-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathcompliance.cpp
279 lines (222 loc) · 9.65 KB
/
compliance.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
// Copyright (c) Team CharLS.
// SPDX-License-Identifier: BSD-3-Clause
#include "compliance.hpp"
#include "util.hpp"
#include <array>
#include <cstring>
#include <iostream>
#include <tuple>
#include <vector>
using std::array;
using std::byte;
using std::cout;
using std::swap;
using std::vector;
using namespace charls;
namespace {
void compare_buffers(const byte* data1, const size_t size1, const byte* data2, const size_t size2)
{
assert::is_true(size1 == size2);
for (size_t i{}; i != size1; ++i)
{
if (data1[i] != data2[i])
{
assert::is_true(false);
break;
}
}
}
void triplet2_planar(vector<byte>& buffer, const rect_size size)
{
vector<byte> work_buffer(buffer.size());
const size_t byte_count{size.cx * size.cy};
for (size_t i{}; i != byte_count; ++i)
{
work_buffer[i] = buffer[i * 3];
work_buffer[i + (1 * byte_count)] = buffer[(i * 3) + 1];
work_buffer[i + (2 * byte_count)] = buffer[(i * 3) + 2];
}
swap(buffer, work_buffer);
}
bool verify_encoded_bytes(const void* uncompressed_data, const size_t uncompressed_length, const void* compressed_data,
const size_t compressed_length)
{
try
{
jpegls_decoder decoder;
decoder.source(compressed_data, compressed_length).read_header();
vector<uint8_t> our_encoded_bytes(compressed_length + 16);
jpegls_encoder encoder;
encoder.destination(our_encoded_bytes);
encoder.frame_info(decoder.frame_info());
encoder.interleave_mode(decoder.get_interleave_mode());
encoder.near_lossless(decoder.get_near_lossless());
encoder.preset_coding_parameters(decoder.preset_coding_parameters());
std::ignore = encoder.encode(uncompressed_data, uncompressed_length);
for (size_t i{}; i != compressed_length; ++i)
{
if (static_cast<const uint8_t*>(compressed_data)[i] != our_encoded_bytes[i])
{
return false;
}
}
return true;
}
catch (...)
{
return false;
}
}
void test_compliance(const byte* compressed_bytes, const size_t compressed_length, const byte* uncompressed_data,
const size_t uncompressed_length, const bool check_encode)
{
try
{
jpegls_decoder decoder;
decoder.source(compressed_bytes, compressed_length).read_header();
if (check_encode)
{
assert::is_true(
verify_encoded_bytes(uncompressed_data, uncompressed_length, compressed_bytes, compressed_length));
}
const auto destination{decoder.decode<vector<byte>>()};
if (decoder.get_near_lossless() == 0)
{
for (size_t i{}; i != uncompressed_length; ++i)
{
if (uncompressed_data[i] != destination[i])
{
assert::is_true(false);
break;
}
}
}
}
catch (const jpegls_error&)
{
assert::is_true(false);
}
}
void decompress_file(const char* name_encoded, const char* name_raw, const int offset, const bool check_encode = true)
{
cout << "Conformance test:" << name_encoded << "\n\r";
const auto encoded_buffer{read_file(name_encoded)};
jpegls_decoder decoder;
try
{
decoder.source(encoded_buffer).read_header();
}
catch (...)
{
assert::is_true(false);
return;
}
auto raw_buffer{read_file(name_raw, offset)};
const auto& [width, height, bits_per_sample, component_count]{decoder.frame_info()};
if (bits_per_sample > 8)
{
fix_endian(&raw_buffer, false);
}
if (decoder.get_interleave_mode() == interleave_mode::none && component_count == 3)
{
triplet2_planar(raw_buffer, {width, height});
}
test_compliance(encoded_buffer.data(), encoded_buffer.size(), raw_buffer.data(), raw_buffer.size(), check_encode);
}
constexpr array<uint8_t, 16> buffer{0, 0, 90, 74, 68, 50, 43, 205, 64, 145, 145, 145, 100, 145, 145, 145};
////const uint8_t bufferEncoded[] = { 0xFF, 0xD8, 0xFF, 0xF7, 0x00, 0x0B, 0x08, 0x00, 0x04, 0x00, 0x04, 0x01, 0x01, 0x11,
/// 0x00, 0xFF, 0xDA, 0x00, 0x08, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, /0xC0, 0x00, 0x00, 0x6C, 0x80, 0x20, 0x8E, /0x01, 0xC0,
/// 0x00, 0x00, 0x57, 0x40, 0x00, 0x00, 0x6E, 0xE6, 0x00, 0x00, 0x01, 0xBC, 0x18, 0x00, /0x00, 0x05, 0xD8, 0x00, 0x00, 0x91,
/// 0x60, 0xFF, 0xD9};
} // namespace
void test_sample_annex_h3()
{
////rect_size size = rect_size(4,4);
vector<uint8_t> vec_raw(16);
memcpy(vec_raw.data(), buffer.data(), buffer.size());
//// TestJls(vecRaw, size, 8, 1, ILV_NONE, bufferEncoded, sizeof(bufferEncoded), false);
}
void test_sample_annex_h4_5()
{
constexpr array palettised_data{
byte{0xFF}, byte{0xD8}, // Start of image (SOI) marker
byte{0xFF}, byte{0xF7}, // Start of JPEG-LS frame (SOF 55) marker – marker segment follows
byte{0x00}, byte{0x0B}, // Length of marker segment = 11 bytes including the length field
byte{0x02}, // P = Precision = 2 bits per sample
byte{0x00}, byte{0x04}, // Y = Number of lines = 4
byte{0x00}, byte{0x03}, // X = Number of columns = 3
byte{0x01}, // Nf = Number of components in the frame = 1
byte{0x01}, // C1 = Component ID = 1 (first and only component)
byte{0x11}, // Sub-sampling: H1 = 1, V1 = 1
byte{0x00}, // Tq1 = 0 (this field is always 0)
byte{0xFF}, byte{0xF8}, // LSE – JPEG-LS preset parameters marker
byte{0x00}, byte{0x11}, // Length of marker segment = 17 bytes including the length field
byte{0x02}, // ID = 2, mapping table
byte{0x05}, // TID = 5 Table identifier (arbitrary)
byte{0x03}, // Wt = 3 Width of table entry
byte{0xFF}, byte{0xFF}, byte{0xFF}, // Entry for index 0
byte{0xFF}, byte{0x00}, byte{0x00}, // Entry for index 1
byte{0x00}, byte{0xFF}, byte{0x00}, // Entry for index 2
byte{0x00}, byte{0x00}, byte{0xFF}, // Entry for index 3
byte{0xFF}, byte{0xDA}, // Start of scan (SOS) marker
byte{0x00}, byte{0x08}, // Length of marker segment = 8 bytes including the length field
byte{0x01}, // Ns = Number of components for this scan = 1
byte{0x01}, // C1 = Component ID = 1
byte{0x05}, // Tm 1 = Mapping table identifier = 5
byte{0x00}, // NEAR = 0 (near-lossless max error)
byte{0x00}, // ILV = 0 (interleave mode = non-interleaved)
byte{0x00}, // Al = 0, Ah = 0 (no point transform)
byte{0xDB}, byte{0x95}, byte{0xF0}, // 3 bytes of compressed image data
byte{0xFF}, byte{0xD9} // End of image (EOI) marker
};
jpegls_decoder decoder;
decoder.source(palettised_data);
decoder.read_header();
vector<byte> destination(decoder.get_destination_size());
decoder.decode(destination);
constexpr array expected{byte{0}, byte{0}, byte{1}, byte{1}, byte{1}, byte{2},
byte{2}, byte{2}, byte{3}, byte{3}, byte{3}, byte{3}};
compare_buffers(expected.data(), expected.size(), destination.data(), destination.size());
const int32_t mapping_table_id{decoder.get_mapping_table_id(0)};
assert::is_true(mapping_table_id == 5);
const auto table_index{decoder.find_mapping_table_index(mapping_table_id)};
const mapping_table_info table_info{decoder.get_mapping_table_info(table_index)};
vector<byte> mapping_table(table_info.data_size);
decoder.get_mapping_table_data(table_index, mapping_table);
constexpr array expected_mapping_table{byte{0xFF}, byte{0xFF}, byte{0xFF}, byte{0xFF}, byte{0}, byte{0},
byte{0}, byte{0xFF}, byte{0}, byte{0}, byte{0}, byte{0xFF}};
compare_buffers(expected_mapping_table.data(), expected_mapping_table.size(), mapping_table.data(),
mapping_table.size());
}
void test_color_transforms_hp_images()
{
decompress_file("test/jlsimage/banny_normal.jls", "test/jlsimage/banny.ppm", 38, false);
decompress_file("test/jlsimage/banny_HP1.jls", "test/jlsimage/banny.ppm", 38, false);
decompress_file("test/jlsimage/banny_HP2.jls", "test/jlsimage/banny.ppm", 38, false);
decompress_file("test/jlsimage/banny_HP3.jls", "test/jlsimage/banny.ppm", 38, false);
}
void test_conformance()
{
// Test 1
decompress_file("test/conformance/t8c0e0.jls", "test/conformance/test8.ppm", 15);
// Test 2
decompress_file("test/conformance/t8c1e0.jls", "test/conformance/test8.ppm", 15);
// Test 3
decompress_file("test/conformance/t8c2e0.jls", "test/conformance/test8.ppm", 15);
// Test 4
decompress_file("test/conformance/t8c0e3.jls", "test/conformance/test8.ppm", 15);
// Test 5
decompress_file("test/conformance/t8c1e3.jls", "test/conformance/test8.ppm", 15);
// Test 6
decompress_file("test/conformance/t8c2e3.jls", "test/conformance/test8.ppm", 15);
// Test 7
// Test 8
// Test 9
decompress_file("test/conformance/t8nde0.jls", "test/conformance/test8bs2.pgm", 15);
// Test 10
decompress_file("test/conformance/t8nde3.jls", "test/conformance/test8bs2.pgm", 15);
// Test 11
decompress_file("test/conformance/t16e0.jls", "test/conformance/test16.pgm", 16);
// Test 12
decompress_file("test/conformance/t16e3.jls", "test/conformance/test16.pgm", 16);
}