Skip to content

Latest commit

 

History

History
50 lines (26 loc) · 1009 Bytes

File metadata and controls

50 lines (26 loc) · 1009 Bytes

Introduction

Mathematical Optimization

Optimization Problem

$$minimize \space f_0(x)$$ $$subject \space to \space f_i(x) \le b_i, i = 1,...,m$$

  • $$x = (x_1, x_2 ... x_n)$$ : Optimization variables

  • $$f_0 : \mathbb{R}^n \to \mathbb{R}$$ : Objective function

  • $$f_i : \mathbb{R}^n \to \mathbb{R}, i = 1,...,m$$ : Constraint functions

Optimal Solution

$$x^*$$ is the smallest value of $$f_0$$ among all vectors that satisfy the constraints

Solving optimization problems

General optimization problem
  • Very difficult to solve

  • Not always finding the solution

Exception
  • Least-Squares problems

  • Linear programming problems

  • Convex optimization problems

Least Squares

$$minimize \space \lVert Ax - b \rVert_2^2$$

  • Analytical Solution : $$x^* = (A^TA)^{-1}A^Tb$$

Linear Programming

$$minimize \space c^Tx$$ $$subject \space to \space a_i^Tx \le b_i, i = 1,...,m$$

Convex Optimizatiom

Objective and Constraint functions should be convex