-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathrun_overall_evaluation.m
106 lines (75 loc) · 3.41 KB
/
run_overall_evaluation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
% ----------------------------------------------------------------------- %
%
% Overall evaluation using S_aplha and MAE metrics
% Created by T. Zhou
% E-mail: taozhou.ai@gmail.com
%
% ----------------------------------------------------------------------- %
clc;clear;close all;
disp('***************** ---------------------------------------------------')
disp('pls download *Sal_Det_Results_24_Models* and put it into *results*')
disp('***************** ---------------------------------------------------')
% ------------------------------ load pre-computed results
sal_results_path = 'results/Sal_Det_Results_24_Models/';
% ------------------------------ evaluation_methods and datasets
evaluation_methods = {'LHM','ACSD','DESM','GP','LBE','DCMC','SE','CDCP','CDB','DF','PCF','CTMF','CPFP','TANet','AFNet','MMCI','DMRA','D3Net','SSF','A2dele','S2MA','ICNet','JL-DCF','UCNet'};
evaluation_methods_sub = {'D3Net','SSF','S2MA','ICNet','JL-DCF','UCNet'};
datasets = {'STERE', 'NLPR', 'LFSD','DES','SIP'};
% -------------------------------------------------- %
% compute mean values of s_alpha and MAE
% -------------------------------------------------- %
MAE_overall = [];
Salpha_overall = [];
for ind1 = 1:length(evaluation_methods)
MAE_data_set = [];
Salpha_data_set = [];
for ind2 =1:length(datasets)
% ------------------------------
cur_model = evaluation_methods{ind1};
cur_data = datasets{ind2};
disp(['process:' cur_model, ' ----> on dataset:' cur_data]);
cur_model_sal_path = [sal_results_path,cur_model,'/',cur_data,'/'];
dirs = dir([cur_model_sal_path,'*.mat']);
% ------------------------------ obatin results on the current dataset
MAE_set = [];
Salpha_set = [];
for ind3 = 1:length(dirs)
cur_image_results_path = [cur_model_sal_path,dirs(ind3).name];
load(cur_image_results_path);
MAE_set = [MAE_set;eva_metrics_results.MAE];
Salpha_set = [Salpha_set;eva_metrics_results.Smeasure];
end
MAE_data_set = [MAE_data_set;(MAE_set)];
Salpha_data_set = [Salpha_data_set;(Salpha_set)];
end
% ------------------------------ %
MAE_overall = [MAE_overall,MAE_data_set];
Salpha_overall = [Salpha_overall,Salpha_data_set];
end
% -------------------------------------------------- %
% show overall evaluation
% -------------------------------------------------- %
y = mean(Salpha_overall);
x = mean(MAE_overall);
% ------------------------------ plot setting
plot(x,y,'o','LineWidth',3);
set(gca,'FontSize',15);
mu = log10([1.095,1.12,1.15,1.21,1.585,1.9954]);
set(gca, 'XTick', mu)
set(gca,'XTickLabel',{'0.04','0.06','0.08','0.1','0.2','0.3'})
axis([0.03 0.31 0.55,0.92])
xlabel('MAE','FontSize',15);
ylabel('S_{\alpha}','FontSize',15);
% ------------------------------ add methods' title
for i=1:length(y)
text(x(i),y(i),[' ' num2str(evaluation_methods{i})],'fontsize',14)
end
grid on;
% ------------------------------ sub-figure
xx = [x(18:19),x(21:end)];
yy = [y(18:19),y(21:end)];
axes('Position',[0.16,0.22,0.11,0.31]); % g
plot(xx,yy,'o','LineWidth',3);
for j = 1:length(xx)
text(xx(j),yy(j),[' ' num2str(evaluation_methods_sub{j})],'fontsize',14)
end