvzGNWqxU1NTXYunUrAGDZsmV45pln0N7eDlVVnT6XkpLi17ETERFFiogNPPjzbvvoC2zbjDZM2j0XXfd/7NIF9+hMBqTZ0Hvu7ZC/YGcxTCIi8oWWlhYYjUZIkgQAkCQJU6dORUtLC1RVdfocAw9ERES+EbGBB3/ebR99gS2dn4yB3HNuXXAPz2ToqywPiwt2h1tI6rIglbAYJhERBTeDIR4AkJqaEOCRRB6uuX9xvf2Pa+5/XHPfi9zAgx/vto++wJanXsKk3XPRu6jGowvucLlgH7OFpC4r6IthEhFR8DOZTLBYLJBlGZIkQZZlnD9/HiaTCaqqOn3OHVZrNwyGeFy40OWjWZAjqakJXHM/4nr7H9fc/7jm2hFFwR6YHy1iAw/+vHh3WKOhPw6JW5Z5dMEdLhfsoVYMk4iIQoPBYEBBQQEqKiqwfPlyVFRUoKCgwL6VYrzniIiISHuCqqpqoAfhDqu1G4ri/ZDtNR6uHBtx8e5KjQdPomJfdrUwQzJkDOtqMfi1uxfco99P6wv2SIn8cZ7hJRLmGQlzBDhPd413hyHcPfvss9i1axfa2tqQnJyMpKQkvPfee6irq8OaNWvQ2dmJxMRElJWVITs7GwDGfc5VzHgIjEj52xAsuN7+xzX3P665dsY7H4nYwAPg+cV7JPxyRsIcAc4z3ETCPCNhjgDn6a5IDjwECgMPgREpfxuCBdfb/7jm/sc11w63WjgRSq0niYiIiIiIiEIRN9MTERERERERkc9EdMZDuPtyK0kTJEMmCzcSERERERGR3zHwEGaGgg22tkbYzuyHjMG2ofqqLOhqXSueSURERERERKQVBh7CiL1TR+8x2JIvQLIloOuBjwFJRe+io0jcAsjN1axpQURERERERH7DW99hRG6uhq33GDrvr4A8tQMDuecA6WoHEElFf04jZKs5sIMkIiIiIiKiiKJJxsOZM2fw8MMP27/u6upCd3c39u/fP+J1v/rVr/D73/8eU6dOBQCUlpZi3bp1WgyBAMjWwW0VkFTI0zoQs7cAkGsGgw+yAH1dFqSSDNZ+ICIiIiIiIr/RJPCQlpaG8vJy+9fPPfccZFl2+Nq77roLTz75pBaHpVEkQyb0VVnoXXQUtpxWqJUzkfDaLRjIbYG+biZ0k+ZAnDHXvh2DtR+IiIiIiIjI1zSv8dDf348dO3Zg8+bNWr81TUBKL4Kudg4StwD9OY2QLk2BJGZiUv/3IJUMZjYM347B2g9ERERERETka5oHHj755BMYjUbMmTPH4fPvvfce9u3bh9TUVDzyyCMoKSnReggRSxBFxN66BnJzNWKsZkilGWO2UQzfjgHAXvshxmpm4IGIiIiIiIg0p3ng4e2338Y3v/lNh8/de++9+Jd/+RdERUXhz3/+M374wx9i586dSE5Odvn9DYZ4rYbqldTUBK++X1Vk9NQdQn9rA/TTZiI2pwSCKGkzOOONTp+6nJ2Pvr0z0Ssftdd+iK6fieRFeYgbNSdv5xgqOM/wEgnzjIQ5ApwnERERUbjQNPBgsVhw4MABrF+/3uHzqamp9n//3d/9HUwmE06dOoX58+e7fAyrtRuKono9Vm+kpibgwoUuj79/eNvL/uxG6D/Ngu4L/9RZUBNnQ4q+BolbBjMd9HVZkCZdg8uJs9EzbE7ezjFUcJ7hJRLmGQlzBDhPd4miEDSBeSIiIqLRNA08bN++HYsWLXKawWCxWGA0GgEAx48fx9mzZzFz5kwthxASAllnYcx2jJKx2zGIiIiIiIiItKJ54OGnP/3piMceeOABPProoygsLMRLL72EY8eOQRRFREVFYf369SOyICJFoOssCKIIXWYxazoQERERERGRz2kaePjwww/HPPbaa6/Z/11WVqbl4ULW8LaXQ3UW9HVZkEoyAj00IiIiIiIiIk1pXlySJja67aW+Lgu6SXMgpRcFemhEREREREREmmLgIQBYZ4GIiIiIiIgiBQMP41AVBXJzNWRrEyRDpqbBgVCrs+DLtSAiIiIiIqLwxcCDE2NaXlZlQVc72PIy0oy3Fgw+EBERERER0XgYeHBivJaXMN4Y6OH5VSDbfxIREREREVFo4+1qJ5y1vJSt5oCOKxC4FkREREREROQpBh6ckAyZ0NdnAbIw+MBQy0tDcLS8VBUFtqYq9FWWw9ZUBVVRfHasYF8LIiIiIiIiCl7cauFEMLe89HfNBV+sBYtVEhERERERRQYGHpwI5paX/q65oPVasFglERERERFR5GDgYRzB2vLSWc2FGKvZZ2PVci1YrJKIiIiIiChy8PZyCAr1mgssVklERERERBQ5mPEQgoK1/oSrdRskQyb0VVnoXXR0MPgwFDgpCY3ACREREREREbmOgYcQFIz1J9yp2xCsgRMiIiIiIiLSHgMPIWq8mguB6BjhTt2GQAVOHK0LERERERER+RYDD2EmUB0j3C146e/Cnc7WRV3xrF+OT0REREREFKkYeAgzgeoY4WrdhkBkYwDO16Wn7hCQlOfz4xMREREREUUqBh7CTCBabQKO6zZIMddAVRX0VZZDMmRCnDEXV/603u/ZGIDzdem3NDLwQERERERE5EMMPISZQHWMGF23QSxOQ/+JD9Bz+EV7kEGqyoSsNqHzn/2bjQE4Xxf9TVmw+fTIREREREREkY2BhzATyI4Rw+s22JqqxmxtSNi0FPKU9lFZBw2IaWvyKvDgyvYNZ+sSm1OCHmuPN9MmIqIgdebMGTz88MP2r7u6utDd3Y39+/djyZIl0Ov1iI6OBgCsXr0aN954Y6CGSkREFNYYeAgz7naM8FXNBUdbGwZmN0NflQnIgj3rIOqkCciQPT6Oq8U0na+L5OVMiYgoWKWlpaG8vNz+9XPPPQdZ/vIzZ+PGjcjNzQ3E0IiIiCIKAw8hzFnQwNWOEeNdtHvL0daGqFPpUHUy4rcuhi3HAl2dESpUqF5c/LvbxtOfnTSIiCh49Pf3Y8eOHdi8eXOgh0JERBRxGHgIUVq0zXR20d7/t3dwMSEWtknTPM6AcFhsUsqEHNOEKzcehnQhEb03Hkfsp/Ogm5Lp9vvb5xCgYppERBRaPvnkExiNRsyZM8f+2OrVq6GqKq677jo8/vjjSExMDOAIiYiIwhcDDyFKi7aZji/aG4Dq7ei8tt6rrhOOtjYMdbWI3TsYjIjdOw+6WO/qTwSqmCYREYWWt99+G9/85jftX2/btg0mkwn9/f147rnn8PTTT2PDhg0uv5/BEA8ASE1N0HysND6uuX9xvf2Pa+5/XHPfY+AhRHl7p19VFECWoT+eDduMNthmtwDqYM2Fnq/thy2vBb0Lves64Whrgzv1J1wRyGKawcRXtTqIiMKBxWLBgQMHsH79evtjJpMJAKDX67FixQo89NBDbr2n1doNgyEeFy50aTpWGl9qagLX3I+43v7HNfc/rrl2RFGwB+ZHY+AhRHlzp3/ENo2iBkzaPRfq7jkQEAUVA4NBCMAn2xa0rrPgbjHNcKTFthsionC2fft2LFq0CMnJyQCAnp4eyLKMhIQEqKqKnTt3oqCgIMCjJCIiCl8MPIQob+70j92mcQwJm5YiOnER+rv/DKgCgNDZthDpRSO12HZDRBTOtm/fjp/+9Kf2r61WKx555BHIsgxFUZCTk4N169YFcIREREThjYGHEOXNnX7HrS7PYFL/DOjkq8GMWY3Qnx4bzGBKf/BhgU0iovF9+OGHI75OT0/HO++8E6DREBERRR4GHkKYp3f6nW/TyIS+5A7IzdUw9FrQW2IcEVhgSn9wYoFNIiIiIiIKZgw8RKDxtmkMBTOSHRRZYUp/cGKBTSIiIiIiCmYMPEQgT7dpMKU/OLHAJhERERERBTMGHiKUJ9s0mNIfvDzddsOaHURERERE5GuaBR6WLFkCvV6P6OhoAMDq1atx4403jnjNlStX8JOf/ATHjh2DJEl48sknsXjxYq2GQD7GlP7wwpodRERERETkD5pmPGzcuBG5ublOn9+8eTPi4+Px0UcfobGxEffddx927dqFuLg4LYdBPsKU/vDCmh1EREREROQPfr1ifP/993HPPfcAALKysjB37lzs3bvXn0MgLw2l9EeX3gldZvGIoIOqKLA1VaGvshy2piqoihLAkdJEnNXskK3mgI6LiIiIiIjCi6YZD6tXr4aqqrjuuuvw+OOPIzExccTz586dw4wZM+xfm0wmtLa2ajkEChCm7Yce1uwgIiIiIiJ/0CzwsG3bNphMJvT39+O5557D008/jQ0bNmj19nYGQ7zm7+mJ1NSEQA/B59yZ4+VTB9HVVzOYti+osM1oQ9z7InS1O5F847chiJIPR+qdSPhZAmPnqRoWoKX+WghbBfTlNCC6biYmTS7CtNIFQf3zmkgk/DwjYY4A50lEREQULjQLPJhMJgCAXq/HihUr8NBDD415zfTp03H27FmkpKQAAFpaWnDDDTe4dRyrtRuKono/YC+kpibgwoWugI5hIt52K3BnjqqioLdyD/pm1gOCirj//iqErhj0FZ2Gtfa/0NlcHbSZD6Hws9SCs3nqFq1GbHM1oq1mSMWDNTvarD0BGKE2IuHnGQlzBDhPd4miEDSBeSIiIqLRNAk89PT0QJZlJCQkQFVV7Ny5EwUFBWNet3TpUvzxj39EYWEhGhsbceTIEbz44otaDIGG8ee2B/uxLtUg6pIRthlWCF0x6P7+nqsFC2uQuEWH/r+9A0gSWzYGGU/bcBIREREREblKk8CD1WrFI488AlmWoSgKcnJysG7dOgDA8uXL8eqrr8JoNOIHP/gB1qxZg1tvvRWiKOLpp59GfDzv0GjNn90K7Md6sAJx27+CSe8XY6DIPKpgYQNQvR39RfWs/UBERERERBRhNAk8pKen45133nH4XHl5uf3fsbGx2LhxoxaHpHE461YQYzVrH3gYOlaUisvf+guiPyuA/vgM9C6qsRcsjDppQs/X9sOW18KWjURERERERBGGt5zDkGTIhL4+C5CFwQeGuhUYtO9WMOJYItC3oBbClUlI3Px1xHxSiIRNS6FChW12y9VvYMtGIiIiIiKiSKJpO00KDlJ6EXS1c5C4BejPaYS+Lgu6SXMgpRdp8v7DC1eKKemQoq8ZcSxpyjWIzv8aYtrPAOk29J59G1AFAGzZSEREREREFGkYeAhDgigi9tY1kJurEWM1QyrJ0Kyg45jClYezoIuZg9ji/42Y9jMjj5VVClVRYGuvHQxMZDdCf3wmJBihqgpURWGdByIiIiIiojDHwEOY8lW3AmeFK6OFryO69E6H44i9dQ1s5iqIB38HRd+CK7P+CvlwK3QnWGQy3Hnb1pWIiIiIiEIfAw/kFk8KVwqiCEEQoURZ0Hn/Tp932qDg4M+2rkREREREFLx49k9u8bRwpbOABYtMhq/h2TG9S46g8/4K2K4cg9xcHeihERERERGRHzHwQG6R0ougi5mDxC3LEPNJIRK3LHOpcKU/O21QcGCwiYiIiIiIAG61IDd5WrjS1502KPhIhkzoq7LQu+joYPCBHU2IiIiIiCISAw/kNk8KV/qy0wYFJwabiIiIiIgIYOCB/MhXnTYoODHYREREREREAAMPRORDDDYRERERERFvPRIRERERERGRzzDwQEREREREREQ+w8ADEREREREREfkMAw9ERERERERE5DMMPBARERERERGRzzDwQEREREREREQ+w8ADEREREREREfkMAw9ERERERERE5DMMPBARERERERGRz+gCPQAiIiIiX1iyZAn0ej2io6MBAKtXr8aNN96IqqoqrF27Fn19fZgxYwZ+8YtfwGAwBHi0RERE4YuBByIiIgpbGzduRG5urv1rRVHw4x//GC+88ALmzZuHV155BRs2bMALL7wQwFESERGFN261ICIioohx9OhRREdHY968eQCAe++9Fx988EGAR0VERBTemPFAREREYWv16tVQVRXXXXcdHn/8cbS0tGD69On251NSUqAoCjo6OpCUlOTy+xoM8QCA1NQEzcdM4+Oa+xfX2/+45v7HNfc9Bh6IiIgoLG3btg0mkwn9/f147rnn8PTTT+PWW2/V5L2t1m4YDPG4cKFLk/cj16SmJnDN/Yjr7X9cc//jmmtHFAV7YH7Mc34eCxEREZFfmEwmAIBer8eKFStQWVkJk8mEc+fO2V/T3t4OURTdynYgIiIi9zDwQERERGGnp6cHXV2Dd7BUVcXOnTtRUFCAuXPnore3FwcPHgQA/OEPf8DSpUsDOVQiIqKwx60WREREFHasViseeeQRyLIMRVGQk5ODdevWQRRFrF+/HuvWrRvRTpOIiIh8h4EHIiIiCjvp6el45513HD5XWlqKHTt2+HlEREREkYtbLYiIiIiIiIjIZxh4ICIiIiIiIiKf0WSrxcWLF/HEE0/AbDZDr9cjMzMTTz/9NFJSUka8bs2aNfj888+RnJwMAFi6dCkeeughLYZAREREREREREFIk8CDIAhYtWoVbrjhBgBAWVkZNmzYgOeff37Max988EGsXLlSi8MSBZSqKJCbqyFbmyAZMiGlF0EQmUREREREREQ0nCZXSUlJSfagAwAUFxeP6JFNFG5URUHPRz/H5apfoDNqPS5X/QI9H/0cqqIEemhERERERERBRfPbs4qi4M0338SSJUscPr9161bccccd+OEPf4i6ujqtD0/kF3JzNWy9x9B5fwV6lxxB5/0VsF05Brm5OtBDIyIiIiIiCiqat9N85plnEBsb63A7xWOPPYbU1FSIooh33nkHq1atwscffwxJklx+f4MhXsvheiw1NSHQQ/C5SJgj4Nk8L9a2on1mI+RKI5T6JIjZHejLboSh14LkIF03/jzDRyTMEeA8iYiIiMKFpoGHsrIyNDU14Te/+Q1EB3vdjUaj/d933XUXXnjhBbS2tmLGjBkuH8Nq7YaiqJqM11OpqQm4cKEroGPwtUiYI+D5PAeip8K6+Rqcu5iET1sXYNG0zzE9uQPJP0yFLQjXjT/P8BEJcwQ4T3eJohA0gXkiIiKi0TTbavHSSy/h6NGjePnll6HX6x2+xmKx2P/92WefQRTFEcEIolDRewk4d2EqVh74T/zG/D2sPPCfaLkwFb2XAj0yIiIiIiKi4KJJxsOpU6fw29/+FllZWbj33nsBAGlpaXj55ZexfPlyvPrqqzAajXjyySdhtVohCALi4+Px61//Gjqd5rs9iHyuv7kZe9vmQ1YHf39lVYdP2+bj2jNngOLSAI+OiIiIiIgoeGhy1T979mycOHHC4XPl5eX2f7/++utaHI4o4KIzMrHIWI5Xm++FrOogCTYsMh5CdPpdgR4aERERERFRUGG6AZEH4gqLkJ63B9vwJD61lGCR8RDS85IQV10qg44AACAASURBVFgU6KEREREREREFFQYeiDwgiCJmrX4UpiPVuLbZjOj0uxBXWATBQVFVIiIiIiKiSMbAA5GHBFFE/LXFiL+2ONBDISIiIiIiCloMPBBpTFUUXD5SjT5zE6IzMpkJQUREREREEY2BByINqYqC0xs2ovnEJXxqKcYiYznS8/Zg1upHGXwgIiIiIqKIxMADkYYuH6lG84lLuO/gzyGrOrzafC+24UmYjlRzSwYREREREUUk3oIl0lCfuQmfWoohq4MxPVnV4VNLCfqazQEeGRERERERUWAw8ECkoeiMTCwyVkESbAAASbBhkfEQotMzAjwyIiIiIiKiwOBWCyINxRUWIT1vD7bhSXxqKcEi4yGk5yUhrrAo0EMjIiIiIiIKCAYeiDQkiCJmrX4UpiPVuLbZjOj0u9jVgoiIiIiIIhoDD0QacNRCk8UkiYiIiIiIGHgg8lqwt9BUFQXtBw7CeqTWHhQJhnEREREREVFkYOCByEvB3EJzKChy5mQn9rReG3RBESIiIiIiCn8MPBB5yVkLzWubzR4HHhxt3fAkUOA4KPIEkt99B4IkMQOCiIiIiIh8jlcbRF7SuoXmUJbC/o3l2PhbYP/GcpzesBGqorj9XqODIqoqwNYr4/D2Q16/NxEREVGkUBUF3YerYN1Rju7DVTx3InITMx6IvKR1C00tt24MBkXK8WrzvZBVHRYkHYQAFSurXgy6bSFEREREwchf9bxYl4vCGQMPRF7SuoWmlls3hoIivxfWYE9rMZYZd2NH602abgshIiIiCmf+qOfFulwU7vhbTKQBQRQRf20xDMvuRPy1xV59QGi5dWMoKHLL/7kXj/6LgJl3LMRN0w5rti2EiIiIKNw5uynU12x2+T0m2qoxFNxYceAF/Nq8Evcd/DmaT3Tg8pFqTedCFCjMeCAKMlpv3RBEESnXz4OclQdVUZB+0qzZexMRERGFu9FbV7+8cXOXS9/vylYNXxQrJwomDDwQBRmtt274672JiIiIQoG73cO8vSnkylYNb4MbRMGOgQeiIDS0dcMXEW533tvRBzMATVp9EhEREfmbJ4UiHd24iZ0z1+XzIVeyGUbX5WJWKoUbBh6IyCFnH8yqquLMyU6fVnUmItLCxYsX8cQTT8BsNkOv1yMzMxNPP/00UlJSkJeXh9zcXIhX/3atX78eeXl5AR4xEfmap4Uih9+4cTd44Uo2w1BwI998CkVHTzArlcIOAw9EAaQoKqrrrTBbupBhTEBRtgGiKAR6WACcfDArP0aM2If7Dm5kO04iCnqCIGDVqlW44YYbAABlZWXYsGEDnn/+eQDAH/7wB8TFxQVyiETkY6OzN3ubGr2upeBu8MLVrRrD63IRhRsGHogCRFFU/Ofv9qPzZDNKao+gIr8Qe3PT8aOV84Mi+OAwLfB8KebGn2DhIyIKCUlJSfagAwAUFxfjzTffDOCIiMifHGUmpM0AFhnhVS0FdwtBssYWEQMPRAFTXW9F58lmvLjpRegUBSv37cLjq1ajuj4HxbOmBHp4jtMCp1YiRuyDJNi8LnzkbmEnIiJvKIqCN998E0uWLLE/9t3vfheyLGPhwoV45JFHoNfrAzhCItKa48yEJzB9RpRXHb48KQTpy/pdRKGAgQeiADFbulBSewS6q32cdYqC0tpqNFtKNQs8DF3c91pbYTNMc+vi3nFaYApUVfW6HacnhZ2IiLzxzDPPIDY2FitXrgQA7NmzByaTCd3d3fjxj3+Ml19+GY899pjL72cwxAMAUlMTfDJeco5r7l+BWG9VlnGx8hAu1zcgLnsmkktLIEiS26/vtbY6yEwoxZoVeszJycaChkbEzfzOhO8/2pTFC2Ddvc9eCPKmaVXInjsFWYsXuPU+zvB33P+45r7HwANRgGQYE1CRX4iV+3ZBpyiwiSIq84twh1GbP3zeXtw7SwsEgOlepgp6WtiJiMgTZWVlaGpqwm9+8xt7MUmTyQQAiI+Px913342tW7e69Z5WazcMhnhcuNCl+XjJudTUBK65HwVivceev/wB6XnvOz1/Ge/1NsM0h5kJ8pS7IGflISYrDzKAtvYet8eZ8egPYThSjaJmM6LTlyOusMij9xmNv+P+xzXXjigK9sD8aAw8EAVIUbYBe3PT8fiq1SitrUZlfhEm56ahKNugyftrcXHvLC3Q21RBd/dGEhF56qWXXsLRo0fx6quv2rdSXLp0CdHR0YiJiYHNZsOHH36IgoKCAI+UKPI42nbp7vnLeK93taijJ7h1gsg9DDwQBYgoCvjRyvmors9Bs6UUd2jc1SKYL+492RtJROSuU6dO4be//S2ysrJw7733AgDS0tKwatUqrF27FoIgwGazoaSkBP/6r/8a4NESRRZnmZnJ+Vlunb9MdL7Doo5EwYGBB6IAEkUBxbOm+KSYZDBf3PvyDgQR0ZDZs2fjxIkTDp/bsWOHn0dDRMM5y1RIzlWwyHjE5fOXic53XMlMYMFrIt9j4IEoTLlycR+oD1q2lSIiIgoPnp5LOM1UkID0vMku35zw9maGw5abubthun0R+pubGYgg0ohmgYeGhgasWbMGHR0dSEpKQllZGbKyska8RpZlPPvss/jss88gCAIefPBB3H333VoNgYiGGX5xv6DdAlvKyIv7QHaW8FfAg3cwiIiIfMebcwmnmQoZd2HWP9zh8s0Jb29mDGVefPfg87h+cjX6bBK+pXyA5toO7L1Qys5bRBrRLPCwbt06rFixAsuXL0d5eTnWrl2LN954Y8RrduzYAbPZjF27dqGjowN33XUXvvrVryItLU2rYRDRMEPphY6q9WrVWcLdi3t/BTzYspOIiEhboz/zVUVx+1zC3uq7qRFpM4BteAKfWkpHZCq4W7jRm0KPfeYm7LVci2dmvYhUfTvO9k5Fe/9k/NPR9ey8RaQhTQIPVqsVNTU19lZUy5YtwzPPPIP29nakpKTYX7dz507cfffdEEURKSkpuOWWW/DBBx9g1apVWgyDiNygRfFJTy7uvQl4uBPkYMtOIiIi1zn6jB39/OjP/GmGAey1zHP5XGLEe7Rei4VTbDBNVfDIchUxmYHZdhmdkYnbjG/C2hOHB2tewErTdpztMwVlcW6iUKbJ/+yWlhYYjUZIkgQAkCQJU6dORUtLy5jXTZ8+3f61yWRCa2urFkMgIjcNpjhWQRJsADCsGFOGy+8x/OL+1+aVuO/gz9F8ogOXj1Q7/R5nAY++ZvO4xxo6Wdm/sRwbfwvs31iO0xs2QlUUTY9DREQEDH7u2Jqq0FdZDltTldPPm3Dg9DNWlu2v6T5chQsnWvDh2etxuDMf3z34PFoviLjN+BeXzyVGnDc0fxcrqzbgbIuK9oOHA7YdMq6wCFOmCDjQWQRZ1eFUz0zMn3zYq/MjIhor5IpLGgzxgR4CACA1NSHQQ/C5SJgjELnznLJ4Aay79+H3whrsaS3GTdOqkD13CrIWL4BwNYg4kV5rq8OL+wXtFqfrKhXm46Zpfxyxp/OmaVWYFH0dej/5AHHZM5FcWjJmDO0HDuLMyc4RGQy/F9Yg33wKKdfPGzNPZ8eZOvdepIT4zzxSf2fDVaTMkyiUqIqCno9+DlvvMfRnN0JflQVd7RzE3romJLfrTZQx6CxLML/yEJCVN7il4s3/QecVPfTiAH4w44+4M/Uj7L1QihVz/opt81wr7NhnbsKnrdeOOG/Y234D7ozejcsubM/wRc0mQRRh+s63seg/yvHame/grx0lWJ66C28UPoZ9F+dj0bSqoCnOTRTKNAk8mEwmWCwWyLIMSZIgyzLOnz8Pk8k05nXnzp1DUdHgf9zRGRCusFq7oSiqFsP2mKP98uEmEuYIcJ4Zj/4QhiPVKGo2Izp9OeIKi9DW3uPy+9oM0xwWhrKl3OV0XdWM2UjLTcQ29cuTFEN0F/76h4NXv/4D0vPeH7Ndw3qkFntGnazsaS1G0dETkLPyxszT0XHScpNgy5gd0j/zSP+dDTdazVMUhaAJzBOFA7m5GrbeY+i8vwKQVPQuOorELYOP6zJDK93elW2RzrIEFzQ0IiYrD5ePVKPlgoT7jw3WPdh09l68es0a5CeZYfrOvZguiC4VdozOyMTCKW/j1TPfsZ83zJ9chUMd+ch2ZXuGj2o2xRcVI6NgL7aJg+cMmUltSJsRjdLrBURnBE9xbqJQpkngwWAwoKCgABUVFVi+fDkqKipQUFAwor4DACxduhRvvfUWbrvtNnR0dODjjz/Gtm3btBgCEXnAm2JMgGctrEZXn1ZtRajeUY37DpaNW4thoj7dEx2HLTuJiMhVtguN6MYFDPx3HsTsDoilrejPaUSM1RxygQdXah45+4yNm/kdyLhagPFC6YjAxIHOa7Ey46+ILyq2n09MJK6wCDMyK/CG/Bj2tt+A+ZOr0NafgllJLYhO/4rH4/fE6KyFnMd/BNOxo1fPGb7h9JyBNaSIPKPZVounnnoKa9aswSuvvILExESUlZUBAB544AE8+uijKCwsxPLly3H48GHcdtttAICHH34Y6enpWg2BiPzM04v74QEP645yfGopmbCIk6dBDm8CK0REFHlURYF551E0112HT63zsWja5zDOOY3ErFhIpaG3z9+VYtLOPmOTS0vQ1t7jMDBx09RKmL7zbbcC+oIoInftGohPP4c7o3fjUEc+ZiW1ID0vefztGV4Wwx5tvKyFid7TF+MhigSaBR5ycnLw1ltvjXn8tddes/9bkiT87Gc/0+qQRKQBb/cpentx72omAzMYiIjIGVVRIDdXQ7Y2QTJkQkr3/PPh8pFqnGmSsbLq/0FWdXiteQW2DfwbpiUJkNKdB7uDlSufs04/Y6/WW3IcmEhBfJH7n/2iTofZT/1fXD5SjexmM6LTvzLh9gx3Mh5d4U3Wgi/GQxQJQq64JBFpJxj2KbqTycAMBiKiyKUqCi6fOoi++toRwQWtC0E6vKPddgPmDJyA3FztVVAjEFz9nB3vM1br4L87n+eeZDxOxJusBV+MhygSMPBAFMGCYZ8iMxmIiGgiQ8GFrr4a9M1sGBFc0LoQpMM72lO+gM34N1yuqg657hZafc46Chb4o7uDL84TvMla4HkLkWcYeCCKYMGyTzFUMhkUmw3tFe/iyulTmDRrNlKW3QlRxz+jRES+Nl5wQbY2oT+7EZCudj2TVPTnNCCmrcmjwMOIO9qtxVg05QtMLa6FfP9f0QkhJLtb+OJz1p9Zk1qP39ushVA5byEKJjxjJopgobZP0Z07K1rfhVFsNhz91ydh6YjBZxevx42HDsD40Z8x9z/KGHwgItKIs1oNjoMLg10mJEMm9FVZ6F10dPB5WUDUSRMGxC+gL7nDozv7Q3e053zxIWzGv0G+/68QJABQQ7a7hdaCIWvSU8xaIPI/ni0TRTB3Iv7+SKccjzt3VnxxF6a94l1YOmLwvaMvDRYbO/sdvFH4GKZXvIspd/2jFlMkIopo49VqcBRc0NdlQSrJgDhjLsQvjEj8j6/DlnkBYns8lORuyJeaPM5MGLqjHZMEXK6qRicEACOPG+mCJWvSU8xaIPIvBh6IQpw3AQFXI/7BUITSnTsrvrgLc+X0KXx28foRJ1iftc9Hft1Jr+dGRBSu3Ok2Md52Cim9CLraOZi8VUBfdgP0dVnQTZoDccZcXPnTesi6sxgoMCPq9DSoehsuf/MviNlb6HVmwtBxE7cA/TmN9uOGYncLd6mKgvYDB2E9Uuvw/CLUsiaJKLAYeCAKYVoEBFyJ+AdDOqU7d1Z8cRdm0qzZuPHQAbx29jv2E6wbU/ZjUs487yZGRBSm3O02Md52Cl1mMWJvXYO4zlO4WH8CUkkGpPQie7Cia9UHV4MVNYjfuhi6OpMmmQmCKNoLWMZYzfbjhntK/tD5xZmTndjTeq3D8wt2dyAidzDwQBTC/BUQCIZ0SnfurHh7F8ZRFknKsjth/OjPeKPwMXzWPh83puyHcXIfUpbdqfVUiYiCllYZDI6yEMbbTgEMBgHiZs9DT1Lel8dwEKywZVsQ+/586KYUaJKZIIgidJnFXmVOBHq7ortcOb9gnQQicgcDD0QhzF8BgWBIp3Tnzoo3d2HGyyKZ+x9lmF7xLvLrTmJSzjx2tSCiiKJ1BsNonmxrcFhY8lQGYnK/Af11dwXFRbDc34+6detwyXIZhzquwazkQ37fruguV88vWCeBiFzFM2aiEOavgEAwpFO6c2fFm7swE93lYSFJIookwzMcIMuaZjCM5sm2BofBirg5QRN0UGw2nHjyf+Ps+UTsvXgz5k8+jKYOA3CiLai7P2h9fhFqGR9EpD0GHohCmC8CAs5ODoIhndKdOyue3oUJhm0lRETBYEyGw/Fs9Bc1+DSDwd1tDaODFWJxGlRVQe+eVwEI0GVfD11GccAucrt2v4uWtnh7R6RNZ+/Fq9eswemLpqD+XBk6v/i9sAZ7Wou9Or8IhgLVpA1FUWGub0ebpRtTjPHIyE6BKAqBHhaFCAYeiEKY1gGBiU4OIiGdMhi2lRARBQObuQq2niPo/MHOwdoJM9owafdc9C46pnkGgzu1IxwdR5dZDCm9CJd3vQC5rQZqXA8GZrUi6m8fI+pEidPtIL7W23AKe9vnjwhm779UjDun/QnR6V9x6738mTUwdH6Rbz6FoqMnvDq/CIYC1eQ9RVHx4e+O4MrJLuTUCqjMV3E8NwG3ryxk8IFcwsADUYjTMiCg9clBKKZWBsO2EiKiQFMVBX1fbEP/NY32DAfb7Baou+cgYdNSDMw+o1kGg7u1I4Z/3/BghaoqkDuPQ0nsRvf399i7XCRu1jndDuJrMTNnY+GU/Xj1zAp7MHth8heYbIxz63MlEFkDgigi5fp5kLPyJn7xOJhJGB7M9e24crILqzZFQ1IELN6nYtOqLpjr25GRnYLqeivMli5kGBNQlG1gMILGYOCBiOy0PDkI5tTK8QIiwbKthIgokOTmasiCBbqGqYBcMxh8UAWIQjRi0u/GpAGd260lnWU1uNv9Yui9RgcrxIGpkOMvQc5oG7kdZFaT0+0gvpaw+E6k/WkvtuHf8GnbfCxM2Q/TlG7k/OxFtz5XQjlrgJmE4aHN0o2cWgGSMhhQkBQBObUC2lq78O7np9F5shkltUdQkV+Ivbnp+NHK+Qw+0AgMPBCRnZYnB8F6kuRKQCRStpUQUfjxZsvCcLK1Cf35DZCs8Yjfuhi2HAuiTpogKiaPCjeOl9XgTvcLVZFha6rCQN1fR2wD6V10FImbvw7pYhIEmwgsrPlyO8jpTEiljreD+Jqo02H2sxswbfe7mNNwCjEzr0fCYvc7IoVy1gAzCcPDFGM8KvNVLN6nQlIEyKKKunwVyYqKzpPNeHHTi9ApClbu24XHV61GdX0OimdNCfSwKYgw8EBEdlqeHATrSVKwBkSIiLzlyZYFZ4GKoY4Unf9UAV2jEVJLEoSBWMTcsNKzQMY4WQ2udr9QFQUt//0UejoPQ9Z3Qp41OrPBjJhjNwCdChI23YyB2S2IOpkGXXzhuNtBfE3U6TD51n/EZC/eI5SzBphJGB4yslNwPDcBm1YN1nioy1cxKTcBnaKKktoj0CkKAECnKCitrUazpZSBBxqBgQcistPy5MDRSdJCw0GothKoihKwE45gDYgQEXnL3S0L4wUq7B0pXh/WkSLpGugyPPs7OV5Wg754mUvdL+Tmalzpqkbn/RXQ1RsRs7fgy20gV4MVMV9ZCQCw1R9A9AVAd11gu1poJdSzBphJGPpEUcDtKwthrm+H1dKN0qtdLarrrajIL8TKfbugUxTYRBGV+UW4w5gQ6CFTkGHggYhG0OrkYPhJ0p7WYtyYvB+yTUT1jmqknzQHrNZDKN81IiIajztbFoCJAxWj21QCQH/VDo+2cIyX1eBq9wvZ2oS+7MF2nracVqiHZl7NbGiFvm4mdJPm2IMMUVmlHq/jcFptXfEWswYoGIiigKxZBmTNMtgfK8o2YG9uOh5ftRqltdWozC/C5Nw0FGUbxnknikQMPBCRTwydJCW/+w4SduzBC6cexOcd8yAIakC3NoT6XSMiikwTXQCrigLIMqIa0ybcsjBkokDF8DaVnnSdGM6eQTGU1XA6A6I8Faqq2LPgJup+IRkyEX14JnoXDs7v8jf+isTf3oH4C/+EqJIbNAkKDF9nMSUdfbXvQ+6r8XjeWmLWAAUjURTwo5XzUV2fg2ZLKe5gVwtygoEHIvIZQRQhSBIqLIuxr+OGwQdVBHRrA+8aEVEwceWO+kS1G+zPXzkGVR1Awmu3YCC3xZ4F4Ky+gau1FWzmKtgu1aCv8BRkUwd6bzyKxNfH7zox2lBWg81cBemLbZAFC3rz90M5fB66E65dzEvpRZhUXwR1izpi+0fMTQ9o8jd8zDofygAui+j8UQUQ5Vq3DfJesGSZkHOKosJc3442SzemXN1yUTxrCms60LgYeCAit43XjnK0YNzawLtGRBQMXC0G6WxLhM1cBUEQMVD3BWyXatD54ODzulMmxL4/HzG53xi3A8WYLAQHtRVURUHvwf+CGnUZgiwhZm8B1EMz0Z/tfAuHM4IoQhBEyDGtX85Fdv1iXhBFmL71FForP3e6JcObi1ZH65yw6WboGo2wzW6dcOsKec+TAqnkX4qi4sPfHcGVk4NFJivzVRzPTcDtKwuZ5UDjYuCBiNziSjvK4bi1gYjIMVeLQTrbEiF9sQ1yTCv6sxsQdcmIuO1fweVv/QW2vBb0n61HzIBu3Is1V2oryM3VUKRWdP3gk8HjL6xB/NbF0J9PhfQV11pUDg8GKB0t6J85di6uXswLouR0S4azi9ZJNz8B5ezRCYMRjtZ5YHYLpJakwcDDBFtXyHvuFkgl/1EUFdX1VpyoOQ+pthMPbomBpAhYvE/FplVdMNe3j6j9QDQaAw9E5BZ321FyawMRkWOOAwoN0Nd9Yb84dlq74XQGZMEy7ALtGOK3Loaubhps2RaXL5Anqq0gW5vQP8s8Yoy2bAsm1eS41KJyTDDgUgb057IG6zRETVyHwh0OMxY2K1B2/F8oaET/rCboKzOhqy10eAfd0daTqJNpEGzREGxRTrttkHbcLZBK/qEoKv7zd/vRebIZ2Ze6kH82D5IymN0gKQJyagVYLd0MPNC4GHggIrd40o6SWxuIKNg0NDRgzZo16OjoQFJSEsrKypCVleXXMYy50B0QEHUsDf39+yCXN2HSPzyF3t0bHNZuEOWp6M3fPyYgEP2XXMTuuX7CC2RXtyQ4rANxOgvRN9znUgDZYTDgtduQ+Ns70H9Ng6YX8w4zFmY1QjggofPxnVfrNBxDwms22MxVYzpfONx6Ej8H+ryliGk/47TbBmnH1boj5B9DWQ77ayzoqDXjl1teQn1mHvYsSIf8uR6SIkAWVdTlqyg1xgd6uBTkGHggIrcEY80GIiJ3rVu3DitWrMDy5ctRXl6OtWvX4o033vDrGOwXupuVwQvd6kyosf3on9OMqBM96Hn736BMuoTOf64AhJG1G8TULCiHz6NXHhkQ0E++CVHXjN/hQbHZ0PPeWtjkOgzMboa+aqbTffQOL8ZjB9tWusJhMCD3HOIvfA8xA9/W9GJeMmRCX5kx4qJVV2+EGts3ok7DQO4Z2OoPjAk8jLv1RKP2nDQ+V+qOkH8Mz3KIuXQJ1501Q6comNVYi8qiRvxmZQ7yGqJRV6BiUm4CMrJTAj1kCnIMPBCRW1izgYhCndVqRU1NDbZu3QoAWLZsGZ555hm0t7cjJcV/J89DF7q9e16FcroXSnwvuv9599XMgBokvHoL5JRO+0X78NoNuoxi6E4MXaA1IOpUOiRpJqIX/gCizvnpnaoo6NmxFjblBLoe+Ni+TcPZPnpX6kCMx9kd7KiSGzRPnZfSiyAemIaETTdjILcFujoj1MQrsM20jKjTEHXKBCQ5fg9X2nqS73j7+0baqa63ovNkM17c9CIqM3Px+wW3wPa5CJ2i4B8rtuAnD65B7PenobRgKjKyU1hYkibEwAMRuYU1G4go1LW0tMBoNEKSJACAJEmYOnUqWlpa/Bp4AAb/pkblfAX9+/6M/qLTIzMD8s5BX5UFyMKYtHNBFDHp5ifQs2Mt9NUibOkWCO1NuPKn9eN2AJCbqyH3NGOg6NyY2hLO9tF7czHu6h1sLVooCqKImHnfRc/+l6BKMnoX1cCWZUHCplsARYAgS9DVGSH0TIKu9Hq350L+weBPcDBbulBSewQ6RcF1jSfwYdH1+NeVj+L6hlpUFhRhcvZUzMlLRZulGwAYfKAJMfBARG5jzQYiinQGw+B+5tTUBK/fSzUswJnqt6Ge6EHvopqR2wSiZCRu/hr6Zzcjum4mJk0uwrTSBRBECZdPHUS3ZEbnIzvs3zN5q4C4zlOImz3P4bEu1rbiUroFuoapgFwzbJtGBpIX5yFOg/mMmd+KZ9FTdwj9lkbob8pCbE4JBFH68nlFRst/P4UrXdXoy25A9OGZmFRfBNO3nhrxuiHjrblq+Hu0NHwM4STQJzcg7tPrIdjioQo9kJoNkPoSEDN9LkzX/b3D96axtPgdJ/cEw5oX5k7F7wuKYNu3CzpFwRMVv8fD/2sNrP/rPtx37XTUf9KEw/91EtnHBVQVqKibMxnffviGkA0+BMOahzsGHoiIiCiimEwmWCwWyLIMSZIgyzLOnz8Pk8nk8ntYrd0wGOJx4UKXJmPSf20dBrb/GAmv3oKBvHODQYeEKxDlOMSkfRMx/TpIxYNp523WHgBAX30t+mY2jMhc6MtuwMX6E+hJynN4HNukadC1p0JObEP81sWwZVsQdXI6JF02LifORo9G8xkjKQ9IyoMNQM/V8dvH1FSFns7DXxagXHgU6hYVrZWfj7nrnZqaMOGa6xatRmxzNaKtZkjFGRBnzL3aTtMM6ZqRa0jjc2W9SVvBsuaZhlgkzE7D46tWo7S2GpX5RTBlG7Hyltkw17ej81gHVm2KS6xrnQAAIABJREFUhqQIuGmfik2rOvC3L5pCsrNFsKx5OBBFwR6YH42BByIiIoooBoMBBQUFqKiowPLly1FRUYGCggK/b7MYTtTpEPeNX6Bnx1oI1bGwpVugs6ZCFzcH+uvucr3jxAQdAIa2PuDSMdgMF6CvngUpNh2x//B0wLbMad1C0VGqvhihqftDXQnMli5kGBNQlG0I2TvSNJKiqDDXt6PN0o0pxnjNtzqIooAfrZyP6vocNFtKccfV3x8AOF1zHjnHBbbUJLd4HXj42c9+hr/85S/Q6/WIjY3FT3/6UxQWFo553f/8z//g+eefx4wZMwAAaWlpePnll709PBEREZHbnnrqKaxZswavvPIKEhMTUVZWFughDQYflj97tdaBGVLm+IX1POkAMLx4n2w1Q/r7wBfvYwtF3xjelaCk9ggq8guxNzcdP1o5n8GHEKcoKj783RFcOdmFnFoBlfkqjucm4PaVhS79bF0NWoiigOJZU1A8awoAwGZTsGNzJXrOXEHHTBWL/8yWmuQ6rwMPCxcuxL//+78jKioKu3fvxmOPPYaPP/7Y4WsXLFiAjRs3entIIiIiIq/k5OTgrbfeCvQwxnCnsJ6nHQDcLd6nReHH8bCFom8M70qgUxSs3LcLj69ajer6HPuFJIUmc307rpzssm91WLxPxaZVXTDXt0+YceBp0EJRVJRvqYRc14OH/2sS3l7Wh83fuYLsJgmnChTE5SaypSaNy+vAw+LFi+3/Li4uRmtrKxRFgcgK90REREQ+5esOAKqioOejn8PWewz92Y3QV2VBVztn3M4ZQ9/narCCLRR9Y3hXAgDQKQpKa6vRbCll4CHEtVm6kVPr2VaHiYIWzrIhzPXtuNxyBdee1iFKFvHtd2NwOkvGn6/vR9INU7BkWT4zaWhcmv5F37ZtG2666SanQYf9+/dj+fLluO+++7Bnzx4tD01EREREGpObq2HrPYbO+yvQu+QIOu+vgO3KMcjN1VAVBbamKvRVlsPWVAX16gXuULDictUv0Bm1HperfoGej35uf96RoQBKdOmd0GUWM+iggQxjAg7lF8J2dS1toojK/CKkG1m9P9RNMcajLl+FLA7WRRna6mBwYavDeEGLoWyIytdrEfXLs6h8vRYf/u4IFEVFm6Ub6WYBDZkyZFGFqArIaZLQmyBg1jVTGXSgCU2Y8fCNb3wD586dc/jc559/bu+B/d5772HHjh3Ytm2bw9fedNNN+PrXv46YmBjU1NTggQcewBtvvIGcnBy3BuysSqa/RULLlUiYI8B5hptImGckzBHgPImCgdPCj21N6Kvd6TATYniwApKK3kVHkbhlMIgRiQUeA6Uo24C9uekjuhJMzk2zFwik4DZeHYaM7BQcz03AplWD2yXq8lVMyk1wuNVhdIFRQ2ocDuWrWLxPHVOfYbxsiCnGeDSZgMkWwb7F4sQsG6KyYrnFglwyYeBh+/btE77JRx99hF/+8pd4/fXXMWWK49St4ZWir7nmGpSWlqK6utrtwIPVOhiNC6RIaLkSCXMEOM9wEwnzjIQ5Apynu8ZrX0XkDWeFHzFDdhpc0LpLBXnGWVcC3pkOfhPVYRBFAbevLIS5vh1WSzdKnRSIdFRgNHF2GmbnxmPTqu4xQYu/fd6E5BYVf75+ANPOi5jVKNmzIUq+moHjuYm4hE6ktAg4fK2MOFMs7vjnUv5OkUu8rvGwe/duvPDCC9i6dSvS0tKcvs5iscBoNAIAzp49i6qqKjz00EPeHp6IiIiIfMRZ4UdVFJ0GFybqUuHrYpX0pdFdCXyFP1PvDWUmWKvOQezsc5p5kJGdMiKDoeSrGU4v/J0VGJ32TwuRvEAcEbQAgDPH2jBgUJByUcSnC/rxtyIBl4zAdcb4McGOhT5o4UnhzevAw09+8hNERUXh0UcftT/2+uuvIzn5/7d352FR3ff+wN/nDIJaQGWAEWUTEAdZirhETY1xq7TRBp/80iaG+JiU2GYxiTEuibm3TWJi4m1M0tTb3l6TcFONyZNWSVxq1GwuaFzQgsqogCyyCQPGoYLLnPP7Y2RkYGaYgdl5v/5S5szM98x2zrzn+/18hmDVqlWYPn06ZsyYgU2bNuGrr74yLs147rnnMHr06N7ePRERERE5iaXCj/qqQovhgrUuFT0tVukp+AW7K29/Tl2l85KHjrNPOs5MyNCcQnHqBMwsHtylDkNjnQ5f5JeYzGDYGTUUycnDEDM0uMuMFksFRi9eysCYO0eYFKIsL9FCrrqG33400LAEI1/GXxZchSL69lIKURQQm6DstoAlkTm9Dh4OHz5s8bLXXnvN+O/nnnsOzz33XG/vjoiIiIgczNoXanOdM6yFC9a6VNysOOm19R/4Bds81vTonrklD/sSo/BU9gSIotBlZkJxdQX2TlmIaQf9TeowDNZLuKypxNsfrDPOYHhqwbNoOHIcRRHDTW4TMBQY3a5ORfaB3fCTJGOB0blmCoyaKzo5qtQPN34RylkN5BC9Dh6IiIiIyHv15At1dy0wLbX59Ob6D/yCbZ43P6euYmnJQ2FZPNITQrvMTBhVVox//qQJf3lEgVHnxVt1GAKxt+gi7tScMpnBMLHkNAbcuI5lOz4xuU3gVoHRkZFY8ZsXEN2kRWWIEoPiws0WGA1VBaKgc9HJJBkZQ1kAmRyj78azRERERGS1ZaY1PWmBqVDGwL8sFtDf+gW1fYmGMtoBe+Jclr5g67WVbh2Xu3nzc+oqlpY8VNUbigt3bn0qCQLKAySE/Ww4bi4ZjoyFagydNAxyQzNOxiSYtEg9ETMSIy7VdrnNdiOFAUi4EYLkmlFIuBGCkcIAs2OMjgvBgMQgbMi5hr13XcOGnGsWO2UQ9QRnPBARERH1Yd39Yu3IugbWlmh4uu6KZvZV3vycukrHJQ+CLONInBpfpU7AFL0MSZJNWp+O1RThuDoVgxIjMfUnscZlDoUHL+DO0wW4OCQMSx98AmMqzuNwwmgMa9ZibPlZs8soKsuacPWcDtO+8cOlUBnTvvHDt6KhSGXnOg22dsog6ikGD0RERER9mLUv1I6ua9DdEg1Pxi/Y5nnzc+oq7cHCsznPQycBrQH9odT9gH3fnMHRwmrc/1M1npg/HqfK49HUMglzA/27FIpsDy/Wvr8O/4oeifOq4WgODIainx/+NmU2CtRpGJQYabKMoqFOB+mahP0TbyCuQoH9E29CuiajsU5ntkAki0eSMzF4ICIiIurDrH2hdkZdA0v1Hzwdv2Bb5q3PqauIooAn5o/Hy//digEX6zFNcwTfxydB1kuY9M1efFFTh/3qaDyVPQEqVTAaGnRdbqM9vFj266XI0BSiQJ2GkTEhmDJxHErOjsYYAMnqcJPryJIMWQAe3TwACknA3bc6VUiS7KI9J7qNwQMRERFRH2btCzULB5riF2zqqVPlTRBrLuGPH71jKDCZvxtLH3wCKRfLseDg7WKTs1TBZq8vigKeyp6AwrJ4VNVnYK4qCCmxIdjz8Sn4ndMhSiPghLoZmsQgzM5OhSgKEERDZ4ounSq4fILcgBEtERERUR9nqVAkCwcS9Y4kyThZ0ojdRysx4fxp0wKTFedxITzCYmHIzkRRQHpCKObeOQLpCaG4WN6M1nM65GwIwMx9AcjZEIDWc4YaDgAQNjQIpUky9KIhOGzvVBHKThXkBpzxQERERERmsa4BkSE8KCzTorJeh2hVUJf6C9au96eNR3DlXBWG1lbjcHwSsg/uhp8kGYpBxozEQ/l7zRaGtEVjfQviNYLJjIZ4jQBtfQtiE5SIjgtBcWIQNuToEK8RbrXlZKcKcg8GD0RERERkFusaUF/XMTwYoynCdnUq9iVG4ansCd2GD4VlWlw5V4W3NrwFQZax+hcP48kFz2JSyRkcTkiCrv9AnIqMxYfT7kFop8KQtghVBaJALWPaARkKSTDMaFDLyFAFAmCnCvIsDB6IiIiIyCLWNaC+rGN44CdJyD5wux5DekKo1etW1uswRlNkXF7x0hd/w8pfLcL+MZMRf1mLkIpS+N+4gRsB/fGTSXF2BwK2zGhgpwryFAweiIiIiIiIzOgcHtyux5DRbfDQ3gIz+4BheYVeFNFfGYuxPwgYdSEGZTHhUPiXI+NiOYqPRSNEEKFUBto8Ns5oIG/C4IGIiPokSZZwWqvBRV0NIoOGIVmphihw+jgREd3WOTywpx5DewvM53KeR4amEEXJYxF71Q+/2TgQCknAXYf88cecBARcE5Dy96soOK1B6bE6TPvlaJvDA85oIG/B4IGIiPocSZbwTtH7KL5ZiwtD+2FE5Q0k1UTg2dRfM3wgIiKjzuFBgToNg2ysx9C5BWaKthVRH102FoO8EC1hYKuIRbeCiGkHZbz/2A+oLGtikEA+h8EDERH1Oae1GhTfrMUXs1SQRQFFqTKwuwantRqkho529/CIiMgFJEnGydJGHCu+BAAYrw5HapwSp8qbUFmvQ2R4IAQZiIkLgxQbBn1mBuYOtb2rBXC7BWZ6QijKS7Q4rm5CZPUNXAqV0RCix8gyP9OuFMW3u1IQ+RIGD0RE1Odc1NXgwtB+kG+dOMqigAsR/rioq2XwQETkozq2xYwKC8R3+SWoLG9EcIsO48vOYktiMj4OGYJBV35AuqYIG1PGIbCtFXeUnMYJdSrEqKGQMQwA7Aof2kXGDsGBYAFfTbmOUSV+qIzUw/+GhGn5/re7UiTJSA//EcpLtGisb0Eo6zaQj2DwQEREfU5k0DCMqLyBolQZsihAkGSMqL2OyJgIdw+NiIicoHNbzG2JKdAGDEDYD5fx1ub/hp8kYVRtBf5vSiYe2L8LB0emon9rG9756B0E6PXIPrAbTy14Fg1HjqMoYrjVlpqSJKOyrKlLcHCxvBkDrwA5HxmWVkw91A/v/qYVf/11G0aeFVGqlhE8ehA0h6rReq4F8RoBBWoZxYlBmJ2dyvCBvBqDByIi6nOSlWok1UQAu2twIcIfI2qvI6mfocAkERF5ro6zFqJVti97MNcWc/HDz2DoD03GjhUXQiMgyDI+nTgD6RXncUF/A2vnzMeLX2yEnyRhYslpDLhxHct2fGLSUrNj0KAM/5HF4KCx3vC39qUV/fQifnxKgcYFIbj584HIUAUiOKg/vn3vJHI2BBjqPhyQsSFHx7oP5PUYPBARkdv09ASyt0RBxLOpv77V1aIWkTER7GpBROThOs9a2K5OtTrzoCNzbTEnlBXj26QxuCmKho4VChGAgD/cmgGRnb8HSx98AsdjRyGj4hyOjxiFh291t2hvqZkWp8SXG4vQek6HeI2Aw8l6+F0DfpM7oEtwEKoKRIFaxrQDsnFpRZkayBgdbgwVik/WmoQTCklAvIZ1H8j7MXggIiK3sHYC6QqiICI1dDRrOhAReQlzsxbaZx6kxSmtBtnm2mIeGZmMNn9/PJP9NMaXabA7dRxmnTpmEk6MqSjBP8bfhf+bkgnIMsaWnzVpqVlZ1oTWczrjDAW/69dw0w9mg4Mxk6JRnBiEDTmGkKJULWNAYhCi40KM4xw6fBC+6RROlKplZKgCXftgEzkYgwciIh/nrlkF3bF2AjlLFezu4RERkYcxN2shQ1OIyrox2JdfanUmhLm2mKGJkfjFxBEo0DSgemoapgb3x0n9Ndw8eDucOD4iETGNdagfHAKFQoG/TZlt0lKz4FClyQyFYfUKfDXlmmnByFvBgSgKmJ2disqyJmjrW5BhpnBkgjoch7sJJ4i8EYMHIiIf1ptpqc5m6QSyqj7D4nU8NUQhIiLnMzdroUCdhhQJFoPs9IRQAIa2lk9lT0BhWTyq6jMwt8MxZFxiOADDMeZiRaMhnCguxOH40RBkCRVRsYhKHIafTIpD9aVUk+t2Xj4xolLEvwNhUjCyY3AgigJiE5QWl03YEk4QeSMGD0REPszarIL2kzF3sXQCOVcVZHZ7Tw5RiIjIuSRJhizJuBqhwm9/8wLuPH0cJ27NPBBFwWKQ3fFYJ4oC0hNCzR7/2gtETopToSU2HFdmj0GGDChEIHposDFoyBgZZnK96LiQLssnwkYMQtKk4Whq+HePgoPuwgkib8TggYjIi+glGSdLGm3+xd/arAJ3Bw/mpr22T101x5NDFCIicp6OwfOdmiIcT0zBkanTkZU5GunxoSgs09oVZJu7/Y4FIptvzVKw1MKyc7vMWfNTcLG8ucsMhRGJPDYRtWPwQETkIbpbRiBJMl5f/x0aT12w+Rd/e2cVuJK1aa/meHKIQkREtrN32Zyl4FkUBIiiYHeQ3VnnApHWWlh2Dik6tsvkDAUiyxg8EBF5AFuWERSWaaE9XW7XL/69PRlzxH5ZO7m0Nu21M08OUYiIyDY9WTZnLXhu72YRExcOKTYM+swxmNthaYQtGutbbG5haU9IQUS3MXggIvIAtiwjqKzXYUyxfb/42zurwJEcXZPB3SEKERH1Xk+WzVkKnu8JDzQ5zpxQpyI4MQpzJo+w6zjTuUCktRaW9oQURHQbgwciIg9gyzKCaFUQdiSl4qEDX9r1i393swrsnfJq6/aOrsngzhCFvM/LL7+MQ4cOwd/fHwMHDsSqVauQmpoKAHj44YdRU1ODwEDDl4oFCxbgvvvuc+dwifqMniybsxQ8C3L33SxsYa5ApKUWlvaEFER0G4MHIiIPYMsygrQ4JQ4nx9r0i7+t4YC9sxLs2d4ZNRnsWZpBfdtdd92FF198Ef369cM333yDJUuWYO/evcbLX3rpJUybNs2NIyTqm3qybM5S8Lz9ULlDjjP2tLC0J6QgotsYPBAReQBblhGIooAXn5yKr7+PsfqLvz3hgL2zEuzZnjUZyJ06hgrp6emoq6uDJEkQRdGNoyKini6bMxc8O/I4Y2sLS3tCCiK6jcEDEZEHsHUZgcKGX/ztCQfsnZVgz/asyUCeYtOmTbj77rtNQoe1a9di3bp1GDVqFJYtWwaVSmXXbSqVhmnVYWEM0lyNj7lz6SUZxzX1KKv+AXHDB2GsWgWFg79U/37JDBzX1ONC9SRk9+I+pisDcfjYCCx97HlkFBehICkVYcmxmH5HrMPH3JlKFey02+Zr3PX4mDsfgwciIg9hSy2GI2fqUHTuktXlE/aEA/b+WmTP9qzJQM40b9481NTUmL0sPz8fCoUCALBjxw5s27YNmzZtMl6+du1aREREQK/X43/+53/w7LPPYvPmzXbdv1bbAqUyEA0Nup7vBNktLCyIj7kTdZ4x93FSGraNjOxxUWBrRoT9CCPCfgQAaNK29Ph2Fv0yA4VlhpmAc24dZ3pze+7G17jr8TF3HFEUjMF8Z70OHlauXIn8/HwMGTIEAJCZmYnHH3/c7Lbr16/H1q1bARhOGJ588sne3j0RUZ/QfjKoO38R6cWFVpdP2BMO2Dsrwd7tWZOBnKX9fMKaPXv24O2330Zubi5CQ2+/BiMiIgAACoUCCxYswJ/+9CcuwyBC1xlzN3tZFLidvUWM7cHjDJF3cMiMh0WLFiE7O9vqNkePHsWuXbuwfft2AMD999+PCRMmYPz48Y4YAhGR2znzxMqe5RP2hAP2zkrgLAbyFt988w3WrFmDDz/8EJGRkca/37x5E5cvXzYGETt27EBiYiJDByLYNmPO0rHO2t8d2VqZiLyTy5Za7Ny5E1lZWejfvz8AICsrCzt37mTwQEQ+wdknVvYsnxBFAU/MH49t+WE4kzwCKcMHY+7kWKthgj2/FvHXJfIGL7zwAvr164enn37a+Lfc3FwEBARg0aJFuHHjBgAgPDwc69atc9cwiTxKdzPmLB3rnpg/Hv/98VGzx0BHt1YmIu/kkODhww8/xKeffoqoqCgsXboU8fHxXbapra3FhAkTjP+PiIjA0aNHHXH3RERu5+wTK3uWT0iSbHICeEKdiqryBv66RH3K4cOHLV62ZcsWF46EyHt0njF3IikNg0benjFn6Vi3LT/M4jHQGa2Vicj7dBs8dFe8acmSJQgLC4MoisjLy0NOTg727t1rLOrkaJaKVbhaX6h82hf2EeB+ejp7q2s7Yz9tGYP2ZA0yNKdMTqzGaorQ1DLJIWOyp3L3kTN10J2/aHICuPSx51GhTcGE0UN7PRZX8dbXrL36yn4SkefrvJzuocRwxCgHGkNrSyHCmeQRFsMFtlYmIsCG4KG74k0d209lZWVhzZo1qKurw/Dhw022i4iIMAkwamtrjcWd7KHVtkCSZLuv50h9ofJpX9hHgPvp6TpP6dykTsU2K8sXnLGfto5BGeiP7eoUPHTgS+OJ1XF1KuYG+jtsTIt+mYEKrRqnzlmv3F107hLSiwtNTgDHFBfi1LkMYwVxT+etr1l7OWo/rVWRJiKyR8fldJ0/oyyFCCnDB+OEhXCBrZWJCHDAUov6+npj+LB//36Iomi2F3ZmZiZWr16Nhx56CACQl5eH//iP/+jt3RORD/OEdaG2jsEVJ1aiKGDC6KHdhgf8dckzSZKMihItSjUNAID4pDCGBUTkVSwd6+ZOjkVVeYPZYyCLEhMR4IDgYcWKFdBqtRAEAYGBgfjzn/8MPz/Dza5atQrTp0/HjBkzcMcdd+CnP/0p7rnnHgCG2REdaz4QEXXmCetCbR1DT0+setMJw9J1+euS55EkGV9uLETLmStIPKfA+bib2FfQgNJjdZj+q2SegBORV7B2rLN2DOxtUWJJklFZ1oTG+haEqgIRHRfCz00iL9Pr4CE3N9fiZa+99prJ/xcvXozFixf39i6JyMvZ+mXbE365t2cM9p5Y9aYTRnfX5a9LnqWyrAlXNTr8JncAFJKAafn+eP/BVjScvYzKsibEJjAUIiLvYOlY56yOR4bgtgit53SI1wgoUMsoTgzC7OxUHteIvIjL2mkSEQH2fdn2hF/uLY1BkmV8cfCC3bMUOurNUpLursuWl56lsb4FCWdFKCTD60QhCYivUKBquARtfQuDByIiCyrLmtB6ToecDQGG4PaAjA05Ooa2RF6GwQMRuUT7LIcjZ+pxWVOJtz9Y1+2XbU/45b7zGOaEBWLfoVLs/L/vMEZThG3qVGyLjkDa6GGIGRqElNgQnCpvsmnpRE+WkuglGSdLGrH7aCWG1lZDkGWbr0vuE6oKxPFREqYdlKGQBOhFGaUxerQNEpCsYp0HIup7bF0+0VjfgniNYBrcagSGtkRehsEDETldx1kO/X/4AWOrK23+su0Jv9x3HMPJkkZjq0pBllE5JBy112/C78vd2J6Uik3BgxB85Qdk2LB0wt6lJJIk4/X136Hx1AWMKS7C9/FJeO0XD2PVF3+DLAh2LUPpTW0JT+ap64Cj40JQrA7CXxZewahbNR7+HQgMHzUE0XEh7h4eEZFL2bN8IlQViAK1jGkHOgS3ahkZDG2JvAqDByJyuo7LAgpiEvHx5Jm4mS96ZceFjrMUjoxQoykwGO999K5h9sbB3XhqwbN4cP8/Mam0uNulE/YuJSks00J7uvz28opb97d2zoOojYi0eRlKb2pLeDJPXgcsigJmZ6cZulqcbcBgGRibFIZxE2OhNdMSlYjIl9mzfCI6LgTFiUHYkGP4bC9VyxiQGMTQlsjLMHggIqfr+GV9bPlZfJk2Hs9kP43xFzQoSPKujgsdZymUhQ9DesV5k9kbE0tOozJ0KCaVFts0m8OepSSV9TqMKTZdmjGx9AzO/L97MXd8tM2zFjyhTakzePo6YFEUMCIxFCMSTbuhEBH1NfYsnzAEt6moLGuCtr4FGR40m42IbCe6ewBE5PuiVUE4oU7FTVGEQpaxfPvHuPajH6F64S8xd+FUr/qlPS1OieBbsxQuhA/F9wmjcVM0fJTeFEUcTkhGdGOd8f8F6jREWZnN0b6MY+6dI4xFIS2JVgXhRFKqyf0VJKVh1vjobq/bkeXaEjqbru+prJ3IEhGR5whVBaJULUMvGuoUtS+fUFpYPiGKAmITlBh7ZwxiE3xjaSBRX8MZD0TkdOaWFETEq5Bzz2ivO3noOEuhsu4KLp2uMdmvtuBgfDxjLs4Oj3F4F460OCUOJ8f2usuHJ7QpdQauAyYi8g5cPkHU9zB4ICKn84TuFJb0pMhix2KTcyaPQGGZ1rhf7V0trO1nTws7iqKAF5+ciq+/j+nV4+gJbUptYalQZPvfG+p0kCUZgiggbGgQImOH8ESWiMgLcPkEUd8jyPKtXmxeQqttgSS5d8hhYUFoaPDuKcnd6Qv7CHA/fY29+9m5yOIJdSqCnVxksbf36ajnsj38qKrXIcqDgqB2SmUgNr6dbywU2R4izJqfgj0fn8LVc1cgXZMgC8CoUj+UJt2+/GJ5M7T1LVB6wYmso55PURSgVHJmhytptS1QKgP7xGerJ+krxzNPwcfb9fiYux4fc8exdj7CGQ9E1Ge5o8iipxR29IQ2pdaUaC6ZLRRZkF+B1nM63P2VH/ZPvIFHNw8wXH7QcPnF8mbEJig9opgkERERERmwuCQR+TRJknGypBFfHLyAkyWNJjOmnF1k0dx9+2phR0erq/7BbKHIuuoriNcIuBQqI65CwUKSRERERF6AwQMR+az2ZQ3bc7+F4u1cbM/9Fn/aeMQYPkSFBeJ4Yoppl4huulD09r4jwwONHT4cfZ++ZOjwQWYrng8dHoxStYzwRgFlMXqbK6J7AkmSUV6ixbGDFSgv0bp92SARERGRq3CpBRH5LGvLGtLilNh3qBSX/fvjmeynMb5Mg+8TkxHqoCKLlu5bmBhnbMfpyYUd3S1BHY7DZgpFZkyOgbZch29xBdI1GX9ZcNWkxoOnFpKUJBlfbiwy1qwoUMsoTgxC9pLJ7h4aERERkdMxeCAin2V5WUMGAEB3/iI2vL8O/4oeiVLVMNwI6I+fTIpzSDFCS/d9sSHDYzt8eBJrFc/b/95Yp4MkybghCsgYGuTRhSQry5rM1qwo0VzCkLCB7h4eERERkVMxeCAinxWtCsJ2dSqyD+yGnyQZlzXMVQUZg4EAvR4TLmiAQJYfAAAX+0lEQVQw4YIG1/z9UX0pFRkjw5x6355e2NFTiKJgtlCkpb97ssb6Fos1Kxg8EBERka9j8EBEPistTol9VpY1WAoGXHHffZ0kyYZZC/UtCPWCtpe9FaoKRIFaxrQDMhSSYKxJMW14sLuHRkREROR0DB6IyOdIkozCMi0q63X4yaQ4CBPjcLHBdFmDs4MBURS4pMICS/UOZmendvv4eGtgER0XgmIzNSsS1OHQatmJg4iIiHwbgwci8giSJONfJY04qrkEABiXFI70+FC7v1S2d5O4cq4KYzRF2KlORXBiFJ7KnmByW64IBrikwjxL9Q4qy5qsLp/oTWDhDp1DklnzU3CxvLlLzQoiIiIiX8fggYjcrj0saDxTgTvOncbRuFHYWBCE/SPCsPjhO+z6cmatk0XnAIDBgHtYqnegrW+xGjz0NLBwB2shiaeNlYiIiMjZRHcPgIiosEyLy5pKvJf7NhYe2IV3N76HkB8uo67sEgrLtAAMX+ROljTii4MXcLKkEZIkm70ty50sdC7bH7IuVBWIUrUMvWh4DtvrHShVgVavZy2w8DQdQ5KZ+wKQsyEArecMIQkRERFRX8PggYjcrrJeh7FnT5mGBRXnoWxqQFW9zjgjYnvut1C8nYvtud/iTxuPmA0folVBOKFOxU3R8PHWXjQyykFFI6n3ouNCMCAxCBtyrmHvXdewIecaBiQa2mFa09PAwh28KSQhIiIicjYutSAit4tWBeGLUSnIPtihw0TMSPw7eBCiVEF2LZ9gNwn3sKfooygKmJ2diooSLUrPNiBYBuKTum9haqlAY3eBhTtY6mKR4YEhCREREZGzMXggIrdLi1NinzoaixcuuVXjQY0fAgMROyIMaXFKbD9UbmH5RIbZug3sJuFaPS36qDlcY7zOCXUTNN1cpz2wqCxr8vgCjd4UkhARERE5G4MHInK79rDgXyVxOHo2GcNk4BcdulpEq4KwXZ2K7AMdZkSo0zDXwvIJFo10rZ4UfbT1OuZmUsQmKN1eoLG7GR7eFJIQERERORuDByLyCKIoYExiGMYkdp1yz+UTnq0nXSpsuY6nts+0dVyiKHhESELkaWRJgr6qEHptBRTKGCii0iCILDtGROTLGDwQkcfj8gnP1pN6BrZcx1PbZ3rquIi8gSxJuLrnDdxsO43rceXwPxkLP00yBs5ayfCBiMiHMXggIq/A5ROeqyf1DGy5Tk9mUriCp46LyBvoqwpxs+00rjyyHVDIaJt6CsEfGP7uF5Pu7uEREZGTMHggIqJe6Uk9A1uu46mdITx1XGRq5cqVyM/Px5AhQwAAmZmZePzxxwEAjY2NWL58OaqrqxEQEIBXX30VP/7xj9053D5Dr63A9bhyQHGrHbJCxvX4cvTXVjJ4ICLyYQweiIio18zVM7ClAKO1Ggie2hnCU8dFXS1atAjZ2dld/v7WW29h3Lhx+OCDD3Ds2DEsW7YMX375JQSBy7ecTaGMgf/JWLRNPWUIH/QC/EtjoRgT7e6hERGREzF4ICIih3NEYUhP7QzhqeMi2+3atQtfffUVAGDcuHHw9/dHUVER0tLS3Dwy36eISoOfJhnBHwDX48vhXxoLvwHJUETxsSci8mUMHoiIyOEcVYDRUztDeOq4yNSHH36ITz/9FFFRUVi6dCni4+PR3NwMWZYREnJ7hkpERATq6uoYPLiAIIoYOGsl9FWF6K+thGJMNLtaEBH1Ab0OHhYuXIjm5mYAgF6vx/nz5/H5559DrVabbPf9999j0aJFiI2NBQD4+/vjs88+6+3dExF5JUmSUVimRWW9DtE+2KWDBRjJ2ebNm4eamhqzl+Xn52PJkiUICwuDKIrIy8tDTk4O9u7d67D7VyoNNT3CwoIcdpt9impKj6/Kx9y1+Hi7Hh9z1+Nj7ny9Dh5yc3ON/967dy/eeeedLqFDu/j4eGzZsqW3d0lE5NUkScafNh7BlXNVGKMpwnZ1KvYlRuGp7AleGT6Yq+XAAozkbFu3brV6uUqlMv47KysLa9asQV1dHYYPHw4AaGpqMs56qK2txdChQ+26f622BUplIBoadHaOnHojLCyIj7kL8fF2PT7mrsfH3HFEUTAG810uc+Qd/f3vf8d9993nyJskIvI5hWVaXDlXhbc2vIWF+3bhrQ1v4YdzF1FYpnX30OzWXsuhIFeDfm9XoyBXgy83FmFY9GAIUQH46yNt2DvlGjbkXGMBRnKp+vp647/3798PURSNYURmZiY++eQTAMCxY8fQ1taGlJQUt4yTiIioL3BYjYeGhgYcOnQIr7/+usVtysvLMW/ePPj5+WH+/PmYN2+eo+6eiMhrVNbrMEZTBD9JAgD4SRIyNIWoqs9AekKom0dnH0u1HLblngCq2qC8BPwrTY8fRQzArPkpXjmjg7zTihUroNVqIQgCAgMD8ec//xl+fobTnqVLl2LZsmXIy8tDQEAA1q5dC5E1BoiIiJym2+ChuzWUCoUCAJCXl4cpU6aYFGvqKDk5Gd999x2CgoJQVVWFRx55BCqVCpMnT7ZrwJambrhaX1gH1Bf2EeB++hpv2M/UxHB8nJSGmwd2w0+ScFMUcSIpDQ8lhts0fk/ax+KTtUjQiF1qORT6t+KZDQOMyyzef+w6dM1tSByt6uYWb/Ok/XSmvrKfrtZxKWhnYWFhVi8nIiIix+o2eOhuDWW7LVu2YPny5RYvDwy8HRhERUVh5syZKCgosDt40GpbIEmyXddxtL6wDqgv7CPA/fQ13rKfMcqBCBoZiedynkeGphAF6jQMGhmJGOXAbsfvCfvYsaaDpJdwUS3h7g61HM6PlBBZYVpYMq4YKDvXgCFhA226D0/YT1dw1H5aW1NJRERE5G4OWWpRUFAAnU6Hu+66y+I2ly5dQlhYGARBwOXLl3Hw4EE888wzjrh7IiKvIooCnsqegMKyeFTVZ2Cuh3S1MFcksvOY2ms6tJ7TIV4joEQtoTVYwIaca4jXCChVy1BE9UeTog16kYUliYiIiMhBwcOWLVuQlZVlXHbR7t1330V4eDgefPBB7N69G5s3b4afnx/0ej2ysrIwc+ZMR9w9EZHXEUUB6QmhHlPToXOgUKCWUZwYhNnZqSbhg7maDv+b04bInw7HzZ+JyFAFIjJ2CPZ8fAobcnTGMIKFJYmIiIj6LocED6tXrzb7944zGrKzs5Gdne2IuyMiIgezVCSysqwJsQlK43aN9S2I15guo0jQiLj5MxFj74wxbjc7OxWVZU3Q1rcgw8LsCSIiIiLqG1jCmYiIzAYK8RoB2voWk+1CVYEoVcvQi4ZaO+3LKJSdllGIooDYBCXG3hmD2AT3LyMhIiIiIvdh8EBERDYHCtFxIRiQGIQNOdew965r2JBzjcsoiIiIiMgqhyy1ICIi7xYdF4LixKBu6zKIosBlFERERERkFwYPRERkV6DQvoyiY+0HIiIiIiJLGDwQEXkhW1pf2ouBAhERERE5A4MHIiIvY2vrSyIiIiIiT8DggYjIy9ja+rKnnDGbgoiIiIj6LgYPRERexlrry94GD5xNQURERESOxnaaRERextbWlz3RcTbFzH0ByNkQgNZzhtkUREREREQ9wRkPRERextbWlz3hzNkURERERNQ3MXggInKRzrUTImOH4GJ5s921FOxpfWmvUFUgCtQyph2QoZAE42yKDAfMpiAi3yFLEvRVhdBrK6BQxkARlQZB5ERaIiIyj8EDEZELdK6dcFwt4UCwgIFX0KNaCs5qfenM2RRE5BtkScLVPW/gZttpXI8rh//JWPhpkjFw1kqGD0REZBaDByIiF+jciSKy+ga+mnIdOR8NdEpnip5y5mwKIvIN+qpC3Gw7jSuPbAcUMtqmnkLwB4a/+8Wku3t4RETkgRhLExG5QOfaCZdCZYwq8TNbS8Hd2mdTjL0zBrEJSoYORGRCr63A9bhyQGEocAuFjOvx5dBrK906LiIi8lwMHoiIXKBzJ4rwRgFnE246pTMFEZEzKZQx8C+LBfS3Qkm9AP/SWCiU0W4dFxEReS4utSAicoHOtRNK1BKuByuwIecaaykQkVdRRKXBT5OM4A+A6/Hl8C+Nhd+AZCii0tw9NCIi8lAMHoiIXKBz7YSxHbpasJYCEXkTQRQxcNZK6KsK0V9bCcWYaHa1ICIiqxg8EBG5iLlOFM7oTEFE5GyCKMIvJp3FJImIyCaMpomIiIiIiIjIaRg8EBEREREREZHTMHggIiIiIiIiIqdh8EBERERERERETsPggYiIiIiIiIichsEDERERERERETkNgwciIiIiIiIichoGD0RERERERETkNAweiIiIiIiIiMhp/Nw9AHuJouDuIQDwnHE4U1/YR4D76Wv6wn72hX0EuJ+uvg2yT/tjzsfe9fiYuxYfb9fjY+56fMwdw9rjKMiyLLtwLERERERERETUh3CpBRERERERERE5DYMHIiIiIiIiInIaBg9ERERERERE5DQMHoiIiIiIiIjIaRg8EBEREREREZHTMHggIiIiIiIiIqdh8EBERERERERETsPggYiIiIiIiIichsEDERERERERETmNn7sH4A0WLlyI5uZmAIBer8f58+fx+eefQ61Wm2z3/fffY9GiRYiNjQUA+Pv747PPPnP1cHtk5cqVyM/Px5AhQwAAmZmZePzxx81uu379emzduhUAMG/ePDz55JMuG2dvvfzyyzh06BD8/f0xcOBArFq1CqmpqV2227JlC15//XUMHz4cABAZGYn169e7erh2uXDhAlauXInLly9j8ODBePPNN42vxXZ6vR6rV6/G/v37IQgCFi1ahPvvv989A+6B5uZmLF++HJWVlfD390dMTAxeeeUVhISEmGxnz+vZU02fPh3+/v4ICAgAADz//POYMmWKyTatra144YUXcPr0aSgUCqxYsQLTpk1zx3DtdvHiRZPPDp1Oh5aWFhw5csRku/feew8ff/wxwsPDAQAZGRn43e9+59Kx2uvNN9/El19+ierqamzbtg2JiYkAbHuPAt7/PvVFn3/+OTZs2IDS0lK8+OKLyM7ONl5m7X3oze9RT2LtM72xsRHLly9HdXU1AgIC8Oqrr+LHP/6xO4frM2z9zKKes3SsP3nyJP7zP/8T165dw/Dhw/Ff//VfUCqVbh6td+rJMZmvfSeRyS579uyR77nnHrOXHT58WJ43b56LR+QYK1askP/2t791u92RI0fkOXPmyK2trXJra6s8Z84c+ciRIy4YoWN8/fXX8vXr143/njFjhtnt/vGPf8iLFy925dB67eGHH5bz8vJkWZblvLw8+eGHH+6yzdatW+VHH31U1uv1slarladMmSJXVVW5eqg91tzcLB8+fNj4/zfeeEN+4YUXumxn6+vZk02bNk0+e/as1W3ee+89edWqVbIsy/KFCxfkyZMnyy0tLa4YnsOtXr1afvnll7v8/Y9//KP8xhtvuGFEPXf06FG5pqamy3Noy3tUlr3/feqLzp49K58/f15etmxZl88Wa+9DX3qPupO1z/SVK1fK69evl2XZ8N6bNWuWLEmSK4fns2z9zKKeM3es1+v18syZM+WjR4/KsizL69evl1euXOmO4fmEnhyT+dp3Di61sNPf//533Hfffe4ehtvs3LkTWVlZ6N+/P/r374+srCzs3LnT3cOy2bRp09CvXz8AQHp6Ourq6iBJkptH1XtarRZnzpzBnDlzAABz5szBmTNn0NTUZLLdzp07cf/990MURYSEhGDmzJnYtWuXO4bcI4MHD8Ydd9xh/H96ejpqamrcOCL3+uc//4lf/epXAIDY2FikpKRg3759bh6V/a5fv45t27b5zGfruHHjEBERYfI3W9+jgPe/T31RYmIiEhISIIpdT5usvQ995T3qyXbt2oUHHngAgOG95+/vj6KiIjePyvvZ85lFjnXq1CkEBARg3LhxAIAHHniAx4BesPeYzNe+8zB4sENDQwMOHTqEe++91+I25eXlmDdvHu6//37jcgRv8eGHH2Lu3Ll44oknUFpaanab2tpaDBs2zPj/iIgI1NbWumqIDrVp0ybcfffdZk8kAeDIkSO499578dBDD+Hbb7917eDsVFtbC5VKBYVCAQBQKBQIDw/v8tyYe/7q6upcOlZHkSQJmzdvxvTp081ebsvr2dM9//zzmDt3Ln7/+9/jypUrXS6vqakxLgcCvPf5/Prrr6FSqZCcnGz28h07dmDu3Ll49NFHceLECRePzjFsfY+2b+sr79O+wNr70Ffeo57A3Gd6c3MzZFk2WW7Hx9gx7PnMot7pfKzvfAwICQmBJEm4fPmyG0fpW6y9vvnadx7WeIChToGlX03z8/ONL7y8vDxMmTKly3rydsnJyfjuu+8QFBSEqqoqPPLII1CpVJg8ebLTxm6r7vZxyZIlCAsLgyiKyMvLQ05ODvbu3Wvcd29h63O5Y8cObNu2DZs2bTK77d13342f//zn6N+/P86cOYPHHnsMH330EeLj4502drLPq6++ioEDB5qstW7nC6/nTZs2ISIiAtevX8drr72GV155BX/4wx/cPSyn+Mc//mFxtsMDDzyA3/72t+jXrx8OHjyIJ554Ajt37jSu9SZyBFuPHeQcPT1HIfJ25o71s2bNcvewiJyCwQNg88yELVu2YPny5RYvDwwMNP47KioKM2fOREFBgUcED93to0qlMv47KysLa9asQV1dnckvNYDhl4SOJwe1tbVdpi+5ky3P5Z49e/D2228jNzcXoaGhZrfpGC6NHj0aGRkZKCws9NjgISIiAvX19dDr9VAoFNDr9bh06VKX56b9+UtLSwPQ9ZdVb/Hmm2+ioqICf/nLX8zOWLH19ezJ2p87f39/zJ8/32xxzGHDhqG6utr4eq2trTVZiuIN6uvrcfToUaxdu9bs5WFhYcZ/33nnnYiIiMD58+cxYcIEVw3RIWx9j7Zv6wvvU2/SmxmK1t6HvvAedYXenqM0NTWZPMZDhw513mD7CHs+s6jnzB3rFyxYYHKu3dTUBFEUMXjwYHcN0+dYe33LsszXvpNwqYWNCgoKoNPpcNddd1nc5tKlS5BlGQBw+fJlHDx4sEvnC09VX19v/Pf+/fshiqLJgb5dZmYm8vLy0NbWhra2NuTl5eFnP/uZK4faK9988w3WrFmD999/H5GRkRa36/h4VFdX4+TJkxg1apQrhtgjSqUSSUlJ2L59OwBg+/btSEpK6jI7JzMzE5999hkkSUJTUxP27t2L2bNnu2PIPbZu3TqcOnUK69evh7+/v9ltbH09e6qrV69Cp9MBAGRZxs6dO5GUlNRlu8zMTHz66acADMu8ioqKunS+8HRbt27F1KlTLc5g6PhcFhcXo7q6GiNGjHDV8BzG1vco4Bvv077E2vvQF96jnsDaZ3pmZiY++eQTAMCxY8fQ1taGlJQUt4zTl9jzmUU9Y+lYn5KSgra2Nhw7dgwA8MknnyAzM9OdQ/U51l7ffO07jyC3f1Mmq1566SUMHjwYzz//vMnf3333XYSHh+PBBx/Exo0bsXnzZvj5+UGv1yMrKws5OTluGrF9Fi5cCK1WC0EQEBgYiOXLlyM9PR0AsGrVKkyfPh0zZswAYGhvl5eXB8Dwy8PixYvdNm57TZw4Ef369TP58MjNzcWQIUNM9nPdunX46quvjNNrH3nkEcybN89dw7ZJaWkpVq5ciStXriA4OBhvvvkm4uLi8Nhjj+Hpp59Gamoq9Ho9XnnlFRw8eBAA8NhjjxkLn3mD8+fPY86cOYiNjUX//v0B3G51eu+99+Kvf/0rVCqV1dezN6iqqsLixYuh1+shSRLi4+Px0ksvITw83GQ/r169ipUrV6K4uBiiKGLZsmWYOXOmu4dvl9mzZ2PVqlUmoW7H1+yKFStw+vRpiKKIfv364emnn8bUqVPdOOLurV69Grt370ZjYyOGDBmCwYMHY8eOHRbfowB86n3qi7Zv3461a9fiypUr6NevHwYMGIAPPvgACQkJVt+HvvAe9QTWPtMbGhqwbNky1NTUICAgAC+//DIyMjLcPGLfYO0zi3rP2rG+oKAAv/vd70zaaVqapUvW9eSYzNe+czB4ICIiIiIiIiKn4VILIiIiIiIiInIaBg9ERERERERE5DQMHoiIiIiIiIjIaRg8EBEREREREZHTMHggIiIiIiIiIqdh8EBERERERERETsPggYiIiIiIiIichsEDERERERERETnN/wcGFre0bYfwTwAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"code","source":["df_clusters['labels'] = spectral.labels_\n","df_clusters['labels'] = spectral.labels_"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":488},"id":"5xD3BZCZ1EUq","executionInfo":{"status":"ok","timestamp":1652687152396,"user_tz":-180,"elapsed":323,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}},"outputId":"e3647995-4809-4c24-95ac-404ac18a9b9b"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" 221 405 410 506 507 746 \\\n","21 11.788568 11.688567 12.055574 11.462477 12.077039 12.361609 \n","22 12.277795 11.989070 12.300559 11.849513 12.648054 12.341693 \n","23 12.329855 11.947373 11.994651 11.891324 12.792750 12.081802 \n","24 12.386998 12.510015 12.566291 12.230995 12.851518 12.815456 \n","25 11.845338 11.897567 11.766840 11.246880 12.236940 11.976957 \n","... ... ... ... ... ... ... \n","5501 9.999282 9.310803 10.116495 9.130492 10.311034 9.901993 \n","6501 6.317742 8.389592 8.539514 7.254404 8.410200 8.518736 \n","6701 8.336299 7.537792 7.749753 7.182367 8.384466 8.210489 \n","8401 7.947792 8.533165 7.888957 8.221302 8.539483 8.338296 \n","8403 6.496503 7.826922 7.316575 7.339096 8.205716 7.204417 \n","\n"," 978 1207 1532 1882 ... 256168 256746 \\\n","21 11.779511 12.676102 11.774414 12.040287 ... 11.986629 10.914745 \n","22 12.207801 13.345212 12.148283 12.471433 ... 13.018087 11.418288 \n","23 12.257828 13.288805 11.877418 12.506896 ... 12.119875 11.243443 \n","24 12.459485 13.577072 12.246049 12.661596 ... 12.092760 11.827749 \n","25 11.789987 12.640115 11.355550 12.032220 ... 13.094196 10.863485 \n","... ... ... ... ... ... ... ... \n","5501 9.805729 9.718569 9.281805 9.709309 ... 0.000000 8.795167 \n","6501 8.875709 8.575964 0.000000 7.427144 ... 0.000000 7.266129 \n","6701 7.695594 7.423174 7.495775 7.955299 ... 0.000000 7.257708 \n","8401 7.374228 8.694392 8.201260 6.118846 ... 0.000000 4.615121 \n","8403 8.295953 8.896862 7.710626 8.155644 ... 0.000000 5.564520 \n","\n"," 256861 258055 258580 259313 259718 260634 \\\n","21 11.580881 14.498164 11.384220 14.339726 14.027925 11.432391 \n","22 12.143251 13.133491 11.887992 13.277987 12.815646 11.892867 \n","23 11.964807 13.491404 11.566841 13.419708 12.881197 11.421359 \n","24 12.084472 13.885964 12.161983 13.812444 13.064176 12.011464 \n","25 11.613750 12.876102 11.466496 13.124961 12.248066 11.483442 \n","... ... ... ... ... ... ... \n","5501 8.319264 10.482468 7.318354 9.748150 10.726999 8.377319 \n","6501 8.499632 9.595937 8.367393 9.551915 7.582912 8.056978 \n","6701 6.600958 10.077679 8.403890 9.718032 8.182280 8.186336 \n","8401 8.061657 9.635566 7.491277 9.805239 8.804277 7.452576 \n","8403 7.403792 7.762945 5.039158 8.057187 7.107425 7.413198 \n","\n"," 262752 263059 \n","21 11.716005 12.450588 \n","22 12.069184 12.937018 \n","23 11.823824 12.836823 \n","24 12.184715 13.115980 \n","25 11.677929 12.266787 \n","... ... ... \n","5501 8.197197 9.187434 \n","6501 8.082155 8.299733 \n","6701 8.203036 8.634525 \n","8401 8.097432 8.344253 \n","8403 7.272315 6.191012 \n","\n","[140 rows x 500 columns]"],"text/html":["\n"," <div id=\"df-48c66f75-44de-4978-9619-f7f5f7e84578\">\n"," <div class=\"colab-df-container\">\n"," <div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>221</th>\n"," <th>405</th>\n"," <th>410</th>\n"," <th>506</th>\n"," <th>507</th>\n"," <th>746</th>\n"," <th>978</th>\n"," <th>1207</th>\n"," <th>1532</th>\n"," <th>1882</th>\n"," <th>...</th>\n"," <th>256168</th>\n"," <th>256746</th>\n"," <th>256861</th>\n"," <th>258055</th>\n"," <th>258580</th>\n"," <th>259313</th>\n"," <th>259718</th>\n"," <th>260634</th>\n"," <th>262752</th>\n"," <th>263059</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>21</th>\n"," <td>11.788568</td>\n"," <td>11.688567</td>\n"," <td>12.055574</td>\n"," <td>11.462477</td>\n"," <td>12.077039</td>\n"," <td>12.361609</td>\n"," <td>11.779511</td>\n"," <td>12.676102</td>\n"," <td>11.774414</td>\n"," <td>12.040287</td>\n"," <td>...</td>\n"," <td>11.986629</td>\n"," <td>10.914745</td>\n"," <td>11.580881</td>\n"," <td>14.498164</td>\n"," <td>11.384220</td>\n"," <td>14.339726</td>\n"," <td>14.027925</td>\n"," <td>11.432391</td>\n"," <td>11.716005</td>\n"," <td>12.450588</td>\n"," </tr>\n"," <tr>\n"," <th>22</th>\n"," <td>12.277795</td>\n"," <td>11.989070</td>\n"," <td>12.300559</td>\n"," <td>11.849513</td>\n"," <td>12.648054</td>\n"," <td>12.341693</td>\n"," <td>12.207801</td>\n"," <td>13.345212</td>\n"," <td>12.148283</td>\n"," <td>12.471433</td>\n"," <td>...</td>\n"," <td>13.018087</td>\n"," <td>11.418288</td>\n"," <td>12.143251</td>\n"," <td>13.133491</td>\n"," <td>11.887992</td>\n"," <td>13.277987</td>\n"," <td>12.815646</td>\n"," <td>11.892867</td>\n"," <td>12.069184</td>\n"," <td>12.937018</td>\n"," </tr>\n"," <tr>\n"," <th>23</th>\n"," <td>12.329855</td>\n"," <td>11.947373</td>\n"," <td>11.994651</td>\n"," <td>11.891324</td>\n"," <td>12.792750</td>\n"," <td>12.081802</td>\n"," <td>12.257828</td>\n"," <td>13.288805</td>\n"," <td>11.877418</td>\n"," <td>12.506896</td>\n"," <td>...</td>\n"," <td>12.119875</td>\n"," <td>11.243443</td>\n"," <td>11.964807</td>\n"," <td>13.491404</td>\n"," <td>11.566841</td>\n"," <td>13.419708</td>\n"," <td>12.881197</td>\n"," <td>11.421359</td>\n"," <td>11.823824</td>\n"," <td>12.836823</td>\n"," </tr>\n"," <tr>\n"," <th>24</th>\n"," <td>12.386998</td>\n"," <td>12.510015</td>\n"," <td>12.566291</td>\n"," <td>12.230995</td>\n"," <td>12.851518</td>\n"," <td>12.815456</td>\n"," <td>12.459485</td>\n"," <td>13.577072</td>\n"," <td>12.246049</td>\n"," <td>12.661596</td>\n"," <td>...</td>\n"," <td>12.092760</td>\n"," <td>11.827749</td>\n"," <td>12.084472</td>\n"," <td>13.885964</td>\n"," <td>12.161983</td>\n"," <td>13.812444</td>\n"," <td>13.064176</td>\n"," <td>12.011464</td>\n"," <td>12.184715</td>\n"," <td>13.115980</td>\n"," </tr>\n"," <tr>\n"," <th>25</th>\n"," <td>11.845338</td>\n"," <td>11.897567</td>\n"," <td>11.766840</td>\n"," <td>11.246880</td>\n"," <td>12.236940</td>\n"," <td>11.976957</td>\n"," <td>11.789987</td>\n"," <td>12.640115</td>\n"," <td>11.355550</td>\n"," <td>12.032220</td>\n"," <td>...</td>\n"," <td>13.094196</td>\n"," <td>10.863485</td>\n"," <td>11.613750</td>\n"," <td>12.876102</td>\n"," <td>11.466496</td>\n"," <td>13.124961</td>\n"," <td>12.248066</td>\n"," <td>11.483442</td>\n"," <td>11.677929</td>\n"," <td>12.266787</td>\n"," </tr>\n"," <tr>\n"," <th>...</th>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," <td>...</td>\n"," </tr>\n"," <tr>\n"," <th>5501</th>\n"," <td>9.999282</td>\n"," <td>9.310803</td>\n"," <td>10.116495</td>\n"," <td>9.130492</td>\n"," <td>10.311034</td>\n"," <td>9.901993</td>\n"," <td>9.805729</td>\n"," <td>9.718569</td>\n"," <td>9.281805</td>\n"," <td>9.709309</td>\n"," <td>...</td>\n"," <td>0.000000</td>\n"," <td>8.795167</td>\n"," <td>8.319264</td>\n"," <td>10.482468</td>\n"," <td>7.318354</td>\n"," <td>9.748150</td>\n"," <td>10.726999</td>\n"," <td>8.377319</td>\n"," <td>8.197197</td>\n"," <td>9.187434</td>\n"," </tr>\n"," <tr>\n"," <th>6501</th>\n"," <td>6.317742</td>\n"," <td>8.389592</td>\n"," <td>8.539514</td>\n"," <td>7.254404</td>\n"," <td>8.410200</td>\n"," <td>8.518736</td>\n"," <td>8.875709</td>\n"," <td>8.575964</td>\n"," <td>0.000000</td>\n"," <td>7.427144</td>\n"," <td>...</td>\n"," <td>0.000000</td>\n"," <td>7.266129</td>\n"," <td>8.499632</td>\n"," <td>9.595937</td>\n"," <td>8.367393</td>\n"," <td>9.551915</td>\n"," <td>7.582912</td>\n"," <td>8.056978</td>\n"," <td>8.082155</td>\n"," <td>8.299733</td>\n"," </tr>\n"," <tr>\n"," <th>6701</th>\n"," <td>8.336299</td>\n"," <td>7.537792</td>\n"," <td>7.749753</td>\n"," <td>7.182367</td>\n"," <td>8.384466</td>\n"," <td>8.210489</td>\n"," <td>7.695594</td>\n"," <td>7.423174</td>\n"," <td>7.495775</td>\n"," <td>7.955299</td>\n"," <td>...</td>\n"," <td>0.000000</td>\n"," <td>7.257708</td>\n"," <td>6.600958</td>\n"," <td>10.077679</td>\n"," <td>8.403890</td>\n"," <td>9.718032</td>\n"," <td>8.182280</td>\n"," <td>8.186336</td>\n"," <td>8.203036</td>\n"," <td>8.634525</td>\n"," </tr>\n"," <tr>\n"," <th>8401</th>\n"," <td>7.947792</td>\n"," <td>8.533165</td>\n"," <td>7.888957</td>\n"," <td>8.221302</td>\n"," <td>8.539483</td>\n"," <td>8.338296</td>\n"," <td>7.374228</td>\n"," <td>8.694392</td>\n"," <td>8.201260</td>\n"," <td>6.118846</td>\n"," <td>...</td>\n"," <td>0.000000</td>\n"," <td>4.615121</td>\n"," <td>8.061657</td>\n"," <td>9.635566</td>\n"," <td>7.491277</td>\n"," <td>9.805239</td>\n"," <td>8.804277</td>\n"," <td>7.452576</td>\n"," <td>8.097432</td>\n"," <td>8.344253</td>\n"," </tr>\n"," <tr>\n"," <th>8403</th>\n"," <td>6.496503</td>\n"," <td>7.826922</td>\n"," <td>7.316575</td>\n"," <td>7.339096</td>\n"," <td>8.205716</td>\n"," <td>7.204417</td>\n"," <td>8.295953</td>\n"," <td>8.896862</td>\n"," <td>7.710626</td>\n"," <td>8.155644</td>\n"," <td>...</td>\n"," <td>0.000000</td>\n"," <td>5.564520</td>\n"," <td>7.403792</td>\n"," <td>7.762945</td>\n"," <td>5.039158</td>\n"," <td>8.057187</td>\n"," <td>7.107425</td>\n"," <td>7.413198</td>\n"," <td>7.272315</td>\n"," <td>6.191012</td>\n"," </tr>\n"," </tbody>\n","</table>\n","<p>140 rows × 500 columns</p>\n","</div>\n"," <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-48c66f75-44de-4978-9619-f7f5f7e84578')\"\n"," title=\"Convert this dataframe to an interactive table.\"\n"," style=\"display:none;\">\n"," \n"," <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n"," width=\"24px\">\n"," <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n"," <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n"," </svg>\n"," </button>\n"," \n"," <style>\n"," .colab-df-container {\n"," display:flex;\n"," flex-wrap:wrap;\n"," gap: 12px;\n"," }\n","\n"," .colab-df-convert {\n"," background-color: #E8F0FE;\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: #1967D2;\n"," height: 32px;\n"," padding: 0 0 0 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-convert:hover {\n"," background-color: #E2EBFA;\n"," box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: #174EA6;\n"," }\n","\n"," [theme=dark] .colab-df-convert {\n"," background-color: #3B4455;\n"," fill: #D2E3FC;\n"," }\n","\n"," [theme=dark] .colab-df-convert:hover {\n"," background-color: #434B5C;\n"," box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n"," filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n"," fill: #FFFFFF;\n"," }\n"," </style>\n","\n"," <script>\n"," const buttonEl =\n"," document.querySelector('#df-48c66f75-44de-4978-9619-f7f5f7e84578 button.colab-df-convert');\n"," buttonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n"," async function convertToInteractive(key) {\n"," const element = document.querySelector('#df-48c66f75-44de-4978-9619-f7f5f7e84578');\n"," const dataTable =\n"," await google.colab.kernel.invokeFunction('convertToInteractive',\n"," [key], {});\n"," if (!dataTable) return;\n","\n"," const docLinkHtml = 'Like what you see? Visit the ' +\n"," '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n"," + ' to learn more about interactive tables.';\n"," element.innerHTML = '';\n"," dataTable['output_type'] = 'display_data';\n"," await google.colab.output.renderOutput(dataTable, element);\n"," const docLink = document.createElement('div');\n"," docLink.innerHTML = docLinkHtml;\n"," element.appendChild(docLink);\n"," }\n"," </script>\n"," </div>\n"," </div>\n"," "]},"metadata":{},"execution_count":130}]},{"cell_type":"code","source":["silhouettes = []\n","sse = []\n","\n","for c in range(2, 15):\n"," spectral = SpectralClustering(n_clusters=c).fit(preprocessing.normalize(df_clusters))\n"," silhouettes.append(silhouette_score(df_clusters, spectral.labels_))"],"metadata":{"id":"VkFFMU9o0WQM"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["plt.scatter(range(2, 15), silhouettes);"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":268},"id":"axvBMj0RrwxX","executionInfo":{"status":"ok","timestamp":1652687084892,"user_tz":-180,"elapsed":705,"user":{"displayName":"Мария Тимонина","userId":"15796036857599456417"}},"outputId":"9018a3cb-9c77-4d01-f528-f21e75d726b0"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["<Figure size 432x288 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAX8AAAD7CAYAAACCEpQdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAZp0lEQVR4nO3da2xTh93H8Z/thEsboiReLqZcg0Tw0rCuRSBUKCu3UNVpUCaUKoP1ETRVB2sK7SqySUtgDGnhBYJS0l3UW150QqgIVnMZo6WsYYy2j1A7YmhRlgxGnIQ5RCGsBLD9vGDJmidA7GDHxz7fz6vEPsf+/5P455P/OT7HEgwGgwIAmIo11gUAAIYf4Q8AJkT4A4AJEf4AYEKEPwCYEOEPACZE+AOACSXFuoBQXb58VYFA+B9JsNtT5PN1R6Gi4UcvxpMofUj0YlRD7cVqtSg9/f473h834R8IBIcU/r3rJgp6MZ5E6UOiF6OKRi+MfQDAhAh/ADChkMY+TU1NqqysVGdnp9LS0lRTU6NJkyb1W+a9997T22+/LavVqkAgoGXLlumHP/yhJGnHjh169913lZWVJUl6+OGHVV1dHdlOAAAhCyn8q6urVVZWpuLiYu3bt09VVVWqq6vrt0xhYaFKSkpksVjU3d2toqIizZw5U9OmTZMkLV26VOvXr498BwCAsA0a/j6fTx6PR2+99ZYkyeVyadOmTero6FBGRkbfcikpKX1fX7t2TTdu3JDFYolCyaE50dCqPcca1dHVo4zUkSqZN0Wz83NiVg8AGMmg4e/1epWdnS2bzSZJstlsysrKktfr7Rf+kvTBBx9o69atOn/+vF5++WXl5eX13bd//37V19crMzNTL7zwgr773e+GVajdnjL4Qv/x0f9eUN2hL9Vzwy9J8nX1qO7Ql0odM0rfe2R8WM9rNJmZY2JdQsQkSi+J0odEL0YVjV4ieqjnggULtGDBArW0tGjNmjV67LHHlJubq6efflrPP/+8kpOTdfz4ca1evVoHDhxQenp6yI/t83WHfLjT2+6GvuDv1XPDr7fdDcqfkBZWT0aSmTlGly5diXUZEZEovSRKHxK9GNVQe7FaLXfdaB70aB+Hw6G2tjb5/bfC1O/3q729XQ6H447rjB07VgUFBfroo48kSZmZmUpOTpYkPfroo3I4HDp37lw4fYTF19UT1u0AYDaDhr/dbpfT6ZTb7ZYkud1uOZ3OASOfxsbGvq87Ojp08uRJTZ06VZLU1tbWd9+ZM2d08eJFTZ48OSIN3Lbm1JFh3Q4AZhPS2GfDhg2qrKxUbW2tUlNTVVNTI0kqLy9XRUWFCgoKtGvXLh0/flxJSUkKBoNavny55syZI0naunWrGhoaZLValZycrC1btigzMzNqTZXMm6J3Dp7V9ZuBvttGJFlVMm9K1J4TAOKJJV6u4RvOzF9KzKN9mGMaT6L0IdGLUUVr5h835/YJ1+z8HM3Oz0moPwIAiBRO7wAAJkT4A4AJEf4AYEKEPwCYEOEPACZE+AOACRH+AGBChD8AmBDhDwAmRPgDgAkR/gBgQoQ/AJgQ4Q8AJkT4A4AJEf4AYEKEPwCYEOEPACZE+AOACRH+AGBChD8AmBDhDwAmRPgDgAkR/gBgQoQ/AJgQ4Q8AJkT4A4AJEf4AYEKEPwCYEOEPACYUUvg3NTWptLRUhYWFKi0tVXNz84Bl3nvvPRUVFam4uFhFRUWqq6vru8/v92vjxo1auHChFi1apN27d0esAQBA+JJCWai6ulplZWUqLi7Wvn37VFVV1S/cJamwsFAlJSWyWCzq7u5WUVGRZs6cqWnTpun999/X+fPndfjwYXV2dmrp0qWaPXu2xo0bF5WmAAB3N+iWv8/nk8fjkcvlkiS5XC55PB51dHT0Wy4lJUUWi0WSdO3aNd24caPv+wMHDmjZsmWyWq3KyMjQwoULdejQoUj3AgAI0aDh7/V6lZ2dLZvNJkmy2WzKysqS1+sdsOwHH3ygJ598Uo8//rieffZZ5eXl9T3G2LFj+5ZzOBxqbW2NVA8AgDCFNPYJ1YIFC7RgwQK1tLRozZo1euyxx5SbmxuRx7bbU4a8bmbmmIjUYAT0YjyJ0odEL0YVjV4GDX+Hw6G2tjb5/X7ZbDb5/X61t7fL4XDccZ2xY8eqoKBAH330kXJzc+VwONTS0qLp06dLGvifQCh8vm4FAsGw1pFu/dAuXboS9npGRC/Gkyh9SPRiVEPtxWq13HWjedCxj91ul9PplNvtliS53W45nU5lZGT0W66xsbHv646ODp08eVJTp06VJC1ZskS7d+9WIBBQR0eHjhw5osLCwrCbAQBERkhjnw0bNqiyslK1tbVKTU1VTU2NJKm8vFwVFRUqKCjQrl27dPz4cSUlJSkYDGr58uWaM2eOJKm4uFiff/65Fi9eLElas2aNxo8fH6WWAACDsQSDwfBnKTHA2IdejChR+pDoxahiNvYBACQewh8ATCiih3qa0YmGVu051ihfV4/sqSNVMm+KZufnxLosALgrwv8enGho1TsHz+r6zYAkydfVo3cOnpUk3gAAGBpjn3uw51hjX/D3un4zoD3HGu+wBgAYA+F/D3xdPWHdDgBGQfjfA3vqyLBuBwCjIPzvQcm8KRqR1P9HOCLJqpJ5U2JUEQCEhh2+96B3py5H+wCIN4T/PZqdn0PYA4g7jH0AwIQIfwAwIcIfAEyI8AcAEyL8AcCECH8AMCHCHwBMiPAHABMi/AHAhAh/ADAhwh8ATIjwBwATIvwBwIQIfwAwIU7pHAdONLRqz7FGdXT1KINrBgCIAMLf4E40tOqdg2f7LhTv6+rROwfPShJvAACGjLGPwe051tgX/L2u3wxoz7HGGFUEIBGw5W9wvq6esG43OkZYgDGw5W9w9tSRYd1uZL0jLF9Xj4L67wjrRENrrEsDTIctf4MrmTel38xfkkYkWVUyb0pEn6d3izyaF6K/2wiLrX9geBH+BtcbitEclQzXTuXhGmENxxsZEO9CCv+mpiZVVlaqs7NTaWlpqqmp0aRJk/ots3PnTh04cEBWq1XJyclat26d5s6dK0mqrKzUX/7yF6Wnp0uSlixZoh/96EeR7SSBzc7P0ez8HGVmjtGlS1ci/vjDtUVuTx1526CP5AiLo6OA0IQU/tXV1SorK1NxcbH27dunqqoq1dXV9Vtm+vTpWrlypUaPHq2zZ89q+fLlqq+v16hRoyRJzz33nJYvXx75DnDPhmuLfDhGWIyWgNAMusPX5/PJ4/HI5XJJklwulzwejzo6OvotN3fuXI0ePVqSlJeXp2AwqM7OziiUjEgbrp3Ks/Nz9MwT02RPHSnLfx7/mSemxeVoCYh3g275e71eZWdny2azSZJsNpuysrLk9XqVkZFx23X27t2rCRMmKCfnvy/qt956S7t27dL48eP18ssva8qUyO6wxNAN105lKfojrOEYLQGJIOI7fD/55BNt375db775Zt9t69atU2ZmpqxWq/bu3atnn31WR44c6XtDCYXdnjLkmjIzxwx5XaOJRi9PfW+MUseMUt3BM/rX5a/1rfTR+uETTn3vkfERf65vikYv/+PK12u7P1fPDX/fbSOTbfofV37U/g74+zImerk7SzAYDN5tAZ/Pp8LCQp08eVI2m01+v1+zZs3S4cOHB2z5nzp1SmvXrlVtba3y8/Pv+JizZs3Snj179MADD4RcqM/XrUDgrqXeVrS2MGOBXkIznEf78DsxJnqRrFbLXTeaB93yt9vtcjqdcrvdKi4ultvtltPpHBD8X3zxhdatW6dXX311QPC3tbUpOztbkvTxxx/LarX2fQ9EWu9oCcCdhTT22bBhgyorK1VbW6vU1FTV1NRIksrLy1VRUaGCggJt3LhR165dU1VVVd96W7ZsUV5entavXy+fzyeLxaKUlBS9/vrrSkriIwYAECuDjn2MgrEPvRhRovQh0YtRRWvsw7l9AMCECH8AMCEG78AQcGpqxDvCHwgT5w9CImDsA4SJq6shERD+QJg4fxASAeEPhCmRrq4G82LmD4RpOE+Ex4VpEC2EPxCm4bi6msSOZUQX4Q8MQbRPTS1xYRpEFzN/wKDYsYxoIvwBg2LHMqKJ8AcMqmTeFI1I6v8SjdaOZZgPM3/AoL65Y5mjfRBphD9gYFyYBtHC2AcATIjwBwATIvwBwIQIfwAwIcIfAEyI8AcAEyL8AcCECH8AMCHCHwBMiPAHABMi/AHAhAh/ADAhwh8ATIjwBwATIvwBwIQIfwAwoZDCv6mpSaWlpSosLFRpaamam5sHLLNz5049+eSTKioqUklJiT7++OO++77++mutXbtWixYt0pIlS3T06NGINQAACF9IV/Kqrq5WWVmZiouLtW/fPlVVVamurq7fMtOnT9fKlSs1evRonT17VsuXL1d9fb1GjRqlN954QykpKfrTn/6k5uZm/eAHP9Dhw4d1//33R6UpAMDdDbrl7/P55PF45HK5JEkul0sej0cdHR39lps7d65Gjx4tScrLy1MwGFRnZ6ck6eDBgyotLZUkTZo0SQ8++KD+/Oc/R7QRAEDoBg1/r9er7Oxs2Ww2SZLNZlNWVpa8Xu8d19m7d68mTJignJxb1x5taWnRAw880He/w+FQa2vrvdYOABiiiF/A/ZNPPtH27dv15ptvRvRx7faUIa+bmTkmgpXEFr0YT6L0IdGLUUWjl0HD3+FwqK2tTX6/XzabTX6/X+3t7XI4HAOWPXXqlF555RXV1tYqNze37/axY8fq4sWLysjIkHTrv4lZs2aFVajP161AIBjWOtKtH9qlS1fCXs+I6MV4EqUPiV6Maqi9WK2Wu240Dzr2sdvtcjqdcrvdkiS32y2n09kX5L2++OILrVu3Tq+++qry8/P73bdkyRLt2rVLktTc3Ky//e1vmjt3btjNAAAiwxIMBgfdnG5sbFRlZaW6urqUmpqqmpoa5ebmqry8XBUVFSooKND3v/99Xbx4UdnZ2X3rbdmyRXl5efr3v/+tyspKnTlzRlarVa+88ooWLlwYVqFs+dOLESVKHxK9GFW0tvxDCn8jIPzpxYgSpQ+JXowqZmMfAEDiIfwBwIQIfwAwIcIfAEyI8AcAEyL8AcCECH8AMCHCHwBMiPAHABMi/AHAhAh/ADAhwh8ATIjwBwATIvwBwIQIfwAwIcIfAEyI8AcAEyL8AcCECH8AMCHCHwBMiPAHABMi/AHAhAh/ADAhwh8ATCgp1gUAMIcTDa3ac6xRvq4e2VNHqmTeFM3Oz4l1WaZF+AOIuhMNrXrn4FldvxmQJPm6evTOwbOSxBtAjDD2ARB1e4419gV/r+s3A9pzrDFGFYHwBxB1vq6esG5H9BH+AKLOnjoyrNsRfYQ/gKgrmTdFI5L6x82IJKtK5k2JUUVghy+AqOvdqcvRPsYRUvg3NTWpsrJSnZ2dSktLU01NjSZNmtRvmfr6em3dulVfffWVVqxYofXr1/fdt2PHDr377rvKysqSJD388MOqrq6OXBcAhqz3EMyOrh5lRDGUZ+fnEPYGElL4V1dXq6ysTMXFxdq3b5+qqqpUV1fXb5nx48dr8+bNOnTokK5fvz7gMZYuXdrvDQFA7HEIpnkNOvP3+XzyeDxyuVySJJfLJY/Ho46Ojn7LTZw4UU6nU0lJTJKAeMEhmOY1aPh7vV5lZ2fLZrNJkmw2m7KysuT1esN6ov3796uoqEgrV67UqVOnhlYtgIjiEEzzGpbN9KefflrPP/+8kpOTdfz4ca1evVoHDhxQenp6yI9ht6cM+fkzM8cMeV2joRfjiec+MtNH69Llr297ezz3JcX37+X/i0Yvg4a/w+FQW1ub/H6/bDab/H6/2tvb5XA4Qn6SzMzMvq8fffRRORwOnTt3TjNnzgz5MXy+bgUCwZCX/+9zj9GlS1fCXs+I6MV44r2PpXMm95v5S7cOwVw6Z3Jc9xXvv5dvGmovVqvlrhvNg4597Ha7nE6n3G63JMntdsvpdCojIyPkItra2vq+PnPmjC5evKjJkyeHvD6A6Jidn6Nnnpgme+pIWXTrQ1fPPDGNnb0mENLYZ8OGDaqsrFRtba1SU1NVU1MjSSovL1dFRYUKCgr02Wef6aWXXlJ3d7eCwaD279+vzZs3a+7cudq6dasaGhpktVqVnJysLVu29PtvAEDs9B6CmUhbyxicJRgMhj9LiQHGPvRiRInSh0QvRhWzsQ8AIPEQ/gBgQoQ/AJgQ4Q8AJkT4A4AJEf4AYEKchQ0ADCjap9om/AHAYIbjVNuMfQDAYIbjVNuEPwAYzHCcapvwBwCDsaeODOv2oSD8AcBgSuZN0Yik/vE8IsmqknlTIvYc7PAFAIPp3anL0T4AYDLRPtU2Yx8AMCG2/AEgDL0fvvJ19cgehXHMcCH8ASBEw/Hhq+HC2AcAQjQcH74aLoQ/AIRoOD58NVwIfwAI0XB8+Gq4EP4AEKLh+PDVcGGHLwCE6JsfvuJoHwAwkd4PX8U7xj4AYEKEPwCYEOEPACZE+AOACRH+AGBChD8AmBDhDwAmRPgDgAmFFP5NTU0qLS1VYWGhSktL1dzcPGCZ+vp6lZSU6MEHH1RNTU2/+/x+vzZu3KiFCxdq0aJF2r17d0SKB4BvOtHQqldqj+upl/fpldrjOtHQGuuSDCuk8K+urlZZWZn++Mc/qqysTFVVVQOWGT9+vDZv3qxVq1YNuO/999/X+fPndfjwYe3atUs7duzQP//5z3uvHgD+o/dc+76uHgX133Pt8wZwe4OGv8/nk8fjkcvlkiS5XC55PB51dHT0W27ixIlyOp1KShp4xogDBw5o2bJlslqtysjI0MKFC3Xo0KEItQAAiXWu/eEwaPh7vV5lZ2fLZrNJkmw2m7KysuT1ekN+Eq/Xq7Fjx/Z973A41NrKuzGAyEmkc+0Ph7g5sZvdnjLkdTMzx0SwktiiF+NJlD6k+O4lM320Ll3++ra3x3NfUnR+L4OGv8PhUFtbm/x+v2w2m/x+v9rb2+VwOEJ+EofDoZaWFk2fPl3SwP8EQuHzdSsQCIa1jnTrh3bp0pWw1zMiejGeROlDiv9els6Z3O/6utKtc+0vnTM5rvsa6u/FarXcdaN50LGP3W6X0+mU2+2WJLndbjmdTmVkZIRcxJIlS7R7924FAgF1dHToyJEjKiwsDHl9ABjM7PwcPfPENNlTR8qiW1fXeuaJaQlx+uVoCGnss2HDBlVWVqq2tlapqal9h3KWl5eroqJCBQUF+uyzz/TSSy+pu7tbwWBQ+/fv1+bNmzV37lwVFxfr888/1+LFiyVJa9as0fjx46PXFQBT6j3Xfrz/FzMcLMFgMPxZSgww9qEXI0qUPiR6MaqYjX0AAImH8AcAEyL8AcCE4uY4f6vVEpN1jYZejCdR+pDoxaiG0stg68TNDl8AQOQw9gEAEyL8AcCECH8AMCHCHwBMiPAHABMi/AHAhAh/ADAhwh8ATIjwBwATStjwv3z5ssrLy1VYWKiioiL9+Mc/HnDR+Xjz2muvKS8vT1999VWsSxmynp4eVVdXa/HixSoqKtLPf/7zWJc0ZEePHtXSpUtVXFysp556SocPH451SSGpqanR/PnzB/wtNTU1qbS0VIWFhSotLVVzc3PsigzR7XqJ19f+nX4vvSL++g8mqMuXLwf/+te/9n3/q1/9KvjTn/40hhXdm9OnTwdXrVoVfPzxx4NffvllrMsZsk2bNgU3b94cDAQCwWAwGLx06VKMKxqaQCAQnDFjRt/v4syZM8GHHnoo6Pf7Y1zZ4D799NNgS0vLgL+lFStWBPfu3RsMBoPBvXv3BlesWBGrEkN2u17i9bV/p99LMBid13/CbvmnpaVp1qxZfd8/9NBDamlpiWFFQ3f9+nX94he/0IYNG2Jdyj25evWq9u7dqxdffFEWy62TTn3rW9+KcVVDZ7VadeXKrYtsXLlyRVlZWbJajf+SmjFjxoBrcPt8Pnk8HrlcLkmSy+WSx+Mx/Bbz7XqJ19f+7XqRovf6j5uzet6LQCCg3//+95o/f36sSxmS7du366mnntK4ceNiXco9uXDhgtLS0vTaa6/p5MmTuv/++/Xiiy9qxowZsS4tbBaLRdu2bdPq1at133336erVq/rtb38b67KGzOv1Kjs7WzabTZJks9mUlZUlr9cb1vW6jSbeX/tS9F7/xt9MiYBNmzbpvvvu0/Lly2NdSthOnTql06dPq6ysLNal3DO/368LFy7o29/+tvbs2aOf/OQneuGFF9Td3R3r0sJ28+ZN/eY3v1Ftba2OHj2q119/XWvXrtXVq1djXRq+IZ5f+1J0X/8JH/41NTX6xz/+oW3btsXFv+T/36effqrGxkYtWLBA8+fPV2trq1atWqX6+vpYlxY2h8OhpKSkvtHCd77zHaWnp6upqSnGlYXvzJkzam9v1yOPPCJJeuSRRzR69Gg1NjbGuLKhcTgcamtrk9/vl3Trjbq9vf22Y4h4Ee+vfSm6r//4/ImEaOvWrTp9+rR27typESNGxLqcIXnuuedUX1+vDz/8UB9++KFycnL0xhtvaM6cObEuLWwZGRmaNWuWjh8/LunW0SU+n08TJ06McWXhy8nJUWtrq/7+979LkhobG+Xz+TRhwoQYVzY0drtdTqdTbrdbkuR2u+V0OuN25JMIr30puq//hL2Yy7lz5+RyuTRp0iSNGjVKkjRu3Djt3LkzxpXdm/nz5+vXv/61pk6dGutShuTChQv62c9+ps7OTiUlJWnt2rWaN29erMsakj/84Q/63e9+17fzuqKiQgsXLoxxVYP75S9/qcOHD+tf//qX0tPTlZaWpv3796uxsVGVlZXq6upSamqqampqlJubG+ty7+p2vWzbti0uX/t3+r18UyRf/wkb/gCAO0vosQ8A4PYIfwAwIcIfAEyI8AcAEyL8AcCECH8AMCHCHwBMiPAHABP6P1Y3eN4ERf1gAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"code","source":[""],"metadata":{"id":"pJd4iq9Krw2X"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":[""],"metadata":{"id":"f-QzaQfO0e1R"},"execution_count":null,"outputs":[]}]}