-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain_nulchqs.py
245 lines (197 loc) · 8.92 KB
/
train_nulchqs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.optim import Adam
import numpy as np
import datasets, networks, utils, loss, kernels, options
import os
import sys
import time
import tqdm
def train(loader, model, optimizer, criterion, epoch, d1, d2, blind, noise_level):
running_l1 = 0
train_l1 = 0
model.train(True)
k1 = model.weight[0].unsqueeze(0).expand(loader.batch_size, -1, -1, -1)
k2 = model.weight[1].unsqueeze(0).expand(loader.batch_size, -1, -1, -1)
d1 = d1.expand(loader.batch_size, -1, -1, -1)
d2 = d2.expand(loader.batch_size, -1, -1, -1)
for i, data in tqdm.tqdm(enumerate(loader)):
x, y, mag, ori = data
x = x.to(device)
y = y.to(device)
mag = mag.to(device)
ori = ori.to(device)
ori = (90-ori).add(360).fmod(180)
labels = utils.get_labels(mag, ori)
ori = ori * np.pi / 180
if blind:
nl = (noise_level - 0.5) * np.random.rand(1) + 0.5
else:
nl = noise_level
nl = float(nl) / 255
y += nl*torch.randn_like(y)
y = y.clamp(0, 1)
y.requires_grad_()
optimizer.zero_grad()
hat_x = model(y, mag, ori, labels, k1, k2, d1, d2)
error = criterion(hat_x, x)
error.backward()
optimizer.step()
# computing running loss
running_l1 += F.l1_loss(hat_x[-1], x).item()
train_l1 += F.l1_loss(hat_x[-1], x).item()
if (i+1) % 500 == 0:
running_l1 /= 500
print(' Running loss %2.5f' % (running_l1))
running_l1 = 0
return train_l1 / len(loader)
def validate(loader, model, epoch, d1, d2, blind, noise_level):
val_psnr = 0
val_ssim = 0
val_l1 = 0
model.train(False)
k1 = model.weight[0].unsqueeze(0).expand(loader.batch_size, -1, -1, -1)
k2 = model.weight[1].unsqueeze(0).expand(loader.batch_size, -1, -1, -1)
d1 = d1.expand(loader.batch_size, -1, -1, -1)
d2 = d2.expand(loader.batch_size, -1, -1, -1)
# pre-create noise levels
if blind:
nls = np.linspace(0.5, noise_level, len(loader))
else:
nls = noise_level*np.ones(len(loader))
with torch.no_grad():
for i, data in tqdm.tqdm(enumerate(loader)):
x, y, mag, ori = data
x = x.to(device)
y = y.to(device)
mag = mag.to(device)
ori = ori.to(device)
ori = (90-ori).add(360).fmod(180)
labels = utils.get_labels(mag, ori)
ori = ori * np.pi / 180
nl = nls[i] / 255
y += nl*torch.randn_like(y)
y = y.clamp(0, 1)
hat_x = model(y, mag, ori, labels, k1, k2, d1, d2)[-1]
hat_x.clamp_(0, 1)
val_psnr += loss.psnr(hat_x, x)
val_ssim += loss.ssim(hat_x, x)
val_l1 += F.l1_loss(hat_x, x).item()
return val_psnr / len(loader), val_ssim / len(loader), val_l1 / len(loader)
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = options.options()
opts = parser.parse_args()
### data loader
# datapath = '/sequoia/data2/teboli/irc_nonblind/data/training_nonuniform'
# datapath = opts.datapath
savepath = './results'
savepath = os.path.join(savepath, 'nonuniform_T_%02d_S_%02d' % (opts.n_out, opts.n_in))
if opts.blind:
savepath += '_blind_0.5_to_%2.2f' % (255 / 100 * opts.sigma)
else:
savepath += '_nonblind_%2.2f' % (255 / 100 * opts.sigma)
os.makedirs(savepath, exist_ok=True)
modelpath = os.path.join(savepath, 'weights')
os.makedirs(modelpath, exist_ok=True)
#images = '/sequoia/data1/teboli/irc_nonblind/data/'
datapath = '/sequoia/data1/teboli/irc_nonblind/data/training_nonuniform/'
#savepath = '/sequoia/data1/teboli/irc_nonblind/results/training_nonuniform/'
#savepath = os.path.join(savepath, 'net4_nu_l1_aug_nout_%02d_nl_2.55' % (opts.n_out))
#os.makedirs(savepath, exist_ok=True)
#modelpath = '/sequioa/data2/teboli/irc_non_blind/models/training_nonuniform/'
#modelpath = os.path.join(savepath, 'net4_nu_l1_aug_nout_%02d_nin_%02d_ds_%05d_ps_%03d_nl_2.55_bs_%d' % (opts.n_out, opts.n_in, opts.datasize, opts.ps, opts.batch_size))
#os.makedirs(modelpath, exist_ok=True)
#scorepath = '/sequioa/data1/teboli/irc_non_blind/models/training_nonuniform/'
#scorepath = os.path.join(savepath, 'net4_nu_l1_aug_nout_%02d_nin_%02d_ds_%05d_ps_%03d_nl_2.55_bs_%d.npy' % (opts.n_out, opts.n_in, opts.datasize, opts.ps, opts.batch_size))
dt_tr = datasets.NonUniformTrainDataset(datapath, opts.datasize, opts.ps, train=True, transform=True)
dt_va = datasets.NonUniformTrainDataset(datapath, opts.datasize, opts.ps, train=False)
loader_tr = DataLoader(dt_tr, batch_size=opts.batch_size, shuffle=True, num_workers=4)
loader_va = DataLoader(dt_va, batch_size=opts.batch_size, shuffle=False, num_workers=4)
######## STAGEWISE TRAINING ########
### model
# fts = torch.load('/sequoia/data1/teboli/irc_nonblind/data/kernels/kers_grad_0.pt')
# fts = torch.load('./data/kers_grad.pt')
d0 = torch.load('./data/inverse_filters_nonunifom.pt', map_location='cpu')
# weights = fts[:, 0].unsqueeze(1)
d0 = d0[:,0].unsqueeze(1)
# model = networks.NULCHQS(weights, opts.n_out, opts.n_in)
model = networks.NULCHQS(d0, opts.n_out, opts.n_in)
if opts.load_epoch > 0:
filename = 'epoch_%03d.pt' % (opts.load_epoch)
state_dict_path = os.path.join(modelpath, filename)
model.load_state_dict(torch.load(state_dict_path))
### inverse filters
k1 = model.weight[0].data
d1 = kernels.compute_inverse_filter_basic(k1, opts.lambd, 31).unsqueeze(0)
k2 = model.weight[1].data
d2 = kernels.compute_inverse_filter_basic(k2, opts.lambd, 31).unsqueeze(0)
d1 = d1.to(device)
d2 = d2.to(device)
### optimizer
optimizer = Adam(model.parameters(), lr=opts.lr)
model = model.to(device)
criterion = loss.L1LossGreedy()
criterion = criterion.to(device)
### loop
scores = np.zeros((4, 2*opts.n_epochs))
if opts.load_epoch < opts.n_epochs:
for epoch in range(opts.load_epoch, opts.n_epochs, 1):
print('### Epoch %03d ###' % (epoch+1))
train_l1 = train(loader_tr, model, optimizer, criterion, epoch, d1, d2, opts.blind, 255 / 100 *opts.sigma)
print(' TR L1: %2.5f' % (train_l1))
val_psnr, val_ssim, val_l1 = validate(loader_va, model, epoch, d1, d2, opts.blind, 255 / 100 * opts.sigma)
print(' VA L1: %2.5f / PSNR: %2.2f / SSIM: %2.3f' % (val_l1, val_psnr, val_ssim))
# save net
if (epoch+1) % opts.n_save == 0:
filename = 'epoch_%03d.pt' % (epoch+1)
torch.save(model.state_dict(), os.path.join(modelpath, filename))
# save results
scores[0, epoch] = train_l1
scores[1, epoch] = val_l1
scores[2, epoch] = val_psnr
scores[3, epoch] = val_ssim
np.save(scorepath, scores)
######## END2END TRAINING ########
loadpath = os.path.join(modelpath, 'epoch_%03d.pt' % opts.n_epochs)
# model
# model = networks.NULCHQS(weights, opts.n_out, opts.n_in)
model = networks.NULCHQS(d0, opts.n_out, opts.n_in)
state_dict = torch.load(loadpath, map_location='cpu')
model.load_state_dict(state_dict)
if opts.load_epoch > opts.n_epochs:
filename = 'epoch_%03d.pt' % (opts.load_epoch)
state_dict_path = os.path.join(modelpath, filename)
model.load_state_dict(torch.load(state_dict_path))
### inverse filters
k1 = model.weight[0].data
d1 = kernels.compute_inverse_filter_basic(k1, opts.lambd, 31).unsqueeze(0)
k2 = model.weight[1].data
d2 = kernels.compute_inverse_filter_basic(k2, opts.lambd, 31).unsqueeze(0)
d1 = d1.to(device)
d2 = d2.to(device)
### optimizer
optimizer = Adam(model.parameters(), lr=opts.lr/10)
model = model.to(device)
# criterion = nn.L1Loss()
criterion = loss.L1Loss()
criterion = criterion.to(device)
### loop
for epoch in range(max(ops.n_epochs, opts.load_epoch), 2*opts.n_epochs):
print('### Epoch %03d ###' % (epoch+1))
train_l1 = train(loader_tr, model, optimizer, criterion, epoch, d1, d2, opts.blind, opts.noise_level)
print(' TR L1: %2.5f' % (train_l1))
val_psnr, val_ssim, val_l1 = validate(loader_va, model, epoch, d1, d2, opts.blind, opts.noise_level)
print(' VA L1: %2.5f / PSNR: %2.2f / SSIM: %2.3f' % (val_l1, val_psnr, val_ssim))
# save net
if (epoch+1) % opts.n_save == 0:
filename = 'epoch_%03d.pt' % (epoch+1)
torch.save(model.state_dict(), os.path.join(modelpath, filename))
# save results
scores[0, epoch] = train_l1
scores[1, epoch] = val_l1
scores[2, epoch] = val_psnr
scores[3, epoch] = val_ssim
np.save(scorepath, scores)