This project try to solve the competition Warm Up: Predict Blood Donations
- Python
- Anacoda
- xgboost 0.4.0 (install with conda: conda conda install -c aterrel xgboost=0.4.0)
- scikit-learn 0.16
- $ cd your/repo/path
- $ jupyter notebook
- Go to browser and enter localhost:8888 to access notebooks
- data: contains train.csv for machine learning and test.csv for create submission.
- results: submission results.
- helper: helper methods for loading and processing data.
- 01_data_exploration_v01.ipynb: data exploration.
- 02_machine_learning_v01.ipynb: baseline and essemble machine learning (GradientBoostingClassifier as final model).
- 03_machine_learning_xgboost_v01.ipynb: xgboost machine learning (XGBClassifier as final model).
- 04_machine_learning_apply_process_v01.ipynb: try to apply monitoring learning process for some models (SVC as final model).
- XGBClassifier: Log loss = 0.4550, 361/2058 (top 17%).
- SVC: Log loss = 0.4988, 425/2056 (top 24%).
- GradientBoostingClassifier: Log loss = 0.5194, 642/2022 (top 31%).