-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbert_tools.py
368 lines (289 loc) · 13.6 KB
/
bert_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# bert tools
# 功能: 实现词表精简 添加
# author: manyangyang
import os
import json
import torch
import logging
from torch import nn
import math
def swish(x):
return x * torch.sigmoid(x)
def gelu_new(x):
""" Implementation of the gelu activation function currently in Google Bert repo (identical to OpenAI GPT).
Also see https://arxiv.org/abs/1606.08415
"""
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
def mish(x):
return x * torch.tanh(torch.nn.functional.softplus(x))
ACT2FN = {"gelu":torch.nn.functional.gelu, "relu": torch.nn.functional.relu, "swish": swish, "gelu_new": gelu_new, "mish": mish}
BertLayerNorm = torch.nn.LayerNorm
class BertEmbeddings(nn.Module):
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.answer_tag_embeddings = nn.Embedding(3, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
class BertSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
class BertSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
class BertAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
class BertIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.intermediate_act_fn = ACT2FN[config.hidden_act]
class BertOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
class BertLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = BertAttention(config)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
class BertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.transform_act_fn = ACT2FN[config.hidden_act]
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
class BertLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
class BertOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BertLMPredictionHead(config)
class BertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
class UnilmPretrainedModel(nn.Module):
def __init__(self, config, *inputs, **kwargs):
super().__init__()
if not isinstance(config, BertConfig):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
"To create a model from a pretrained model use "
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
self.__class__.__name__, self.__class__.__name__
)
)
# Save config in model
self.config = config
self.base_model_prefix = 'bert.'
# init weights always no use, cause we load weight from pre-trained model
def _init_weights(self, module):
""" Initialize the weights """
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, BertLayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def apply(self, fn):
for module in self.children():
module.apply(fn)
fn(self)
return self
def init_weights(self):
self.apply(self._init_weights)
@classmethod
def load_weight_form_pretrained(cls, pretrain_path, config, *model_args, **model_kwargs):
model_weight_dir = os.path.join(pretrain_path, 'pytorch_model.bin')
state_dict = torch.load(model_weight_dir, map_location="cpu")
keep_tokens = model_kwargs.pop("keep_tokens", None)
token_dict = model_kwargs.pop("token_dict", None)
for key in state_dict.keys():
if 'word_embeddings' in key or 'predictions.decoder' in key or 'predictions.bias' in key:
print(key, state_dict[key].shape)
word_embeddings = state_dict[key]
if keep_tokens is not None:
word_embeddings = cls.simply_embeddings(word_embeddings, keep_token=keep_tokens)
config.vocab_size = len(keep_tokens)
if token_dict is not None:
word_embeddings = cls.add_new_tokens(word_embeddings, new_token_dict=token_dict, std=config.initializer_range)
config.vocab_size = len(token_dict)
state_dict[key] = word_embeddings
model = cls(config, *model_args, **model_kwargs)
model.load_state_dict(state_dict, prefix=model.base_model_prefix)
state_dict[key] = word_embeddings
return model
def load_state_dict(self, state_dict, prefix='', strict=True):
missing_keys = []
unexpected_keys = []
error_msgs = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, '_metadata', None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=''):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
for name, child in module._modules.items():
if child is not None:
# print(prefix+name+'.')
load(child, prefix + name + '.')
load(self, prefix=prefix)
load = None # break load->load reference cycle
if strict:
if len(unexpected_keys) > 0:
error_msgs.insert(
0, 'Unexpected key(s) in state_dict: {}. '.format(
', '.join('"{}"'.format(k) for k in unexpected_keys)))
if len(missing_keys) > 0:
error_msgs.insert(
0, 'Missing key(s) in state_dict: {}. '.format(
', '.join('"{}"'.format(k) for k in missing_keys)))
print(error_msgs)
logging.info(error_msgs)
return missing_keys, unexpected_keys, error_msgs
@staticmethod
def simply_embeddings(word_embeddings, keep_token):
word_embeddings = word_embeddings[keep_token]
return word_embeddings
@classmethod
def add_new_tokens(cls, word_embeddings, new_token_dict, std=0.02):
if len(new_token_dict) <= word_embeddings.shape[0]:
return word_embeddings
new_vocab_size = len(new_token_dict)
if len(word_embeddings.shape) == 2:
vocab_size, embedding_dim = word_embeddings.shape
new_embeddings = torch.normal(mean=torch.zeros(new_vocab_size, embedding_dim), std=std)
new_embeddings[:vocab_size, :] = word_embeddings
return new_embeddings
elif len(word_embeddings.shape) == 1:
vocab_size = word_embeddings.shape[0]
new_bias = torch.zeros(new_vocab_size)
new_bias[:vocab_size] = word_embeddings
return new_bias
def save_config_model(self, save_path):
if not os.path.exists(save_path):
os.makedirs(save_path)
config_save_path = os.path.join(save_path, 'config.json')
model_save_path = os.path.join(save_path, 'pytorch_model.bin')
# Only save the model itself if we are using distributed training
model_to_save = self.module if hasattr(self, "module") else self
# Attach architecture to the config
model_to_save.config.architectures = [model_to_save.__class__.__name__]
with open(config_save_path, 'w', encoding='utf8') as f:
json.dump(model_to_save.config.__dict__, f, indent=4)
torch.save(model_to_save.state_dict(), model_save_path)
class BertModel(UnilmPretrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = BertEmbeddings(config)
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config)
self.init_weights()
class BertForPreTraining(UnilmPretrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config)
self.cls = BertPreTrainingHeads(config)
self.init_weights()
self.base_model_prefix = ''
class BertPreTrainingHeads(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BertLMPredictionHead(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
class BertConfig(object):
model_type = "bert"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
**kwargs
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.pad_token_id = pad_token_id
for k, v in kwargs.items():
setattr(self, k, v)
@classmethod
def load_config(cls, pretrain_path):
config_dir = os.path.join(pretrain_path, 'config.json')
with open(config_dir, 'r', encoding='utf8') as f:
config_dict = json.load(f)
return cls(**config_dict)
if __name__ == '__main__':
config = BertConfig.load_config('pytorch_wobert')
model = BertForPreTraining.load_weight_form_pretrained('pytorch_wobert', config=config, keep_tokens=[0], token_dict=[1,2,3,34,45])
model.save_config_model('new_wobert')
# state_dict = torch.load('pytorch_wobert/pytorch_model.bin')
# config = BertConfig()
# model = BertForPreTraining()
# BertForPreTraining.from_pretrained()
# BertForPreTraining.save_pretrained()
# model.load_state_dict()