-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathutils.py
321 lines (247 loc) · 8.55 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import os
import torch
import torch.nn.functional as F
import numpy as np
from scipy.signal import fftconvolve
from torchvision import transforms
from skimage import transform
import matplotlib.pyplot as plt
def to_tensor(array, device):
tensor = torch.from_numpy(array)
if len(tensor.shape) == 2:
tensor = tensor.unsqueeze(0).unsqueeze(0)
else:
tensor = tensor.permute(2, 0, 1)
tensor = tensor.unsqueeze(0)
return tensor.to(device).float()
def to_numpy(tensor):
tensor = tensor.squeeze()
if len(tensor.shape) == 3:
tensor = tensor.permute(1, 2, 0)
array = tensor.detach().cpu().numpy()
return array
def random_crop(img, ps):
h, w = img.shape[-2:]
i0 = np.random.randint(h - ps - 1)
j0 = np.random.randint(w - ps - 1)
return img[...,i0:i0+ps, j0:j0+ps]
def crop_valid(img, ker):
hks = ker.shape[-1] // 2
return F.pad(img, (-hks, -hks, -hks, -hks))
def save_blur_and_sharp(savepath, x, hat_x, y):
plt.imsave(savepath + 'x.jpg', to_numpy(x), cmap='gray')
plt.imsave(savepath + 'y.jpg', to_numpy(y.clamp(0, 1)), cmap='gray')
plt.imsave(savepath + 'hat_x.jpg', to_numpy(hat_x.clamp(0, 1)), cmap='gray')
def create_mask(tensor, min, max):
mask1 = tensor > min
mask2 = tensor <= max
return mask1 * mask2
def get_labels(kmag, kori, mag_max=25):
# for circular coherence of labels
kori = torch.fmod(kori, 180)
mask = create_mask(kori, 174, 177)
kori[mask] = 174
kori[kori > 177] = 0
# for magnitude
kmag[kmag > mag_max] = mag_max
# find the labels
inte_ori = mag_max // 2
inte_mag = 2
idxq = torch.round(kori / 6)
tmp = kmag - 1
tmp[tmp < 0] = 0
idxm = torch.round(tmp / inte_mag)
kori_q = idxq * inte_ori
kmag_q = 1 + idxm * inte_mag
labels = idxq * inte_ori + idxm + 1
labels[kmag_q==1] = 1
return labels-1
def get_square_kernel(kernel):
hk, wk = kernel.shape
d = max(hk-wk,wk-hk)
i = np.argmin([hk-wk,wk-hk])
if i == 0:
kernel = np.pad(kernel, [[d//2,d//2], [0,0]], mode='edge')
else:
kernel = np.pad(kernel, [[0,0], [d//2,d//2]], mode='edge')
return kernel
# from kruse et al. 17
def pad_for_kernel(img, kernel, mode):
p = [(d-1)//2 for d in kernel.shape]
padding = [p, p] + (img.ndim-2)*[(0, 0)]
return np.pad(img, padding, mode)
# from kruse et al. 17
def crop_for_kernel(img, kernel):
p = [(d-1)//2 for d in kernel.shape]
r = [slice(p[0], -p[0]), slice(p[1], -p[1])] + (img.ndim-2)*[slice(None)]
return img[r]
# from kruse et al. 17
def pad_for_kernel_v2(img, kernel, mode):
p = [(int(1.8*d)-1)//2 for d in kernel.shape]
padding = [p, p] + (img.ndim-2)*[(0, 0)]
return np.pad(img, padding, mode)
# from kruse et al. 17
def crop_for_kernel_v2(img, kernel):
p = [(int(1.8*d)-1)//2 for d in kernel.shape]
r = [slice(p[0], -p[0]), slice(p[1], -p[1])] + (img.ndim-2)*[slice(None)]
return img[r]
# from kruse et al. 17
def edgetaper_alpha(kernel, img_shape):
v = []
for i in range(2):
z = np.fft.fft(np.sum(kernel, 1-i), img_shape[i]-1)
z = np.real(np.fft.ifft(np.square(np.abs(z)))).astype(np.float32)
z = np.concatenate([z, z[0:1]], 0)
v.append(1 - z/np.max(z))
return np.outer(*v)
# from kruse et al. 17
def edgetaper(img, kernel, n_tapers=3):
alpha = edgetaper_alpha(kernel, img.shape[0:2])
_kernel = kernel
if 3 == img.ndim:
kernel = kernel[..., np.newaxis]
alpha = alpha[..., np.newaxis]
for i in range(n_tapers):
blurred = fftconvolve(pad_for_kernel(img, _kernel,'wrap'), kernel, mode='valid')
img = alpha*img + (1-alpha)*blurred
return img
def apply_prox(model):
for i in range(model.n_iter):
# normalize kernels
if hasattr(model, 'weight'):
mean = model.weight[i].data.view(model.N_c, -1).mean(1).view(-1,1,1,1)
model.weight[i].data.sub_(mean)
norm = model.weight[i].data.view(model.N_c, -1).norm(dim=1).view(-1,1,1,1)
model.weight[i].data.div_(norm)
# positivity constraints over lambd
if hasattr(model, 'lambd'):
model.lambd[i].data.clamp_(min=0)
# positivity constraints over eta
if hasattr(model, 'eta'):
model.eta[i].data.clamp_(min=0)
def create_linear_kernels(n_filters, mag_max, savepath):
kernels = np.zeros(n_filters,mag_max,mag_max)
kernels[0,mag_max//2,mag_max//2] = 1
i = 1
for o in range(0,180,6):
for m in range(0,mag_max+1,2):
ker = np.zeros(mag_max, mag_max)
ker[mag_max//2, max_max//2 - (m//2):mag_max//2 + (m//2) + 1] = 1
ker = transform.rotate(ker, o)
kernels[i] = ker / ker.sum()
i += 1
kernels = torch.from_array(kernels).float()
torch.save(kernels, savepath)
def get_channelwise_kernel(k):
channel = k.shape[0]
weight = torch.zeros(channel,channel,*k.shape[-2:], device=k.device)
weight[range(channel), range(channel)] = k
return weight
def polar2cart(motion):
out = torch.zeros_like(motion)
out[:,0] = motion[:,0] * torch.cos(motion[:,1].mul(np.pi/180))
out[:,1] = motion[:,0] * torch.sin(motion[:,1].mul(np.pi/180))
return out
def cart2polar(motion):
out = torch.zeros_like(motion)
u = motion[:,0].float()
v = motion[:,1].float()
out[:,0] = (u.pow(2) + v.pow(2)).sqrt()
# u[u == 0] = 1e-16
# o = torch.atan(v.div(u)).mul(180 / np.pi)
o = torch.atan2(v,u).mul(180/np.pi)
o[o<0] = o[o<0] + 180
# o = o + 360
# out[:,1] = o.fmod(180)
out[:,1] = o
return out
def motion2labels(motion):
u = motion[:,0]
v = motion[:,1]
sign_v = v.sign()
sign_v[sign_v == 0] = 1
u *= sign_v
v *= sign_v
# labels_v = v.abs().round()
labels_v = v.round()
labels_v[labels_v < 0] = 0
labels_v[labels_v > 38] = 38
labels_u = u.round()
labels_u[labels_u < -36] = -36
labels_u[labels_u > 37] = 37
labels_u.add_(36)
return labels_u, labels_v
def labels2motion(labels_u, labels_v):
motion = torch.zeros_like(labels_u).unsqueeze(1).expand(-1,2,-1,-1).float()
# print('labels_u', labels_u[0,10,10].item(), 'labels_v', labels_v[0,10,10].item())
# pdb.set_trace()
motion[:,0] = labels_u.float() - 36
motion[:,1] = labels_v.float()
return motion
def conj(A):
B = A.clone()
B[...,-1] *= -1
return B
def square_modulus(A):
return A[...,0].pow(2).unsqueeze(-1) + A[...,1].pow(2).unsqueeze(-1)
# return A.norm(2, -1).unsqueeze(-1)
def prod(A, B):
AB1 = A[...,0]*B[...,0] - A[...,1]*B[...,1]
AB2 = A[...,0]*B[...,1] + A[...,1]*B[...,0]
return torch.cat([AB1.unsqueeze(-1), AB2.unsqueeze(-1)], dim=-1)
def div(A, B):
mod2_B = square_modulus(B)
prod_AB = prod(A, conj(B))
return prod_AB / mod2_B
def psf2otf(psf, img_shape):
# inspired from
# https://github.com/aboucaud/pypher/blob/master/pypher/pypher.py
# psf: (h_psf, w_psf)
# img_shape: (h_otf, w_otf)
# build padded array
psf_shape = psf.shape
h_pad = (img_shape[0] - psf_shape[0]) // 2
w_pad = (img_shape[1] - psf_shape[1]) // 2
if h_pad > 0:
psf = F.pad(psf.unsqueeze(0).unsqueeze(0), (w_pad, w_pad, h_pad, h_pad))
if psf.shape[-1] < img_shape[-1]:
psf = F.pad(psf, (0, 1, 0, 0))
if psf.shape[-2] < img_shape[-2]:
psf = F.pad(psf, (0, 0, 0, 1))
psf = psf.squeeze(0)
# circular shift
for axis, axis_size in enumerate(img_shape[1:]):
psf = torch.roll(psf, -int(axis_size) // 2 + 1, axis)
# compute OTF
otf = torch.rfft(psf, 2, onesided=False)
return otf
# def otf2psf(otf, psf_shape):
# # otf: (h_otf, w_otf)
# # psf_shape: (h_psf, w_psf)
# # compute PSF
# psf = np.fft.ifft2(otf)
# # circular shift
# otf_shape = otf.shape
# for axis in [1, 0]:
# axis_size = otf_shape[axis]
# psf = np.roll(psf, int(axis_size) // 2, axis=axis)
# # build cropped kernel
# h_pad = (otf_shape[0] - psf_shape[0]) // 2
# w_pad = (otf_shape[1] - psf_shape[1]) // 2
# if h_pad > 0:
# psf = psf[h_pad:-h_pad, w_pad:-w_pad]
# return psf
def fftconvolve(x, k, correlation=False):
prev_sizex = x.shape
x = x.squeeze().unsqueeze(0)
prev_sizek = k.shape
k = k.squeeze()
sizex = x.shape[1:]
otfk = psf2otf(k, sizex)
if correlation:
otfk = conj(otfk)
xfft = torch.rfft(x, 2, onesided=False)
yfft = prod(xfft, otfk)
y = torch.irfft(yfft, 2, signal_sizes=sizex, onesided=False)
y = y.view(prev_sizex).clone()
return y