This repository has been archived by the owner on Sep 29, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcase_study_cifar10.py
66 lines (49 loc) · 2.3 KB
/
case_study_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from typing import Dict
import uncertainty_wizard as uwiz
import gpu_db_recorder
from gpu_db_recorder import Event
class MultiGpuContext(uwiz.models.ensemble_utils.DeviceAllocatorContextManager):
@classmethod
def file_path(cls) -> str:
return "temp"
@classmethod
def run_on_cpu(cls) -> bool:
return False
@classmethod
def virtual_devices_per_gpu(cls) -> Dict[int, int]:
return {
0: 3,
1: 3
}
@classmethod
def gpu_memory_limit(cls) -> int:
return 1024
def train_model(model_id):
import tensorflow as tf
gpu_db_recorder.dump(Event("Start model creation", model=model_id))
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation='relu', padding='same',
input_shape=(32, 32, 3)))
model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Conv2D(64, kernel_size=(3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.Conv2D(64, kernel_size=(3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Conv2D(128, kernel_size=(3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.Conv2D(128, kernel_size=(3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(10, activation='softmax'))
opt = tf.keras.optimizers.SGD(lr=0.001, momentum=0.9)
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
(x_train, y_train), (_, _) = tf.keras.datasets.cifar10.load_data()
x_train = x_train / 255.
y_train = tf.keras.utils.to_categorical(y_train, 10)
history = model.fit(x_train, y_train, batch_size=32, epochs=100)
gpu_db_recorder.dump(Event("End model creation", model=model_id))
return model, history.history