-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathUptrend.py
450 lines (382 loc) · 20.2 KB
/
Uptrend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# flake8: noqa: F401
# --- Do not remove these libs ---
import numpy as np # noqa
import pandas as pd # noqa
from pandas import DataFrame, Series # noqa
from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter,
IStrategy, IntParameter)
# --------------------------------
# Add your lib to import here
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
from datetime import datetime
class Uptrend(IStrategy):
INTERFACE_VERSION = 2
buy_params = {
'buy_rsi_uplimit': 50,
}
buy_rsi_uplimit = IntParameter(50, 90, default=buy_params['buy_rsi_uplimit'], optimize=False, space='buy')
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi".
minimal_roi = {
"60": 0.1,
"30": 0.02,
"0": 0.04
}
# Optimal stoploss designed for the strategy.
# This attribute will be overridden if the config file contains "stoploss".
stoploss = -0.10
# Trailing stoploss
trailing_stop = False
# trailing_only_offset_is_reached = False
# trailing_stop_positive = 0.01
# trailing_stop_positive_offset = 0.0 # Disabled / not configured
# Optimal timeframe for the strategy.
timeframe = '5m'
# Run "populate_indicators()" only for new candle.
process_only_new_candles = False
# These values can be overridden in the "ask_strategy" section in the config.
use_sell_signal = True
sell_profit_only = False
ignore_roi_if_buy_signal = False
# Number of candles the strategy requires before producing valid signals
startup_candle_count: int = 30
use_custom_stoploss = True
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
sl_new = 1
if (current_profit > 0.2):
sl_new = 0.05
elif (current_profit > 0.1):
sl_new = 0.03
elif (current_profit > 0.06):
sl_new = 0.02
elif (current_profit > 0.03):
sl_new = 0.015
elif (current_profit > 0.015):
sl_new = 0.0075
return sl_new
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['hl2'] = (dataframe['high'] + dataframe['low']) / 2
dataframe['mama'], dataframe['fama'] = ta.MAMA(dataframe['hl2'], 0.5, 0.05)
dataframe['mama_diff'] = dataframe['mama'] - dataframe['fama']
dataframe['mama_diff_ratio'] = dataframe['mama_diff'] / dataframe['hl2']
dataframe['zero'] = 0
dataframe['rsi'] = ta.RSI(dataframe['close'], timeperiod=14)
# EMA 50
dataframe['ema50'] = ta.EMA(dataframe['close'], timeperiod=50)
# EMA 200
dataframe['ema200'] = ta.EMA(dataframe['close'], timeperiod=200)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(dataframe['rsi'] < 80) &
(dataframe['mama'] > dataframe['fama']) & # uptrend
(dataframe['mama_diff_ratio'] > 0.04) &
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(dataframe['mama_diff_ratio'] < 0.01) &
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'sell'] = 1
return dataframe
import random
from functools import reduce
class SuperBuy(Uptrend):
"""
Idea is to build random buy signales from populate_indicators, with luck we'll get a good buy signal
"""
generator = IntParameter(0, 100000000000, default=99295874569, optimize=True, space='buy') # generate unique matrix of conditions for your dataframe
operators_used_to_compare_between_columns = IntParameter(0, 3, default=3, optimize=True, space='buy') # number of conditions you will keep to build buy signal
operators_used_to_with_best_point = IntParameter(0, 3, default=1, optimize=True, space='buy') # number of conditions you will keep to build buy signal
condition_selector = IntParameter(0, 100, default=50, optimize=True, space='buy') # how to select the desired conditions beteween all conditions generated (seed random)
best_buy_point = None
best_buy_point_dict = dict()
bad_buy_point_dict = dict()
all_points_dict = dict()
buy_signal_already_printed = False
columns = []
columns_to_compare_to_best_point = []
columns_to_compare_to_volume = []
columns_to_compare_to_price = []
operators = {
0: '<',
1: '>',
2: '<=',
3: '>=',
4: '==',
5: '!='
}
top_index_criteria = {
# best point criteria
'min_close_hh_ratio': 0.08,
'max_candles_to_get_ratio': 8,
'candles_after_dip_to_buy': 0,
# parameters selection criteria
'select_parameter_if_in_more_than_x_percent_of_best_points': 97,
'select_prameter_if_prop_is_x_percent_higher_in_best_points': 10,
}
def find_best_entry_point(self, dataframe: DataFrame, metadata: dict):
lookahead_candles = self.top_index_criteria['max_candles_to_get_ratio']
workdataframe = dataframe.copy()
workdataframe['higher_high'] = workdataframe['high'].rolling(lookahead_candles).max()
workdataframe['close_shifted_lookehead'] = workdataframe['close'].shift(lookahead_candles)
workdataframe['higher_high_close_ratio'] = workdataframe['higher_high'] / workdataframe['close_shifted_lookehead']
df_mask = workdataframe['higher_high_close_ratio'] >= 1 + self.top_index_criteria['min_close_hh_ratio']
# print(1 + self.top_index_criteria['min_close_hh_ratio'])
filtered_df = workdataframe[df_mask]
filtered_df = filtered_df.sort_values(by=["higher_high_close_ratio"], ascending=False)
filtered_df["shifted_index"] = filtered_df.index - lookahead_candles + self.top_index_criteria['candles_after_dip_to_buy']
if filtered_df.empty:
if self.config['runmode'].value != 'hyperopt':
print("No entry point found for {}".format(metadata['pair']))
return filtered_df, workdataframe
# print(metadata['pair'])
# print(filtered_df[["date", "shifted_index", "higher_high_close_ratio", "close_shifted_lookehead", "close", "higher_high"]])
return filtered_df, workdataframe.drop(filtered_df['shifted_index'])
def common_points_for_every_best_entry(self, dataframe: DataFrame, metadata: dict, columns: list) -> list:
full_pairlist = self.dp.current_whitelist()
current_pair = metadata['pair']
if current_pair not in self.best_buy_point_dict:
self.best_buy_point_dict[current_pair], self.bad_buy_point_dict[current_pair] = self.find_best_entry_point(dataframe, metadata)
self.all_points_dict[current_pair] = dataframe.copy()
for pair in full_pairlist:
current_df = self.dp.get_pair_dataframe(pair=pair, timeframe=self.timeframe)
if (pair not in self.best_buy_point_dict) and not current_df.empty:
# print("No entry point found for {}".format(pair))
return []
all_best_points = None
all_bad_points = None
all_points = None
for pair in full_pairlist:
# NO DATA FOR THIS PAIR
if not pair in self.best_buy_point_dict:
continue
if all_best_points is None:
all_best_points = self.best_buy_point_dict[pair]
all_bad_points = self.bad_buy_point_dict[pair]
all_points = self.all_points_dict[pair]
else:
all_best_points = all_best_points.append(self.best_buy_point_dict[pair])
all_bad_points = all_bad_points.append(self.bad_buy_point_dict[pair])
all_points = all_points.append(self.all_points_dict[pair])
print("HERE COMMON VALUES FOR ALL BEST POINTS !!!!!!!!!!")
res = list()
best_indicators = []
for column in columns:
all_points_values_count = all_points[column].value_counts()
all_bad_points_values_count = all_bad_points[column].value_counts()
count = all_best_points[column].value_counts()
# keep only values in more than x% of all points
df_mask = count >= 1 / 100 * all_best_points.shape[0]
count = count[df_mask]
if not count.empty and not column in ['buy', 'buy_tag']:
count_normalized = count / all_best_points.shape[0]
all_bad_points_values_count_normalized = all_bad_points_values_count / all_bad_points.shape[0]
df_all = count.to_frame(name='best_points').join(all_bad_points_values_count.to_frame(name='bad_points'))
df_all['best_point_percent'] = count_normalized
df_all['bad_point_percent'] = all_bad_points_values_count_normalized
df_all['part_of_best_points'] = 100 * df_all['best_points'] / (df_all['best_points'] + df_all['bad_points'])
df_all['part_of_best_points_percent'] = count_normalized / all_bad_points_values_count_normalized
print(column)
print(df_all)
values = df_all.query(
f"part_of_best_points > 3 & " # the part of best points should be at least 3% for the value
"part_of_best_points_percent > 13 & " # proportion of value is X* more important in best points than in bad points
"best_points > 12" # minimum number of the value (because we don't want close=1.121213243482902183 as result)
).index.tolist() # & df_all["part_of_best_points_percent"] > 10)]
print(values)
for elt in values:
best_indicators.append(f"dataframe['{column}'] == {elt}")
if column in ['buy', 'buy_tag']:
print(column)
print(all_best_points[column].value_counts())
elif not count.empty:
res.append({
'column': column,
'value': count.index[0],
'ratio_for_best': count.iloc[0] / all_best_points.shape[0],
'ratio_for_all': all_points_values_count[count.index[0]] / all_points.shape[0],
'ratio_diff': count.iloc[0] / all_best_points.shape[0] - all_points_values_count[count.index[0]] / all_points.shape[0]
})
for item in sorted(res, key=lambda x: x['ratio_diff']):
print(f"({item['column']} == {item['value']}), {100 * item['ratio_for_best']:.2f}% in best vs {100 * item['ratio_for_all']:.2f}% average")
print("END OF COMMON VALUES FOR ALL BEST POINTS !!!!!!!!!!")
print("Suggested buy signal:")
print("( # main buy signals found")
for item in best_indicators:
print(f" ({item})|")
print(")")
print("& ( # protections")
for item in sorted(res, key=lambda x: x['ratio_diff']):
if (((100 * item['ratio_for_best']) - (100 * item['ratio_for_all'])) > self.top_index_criteria['select_prameter_if_prop_is_x_percent_higher_in_best_points']) and (100 * item['ratio_for_best']) > self.top_index_criteria['select_parameter_if_in_more_than_x_percent_of_best_points']:
print(f"(dataframe['{item['column']}'] == {item['value']}) &")
print(")")
return []
def is_same_dimension_as_price(self, dataframe: DataFrame, column_name: str) -> bool:
if dataframe['close'].dtype != dataframe[column_name].dtype:
# prevent impossible comparisons
return False
return (dataframe[column_name].max() <= dataframe['high'].max() and dataframe[column_name].min() >= dataframe['low'].min())
def is_same_dimension_as_volume(self, dataframe: DataFrame, column_name: str) -> bool:
if dataframe['volume'].dtype != dataframe[column_name].dtype:
# prevent impossible comparisons
return False
if 'volume' in column_name:
return True
return False
def generate_superbuy_signal(self, dataframe: DataFrame, metadata: dict) -> list:
# every indicators names
columns = list(dataframe.columns)
columns.remove('date')
columns.remove('sell')
columns.remove('buy')
columns.remove('buy_tag')
columns = [column for column in columns if not 'date' in column]
# generated random conditions
buy_conds = []
# operators we will use as a string "123423232" which will be used to sequentially pick in operators
generators = ""
base_generators = str(self.generator.value)
while len(generators) < len(columns) * len(columns):
generators = generators + base_generators
# get best buy point for first pair, will indicators will be used for each pair
# THE PAIR YOU WANT TO USE AS REFERENCE MUST BE FIRST IN YOUR PAIRLIST !!!!!!!!
if self.best_buy_point is None:
try:
top_index, _ = self.find_best_entry_point(dataframe, metadata)["shifted_index"].iloc[0]
self.best_buy_point = dataframe.iloc[top_index]
print(f"pair used as reference is {metadata['pair']}")
print(top_index)
except:
self.best_buy_point = None
pass
# sort columns by category
if len(self.columns_to_compare_to_best_point) == 0 and len(self.columns_to_compare_to_volume) == 0 and len(self.columns_to_compare_to_price) == 0:
self.columns = columns
for column in columns:
if self.is_same_dimension_as_price(dataframe, column):
self.columns_to_compare_to_price.append(column)
elif self.is_same_dimension_as_volume(dataframe, column):
self.columns_to_compare_to_volume.append(column)
else:
self.columns_to_compare_to_best_point.append(column)
print(f"columns_to_compare_to_price : {self.columns_to_compare_to_price}")
print(f"columns_to_compare_to_volume : {self.columns_to_compare_to_volume}")
# remove NAN columns for best point...
if self.best_buy_point is not None:
for column in self.columns_to_compare_to_best_point:
if str(self.best_buy_point[column]) == 'nan':
self.columns_to_compare_to_best_point.remove(column)
print(f"columns_to_compare_to_best_point : {self.columns_to_compare_to_best_point}")
# generate matrix of all operators for all combinations of columns and create buy conditions
index = 0
for left_elt in self.columns_to_compare_to_price:
for right_elt in self.columns_to_compare_to_price:
if index > len(generators):
break
generator = generators[index]
index += 1
if left_elt == right_elt:
continue
if int(generator) not in self.operators:
# pass if no operator is selected
continue
# print("(dataframe['" + left_elt + "'] " + self.operators[int(generator)] + " dataframe['" + right_elt + "'])")
buy_conds.append(
"(dataframe['" + left_elt + "'] " + self.operators[int(generator)] + " dataframe['" + right_elt + "'])"
)
for left_elt in self.columns_to_compare_to_volume:
for right_elt in self.columns_to_compare_to_volume:
if index > len(generators):
break
generator = generators[index]
index += 1
if left_elt == right_elt:
continue
if int(generator) not in self.operators:
# pass if no operator is selected
continue
# print("(dataframe['" + left_elt + "'] " + self.operators[int(generator)] + " dataframe['" + right_elt + "'])")
buy_conds.append(
"(dataframe['" + left_elt + "'] " + self.operators[int(generator)] + " dataframe['" + right_elt + "'])"
)
buy_conds_best_point = []
# generate buy conditions with best buy point
for column in self.columns_to_compare_to_best_point:
if self.best_buy_point is None:
continue
if index > len(generators):
break
generator = generators[index]
index += 1
if int(generator) not in self.operators:
# pass if no operator is selected
continue
# print("(dataframe['" + column + "'] " + self.operators[int(generator)] + " best_buy_point['" + column + "']))")
# print(eval("best_buy_point['" + column + "']"))
buy_conds_best_point.append(
"(dataframe['" + column + "'] " + self.operators[int(generator)] + " " + str(self.best_buy_point[column]) + ")"
)
# select a few buy conditions
random.seed(self.condition_selector.value)
try:
buy_conds = random.sample(buy_conds, self.operators_used_to_compare_between_columns.value)
except ValueError:
print("not enough conditions to compare between columns")
# Sample larger than population or is negative
pass
try:
buy_conds += random.sample(buy_conds_best_point, self.operators_used_to_with_best_point.value)
except ValueError as e:
if self.config['runmode'].value != 'hyperopt':
print("not enough conditions to compare with best point")
# Sample larger than population or is negative
pass
if self.config['runmode'].value in ('backtest', 'hyperopt') and self.buy_signal_already_printed != buy_conds:
print(buy_conds)
self.buy_signal_already_printed = buy_conds
try:
buy_conds = [eval(buy_cond, globals(), {'dataframe': dataframe, 'best_buy_point': self.best_buy_point}) for buy_cond in buy_conds]
except:
return []
return buy_conds
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
buy_conds = self.generate_superbuy_signal(dataframe, metadata)
if self.config['runmode'].value in ('backtest'): # backtest, we want to check must common buy tags...
dataframe = super().populate_buy_trend(dataframe, metadata) # get buy tags
self.common_points_for_every_best_entry(dataframe, metadata, self.columns + ['buy', 'buy_tag'])
elif self.config['runmode'].value in ('hyperopt'): # hyperopt, we want to test new buy signals
is_additional_check = (
( # main buy signals found
(dataframe['not_res1_1h'] == True)
)
& ( # protections
(dataframe['rsi_fast_lower_20'] == 0) &
(dataframe['rsi_fast_lower_30'] == 0) &
(dataframe['r_14_lower_minus_80'] == 0) &
(dataframe['r_32_lower_minus_80'] == 0) &
(dataframe['r_96_lower_minus_80'] == 0)
) &
(
# (dataframe['ema_50_lin'] < dataframe['ema_26_lin']) |
# (dataframe['sma_15'] > dataframe['ema_50_1h']) |
# (dataframe['ema_slow'] <= dataframe['sup1']) |
(dataframe['res1'] >= dataframe['bb_upperband2_1h'])
)
)
if buy_conds:
dataframe.loc[
is_additional_check
&
reduce(lambda x, y: x & y, buy_conds)
, 'buy'] = 1
# THIS STRAT SHOULD NOT BE USED IN LIVE/DRYRUN MODE
return dataframe