-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
232 lines (169 loc) · 7.72 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import torch
import torchvision
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import torch.optim as optim
import torchvision.transforms as standard_transforms
import numpy as np
import glob
import os
from data_loader import Rescale
from data_loader import RescaleT
from data_loader import RandomCrop
from data_loader import ToTensor
from data_loader import ToTensorLab
from data_loader import SalObjDataset
from model import U2NET
from model import U2NETP
# ------- 1. define loss function --------
bce_loss = nn.BCELoss(reduction='mean')
def muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, labels_v):
loss0 = bce_loss(d0,labels_v)
loss1 = bce_loss(d1,labels_v)
loss2 = bce_loss(d2,labels_v)
loss3 = bce_loss(d3,labels_v)
loss4 = bce_loss(d4,labels_v)
loss5 = bce_loss(d5,labels_v)
loss6 = bce_loss(d6,labels_v)
loss = loss0 + loss1 + loss2 + loss3 + loss4 + loss5 + loss6
# print("l0: %3f, l1: %3f, l2: %3f, l3: %3f, l4: %3f, l5: %3f, l6: %3f\n"%(loss0.data.item(),loss1.data.item(),loss2.data.item(),loss3.data.item(),loss4.data.item(),loss5.data.item(),loss6.data.item()))
return loss0, loss
def load_ckp(checkpoint_fpath, model, optimizer):
"""
checkpoint_path: path to save checkpoint
model: model that we want to load checkpoint parameters into
optimizer: optimizer we defined in previous training
"""
if not os.path.exists(checkpoint_fpath):
return model, optimizer, 0
print(checkpoint_fpath)
# load check point
checkpoint = torch.load(checkpoint_fpath, map_location=torch.device('cuda'))
# initialize state_dict from checkpoint to model
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
if(torch.cuda.is_available()):
model.cuda()
# initialize optimizer from checkpoint to optimizer
# return model, optimizer, epoch value
return model, optimizer, checkpoint['epoch']
def convert_to_variable(tensorA, tensorB):
tensorA = tensorA.type(torch.FloatTensor)
tensorB = tensorB.type(torch.FloatTensor)
if torch.cuda.is_available():
return Variable(tensorA.cuda(), requires_grad=False), Variable(tensorB.cuda(),requires_grad=False)
else:
return Variable(tensorA, requires_grad=False), Variable(tensorB, requires_grad=False)
if __name__ == '__main__':
# ------- 2. set the directory of training dataset --------
log_writter = os.path.join ("./", 'log' + os.sep)
log_writter = os.path.join (log_writter , 'training_log.txt')
model_name = 'u2netp' #'u2netp'
data_dir = os.path.join("./", 'P3M-10k/train' + os.sep)
tra_image_dir = 'images/'
tra_label_dir = 'labels/'
image_ext = '.jpg'
label_ext = '.png'
model_dir = os.path.join(os.getcwd(), 'saved_models', model_name + os.sep)
if not os.path.exists(model_dir):
os.mkdir(model_dir)
print(model_dir)
saved_check_point = os.path.join(model_dir, 'file_name' + '.ckpt') # update the saved check-point file name
epoch_num = 100000
batch_size_train = 20
batch_size_val = 1
train_num = 0
val_num = 0
tra_img_name_list = glob.glob(data_dir + tra_image_dir + '*' + image_ext)
tra_lbl_name_list = []
for img_path in tra_img_name_list:
img_name = img_path.split(os.sep)[-1]
aaa = img_name.split(".")
bbb = aaa[0:-1]
imidx = bbb[0]
for i in range(1,len(bbb)):
imidx = imidx + "." + bbb[i]
tra_lbl_name_list.append(data_dir + tra_label_dir + imidx + label_ext)
print("---")
print("train images: ", len(tra_img_name_list))
print("train labels: ", len(tra_lbl_name_list))
print("---")
train_num = len(tra_img_name_list)
salobj_dataset = SalObjDataset(
img_name_list=tra_img_name_list,
lbl_name_list=tra_lbl_name_list,
transform=transforms.Compose([
RescaleT(320),
RandomCrop(288),
ToTensorLab(flag=0)]))
salobj_dataloader = DataLoader(salobj_dataset, batch_size=batch_size_train, shuffle=True, num_workers=8, pin_memory=True)
# ------- 3. define model --------
# define the net
if(model_name=='u2net'):
net = U2NET(3, 1)
elif(model_name=='u2netp'):
net = U2NETP(3,1)
if torch.cuda.is_available():
net.cuda()
# ------- 4. define optimizer --------
print("---define optimizer...")
optimizer = optim.Adam(net.parameters(), lr=0.0009, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
net, optimizer, _epoch = load_ckp(saved_check_point, net, optimizer)
# ------- 5. training process --------
print(f"---start training... \n From epoch {_epoch}\n")
ite_num = 0
running_loss = 0.0
running_tar_loss = 0.0
ite_num4val = 0
save_frq = 1500 # save the model every 1500 iterations
for epoch in range(_epoch, epoch_num):
net.train()
data_iter = iter(salobj_dataloader)
next_batch = next(data_iter) # start loading the first batch
inputs, labels = next_batch['image'], next_batch['label']
next_batch_img, next_batch_lab = convert_to_variable(inputs, labels)
for i in range(len(salobj_dataloader)):
ite_num = ite_num + 1
ite_num4val = ite_num4val + 1
batch_img = next_batch_img
batch_lab = next_batch_lab
if i + 2 != len(salobj_dataloader):
# start copying data of next batch
next_batch = next(data_iter)
inputs, labels = next_batch['image'], next_batch['label']
next_batch_img, next_batch_lab = convert_to_variable(inputs, labels)
# y zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
d0, d1, d2, d3, d4, d5, d6 = net(batch_img)
loss2, loss = muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, batch_lab)
loss.backward()
optimizer.step()
# # print statistics
running_loss += loss.data.item()
running_tar_loss += loss2.data.item()
# del temporary outputs and loss
del d0, d1, d2, d3, d4, d5, d6, loss2, loss
print("[epoch: %3d/%3d, batch: %5d/%5d, ite: %d] train loss: %3f, tar: %3f " % (
epoch + 1, epoch_num, (i + 1) * batch_size_train, train_num, ite_num, running_loss / ite_num4val, running_tar_loss / ite_num4val))
if ite_num % save_frq == 0:
saved_path = model_dir + model_name+"_epoch_%d_bce_itr_%d_train_%3f_tar_%3f.ckpt" % (epoch, ite_num, running_loss / ite_num4val, running_tar_loss / ite_num4val)
checkpoint = {
'epoch': epoch + 1,
'running_train_loss': running_tar_loss,
'train_loss': running_loss,
'state_dict': net.state_dict(),
'optimizer': optimizer.state_dict()
}
torch.save(checkpoint, saved_path)
file1 = open(log_writter, "a+") # append mode
file1.write("%3f, %3f \n" %(running_loss / ite_num4val, running_tar_loss / ite_num4val))
file1.close()
running_loss = 0.0
running_tar_loss = 0.0
net.train() # resume train
ite_num4val = 0