-
Notifications
You must be signed in to change notification settings - Fork 116
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add bitwise ops sweeps, add gen_rand_bitwise_left_shift function (#13366
) * #11512: Add bitwise ops, add gen_rand_bitwise_left_shift function in sweep_framework/utils.py * #11512: Minor fix * #11512: Change bitwise ops names
- Loading branch information
1 parent
74af50a
commit 893f708
Showing
8 changed files
with
548 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
84 changes: 84 additions & 0 deletions
84
tests/sweep_framework/sweeps/eltwise/unary/bitwise/bitwise_and.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import Optional, Tuple | ||
from functools import partial | ||
|
||
import torch | ||
import random | ||
import ttnn | ||
from tests.sweep_framework.utils import gen_shapes | ||
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt | ||
|
||
from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time | ||
from models.utility_functions import torch_random | ||
|
||
# Override the default timeout in seconds for hang detection. | ||
TIMEOUT = 30 | ||
|
||
random.seed(0) | ||
|
||
# Parameters provided to the test vector generator are defined here. | ||
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. | ||
# Each suite has a key name (in this case "suite_1") which will associate the test vectors to this specific suite of inputs. | ||
# Developers can create their own generator functions and pass them to the parameters as inputs. | ||
parameters = { | ||
"nightly": { | ||
"input_shape": gen_shapes([1, 1, 32, 32], [6, 12, 128, 128], [1, 1, 32, 32], 32) | ||
+ gen_shapes([1, 32, 32], [12, 256, 256], [1, 32, 32], 32) | ||
+ gen_shapes([32, 32], [256, 256], [32, 32], 32), | ||
"input_a_dtype": [ttnn.int32], | ||
"input_a_layout": [ttnn.TILE_LAYOUT], | ||
"input_a_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
"output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
}, | ||
} | ||
|
||
|
||
def mesh_device_fixture(): | ||
device = ttnn.open_device(device_id=0) | ||
assert ttnn.device.is_wormhole_b0(device), "This op is available for Wormhole_B0 only" | ||
yield (device, "Wormhole_B0") | ||
ttnn.close_device(device) | ||
del device | ||
|
||
|
||
# This is the run instructions for the test, defined by the developer. | ||
# The run function must take the above-defined parameters as inputs. | ||
# The runner will call this run function with each test vector, and the returned results from this function will be stored. | ||
# If you defined a device_mesh_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra. | ||
def run( | ||
input_shape, | ||
input_a_dtype, | ||
input_a_layout, | ||
input_a_memory_config, | ||
output_memory_config, | ||
*, | ||
device, | ||
) -> list: | ||
data_seed = random.randint(0, 20000000) | ||
torch.manual_seed(data_seed) | ||
|
||
torch_input_tensor_a = gen_func_with_cast_tt( | ||
partial(torch_random, low=0, high=2147483648, dtype=torch.int64), input_a_dtype | ||
)(input_shape) | ||
|
||
scalar = torch.randint(0, 2147483648, (1,), dtype=torch.int32).item() | ||
|
||
torch_output_tensor = torch.bitwise_and(torch_input_tensor_a, scalar) | ||
|
||
input_tensor_a = ttnn.from_torch( | ||
torch_input_tensor_a, | ||
dtype=input_a_dtype, | ||
layout=input_a_layout, | ||
device=device, | ||
memory_config=input_a_memory_config, | ||
) | ||
|
||
start_time = start_measuring_time() | ||
result = ttnn.bitwise_and(input_tensor_a, value=scalar, memory_config=output_memory_config) | ||
output_tensor = ttnn.to_torch(result) | ||
e2e_perf = stop_measuring_time(start_time) | ||
|
||
return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf] |
105 changes: 105 additions & 0 deletions
105
tests/sweep_framework/sweeps/eltwise/unary/bitwise/bitwise_left_shift.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import Optional, Tuple | ||
from functools import partial | ||
|
||
import torch | ||
import random | ||
import ttnn | ||
from tests.sweep_framework.utils import gen_shapes, gen_rand_bitwise_left_shift | ||
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt | ||
|
||
from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time | ||
from models.utility_functions import torch_random | ||
|
||
# Override the default timeout in seconds for hang detection. | ||
TIMEOUT = 30 | ||
|
||
random.seed(0) | ||
|
||
# Parameters provided to the test vector generator are defined here. | ||
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. | ||
# Each suite has a key name (in this case "suite_1") which will associate the test vectors to this specific suite of inputs. | ||
# Developers can create their own generator functions and pass them to the parameters as inputs. | ||
parameters = { | ||
"nightly": { | ||
"input_shape": gen_shapes([1, 1, 32, 32], [6, 12, 128, 128], [1, 1, 32, 32], 4) | ||
+ gen_shapes([1, 32, 32], [12, 256, 256], [1, 32, 32], 4) | ||
+ gen_shapes([32, 32], [256, 256], [32, 32], 4), | ||
"shift_bits": list(range(1, 31)), | ||
"use_safe_nums": [True], | ||
"input_a_dtype": [ttnn.int32], | ||
"input_a_layout": [ttnn.TILE_LAYOUT], | ||
"input_a_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
"output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
}, | ||
"xfail": { | ||
"input_shape": gen_shapes([1, 1, 32, 32], [6, 12, 128, 128], [1, 1, 32, 32], 4) | ||
+ gen_shapes([1, 32, 32], [12, 256, 256], [1, 32, 32], 4) | ||
+ gen_shapes([32, 32], [256, 256], [32, 32], 4), | ||
"shift_bits": list(range(1, 31)), | ||
"use_safe_nums": [False], | ||
"input_a_dtype": [ttnn.int32], | ||
"input_a_layout": [ttnn.TILE_LAYOUT], | ||
"input_a_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
"output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
}, | ||
} | ||
|
||
|
||
def mesh_device_fixture(): | ||
device = ttnn.open_device(device_id=0) | ||
assert ttnn.device.is_wormhole_b0(device), "This op is available for Wormhole_B0 only" | ||
yield (device, "Wormhole_B0") | ||
ttnn.close_device(device) | ||
del device | ||
|
||
|
||
# This is the run instructions for the test, defined by the developer. | ||
# The run function must take the above-defined parameters as inputs. | ||
# The runner will call this run function with each test vector, and the returned results from this function will be stored. | ||
# If you defined a device_mesh_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra. | ||
def run( | ||
input_shape, | ||
shift_bits, | ||
use_safe_nums, | ||
input_a_dtype, | ||
input_a_layout, | ||
input_a_memory_config, | ||
output_memory_config, | ||
*, | ||
device, | ||
) -> list: | ||
data_seed = random.randint(0, 20000000) | ||
torch.manual_seed(data_seed) | ||
|
||
# In ttnn.bitwise_left_shift, only bits from positions 0 to 30 are included during shifting (sign bit remains the same). | ||
# That is not the case with torch.bitwise_left_shift, all of the bits are included during shifting. | ||
# use_safe_nums argument makes sure that those two bits are the same, so the results between the two versions are the same. | ||
if use_safe_nums is True: | ||
torch_input_tensor_a = gen_func_with_cast_tt( | ||
partial(gen_rand_bitwise_left_shift, shift_bits=shift_bits, low=-2147483647, high=2147483648), input_a_dtype | ||
)(input_shape) | ||
else: | ||
torch_input_tensor_a = gen_func_with_cast_tt( | ||
partial(torch_random, low=-2147483647, high=2147483648, dtype=torch.int64), input_a_dtype | ||
)(input_shape) | ||
|
||
torch_output_tensor = torch.bitwise_left_shift(torch_input_tensor_a, shift_bits).to(torch.int32) | ||
|
||
input_tensor_a = ttnn.from_torch( | ||
torch_input_tensor_a, | ||
dtype=input_a_dtype, | ||
layout=input_a_layout, | ||
device=device, | ||
memory_config=input_a_memory_config, | ||
) | ||
|
||
start_time = start_measuring_time() | ||
result = ttnn.bitwise_left_shift(input_tensor_a, shift_bits=shift_bits, memory_config=output_memory_config) | ||
output_tensor = ttnn.to_torch(result).to(torch.int32) | ||
e2e_perf = stop_measuring_time(start_time) | ||
|
||
return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf] |
86 changes: 86 additions & 0 deletions
86
tests/sweep_framework/sweeps/eltwise/unary/bitwise/bitwise_not.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import Optional, Tuple | ||
from functools import partial | ||
|
||
import torch | ||
import random | ||
import ttnn | ||
from tests.sweep_framework.utils import gen_shapes | ||
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt | ||
|
||
from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time | ||
from models.utility_functions import torch_random | ||
|
||
# Override the default timeout in seconds for hang detection. | ||
TIMEOUT = 30 | ||
|
||
random.seed(0) | ||
|
||
# Parameters provided to the test vector generator are defined here. | ||
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. | ||
# Each suite has a key name (in this case "suite_1") which will associate the test vectors to this specific suite of inputs. | ||
# Developers can create their own generator functions and pass them to the parameters as inputs. | ||
parameters = { | ||
"nightly": { | ||
"input_shape": gen_shapes([1, 1, 32, 32], [6, 12, 512, 512], [1, 1, 32, 32], 16) | ||
+ gen_shapes([1, 32, 32], [12, 1024, 1024], [1, 32, 32], 16) | ||
+ gen_shapes([32, 32], [1024, 1024], [32, 32], 16), | ||
"input_a_dtype": [ttnn.int32], | ||
"input_a_layout": [ttnn.TILE_LAYOUT], | ||
"input_a_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
"output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
}, | ||
} | ||
|
||
|
||
def mesh_device_fixture(): | ||
device = ttnn.open_device(device_id=0) | ||
assert ttnn.device.is_wormhole_b0(device), "This op is available for Wormhole_B0 only" | ||
yield (device, "Wormhole_B0") | ||
ttnn.close_device(device) | ||
del device | ||
|
||
|
||
# This is the run instructions for the test, defined by the developer. | ||
# The run function must take the above-defined parameters as inputs. | ||
# The runner will call this run function with each test vector, and the returned results from this function will be stored. | ||
# If you defined a device_mesh_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra. | ||
def run( | ||
input_shape, | ||
input_a_dtype, | ||
input_a_layout, | ||
input_a_memory_config, | ||
output_memory_config, | ||
*, | ||
device, | ||
) -> list: | ||
data_seed = random.randint(0, 20000000) | ||
torch.manual_seed(data_seed) | ||
|
||
torch_input_tensor_a = gen_func_with_cast_tt( | ||
partial(torch_random, low=-2147483647, high=2147483648, dtype=torch.int64), input_a_dtype | ||
)(input_shape) | ||
|
||
torch_input_tensor_a = torch.full(size=input_shape, fill_value=-2147483647).to(torch.int32) | ||
|
||
scalar = torch.randint(-100, 101, (1,)).item() | ||
|
||
torch_output_tensor = torch.bitwise_not(torch_input_tensor_a) | ||
|
||
input_tensor_a = ttnn.from_torch( | ||
torch_input_tensor_a, | ||
dtype=input_a_dtype, | ||
layout=input_a_layout, | ||
device=device, | ||
memory_config=input_a_memory_config, | ||
) | ||
|
||
start_time = start_measuring_time() | ||
result = ttnn.bitwise_not(input_tensor_a, value=scalar, memory_config=output_memory_config) | ||
output_tensor = ttnn.to_torch(result) | ||
e2e_perf = stop_measuring_time(start_time) | ||
|
||
return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf] |
84 changes: 84 additions & 0 deletions
84
tests/sweep_framework/sweeps/eltwise/unary/bitwise/bitwise_or.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import Optional, Tuple | ||
from functools import partial | ||
|
||
import torch | ||
import random | ||
import ttnn | ||
from tests.sweep_framework.utils import gen_shapes | ||
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt | ||
|
||
from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time | ||
from models.utility_functions import torch_random | ||
|
||
# Override the default timeout in seconds for hang detection. | ||
TIMEOUT = 30 | ||
|
||
random.seed(0) | ||
|
||
# Parameters provided to the test vector generator are defined here. | ||
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. | ||
# Each suite has a key name (in this case "suite_1") which will associate the test vectors to this specific suite of inputs. | ||
# Developers can create their own generator functions and pass them to the parameters as inputs. | ||
parameters = { | ||
"nightly": { | ||
"input_shape": gen_shapes([1, 1, 32, 32], [6, 12, 128, 128], [1, 1, 32, 32], 8) | ||
+ gen_shapes([1, 32, 32], [12, 256, 256], [1, 32, 32], 8) | ||
+ gen_shapes([32, 32], [256, 256], [32, 32], 8), | ||
"input_a_dtype": [ttnn.int32], | ||
"input_a_layout": [ttnn.TILE_LAYOUT], | ||
"input_a_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
"output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
}, | ||
} | ||
|
||
|
||
def mesh_device_fixture(): | ||
device = ttnn.open_device(device_id=0) | ||
assert ttnn.device.is_wormhole_b0(device), "This op is available for Wormhole_B0 only" | ||
yield (device, "Wormhole_B0") | ||
ttnn.close_device(device) | ||
del device | ||
|
||
|
||
# This is the run instructions for the test, defined by the developer. | ||
# The run function must take the above-defined parameters as inputs. | ||
# The runner will call this run function with each test vector, and the returned results from this function will be stored. | ||
# If you defined a device_mesh_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra. | ||
def run( | ||
input_shape, | ||
input_a_dtype, | ||
input_a_layout, | ||
input_a_memory_config, | ||
output_memory_config, | ||
*, | ||
device, | ||
) -> list: | ||
data_seed = random.randint(0, 20000000) | ||
torch.manual_seed(data_seed) | ||
|
||
torch_input_tensor_a = gen_func_with_cast_tt( | ||
partial(torch_random, low=0, high=2147483648, dtype=torch.int64), input_a_dtype | ||
)(input_shape) | ||
|
||
scalar = torch.randint(0, 2147483648, (1,), dtype=torch.int32).item() | ||
|
||
torch_output_tensor = torch.bitwise_or(torch_input_tensor_a, scalar) | ||
|
||
input_tensor_a = ttnn.from_torch( | ||
torch_input_tensor_a, | ||
dtype=input_a_dtype, | ||
layout=input_a_layout, | ||
device=device, | ||
memory_config=input_a_memory_config, | ||
) | ||
|
||
start_time = start_measuring_time() | ||
result = ttnn.bitwise_or(input_tensor_a, value=scalar, memory_config=output_memory_config) | ||
output_tensor = ttnn.to_torch(result) | ||
e2e_perf = stop_measuring_time(start_time) | ||
|
||
return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf] |
Oops, something went wrong.