-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathselfattention.py
66 lines (52 loc) · 2.75 KB
/
selfattention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
import torch.nn as nn
class SelfAttention(nn.Module):
def __init__(self, embed_size, heads):
super(SelfAttention, self).__init__()
self.embed_size = embed_size
self.heads = heads
self.head_dim = embed_size // heads
assert (
self.head_dim * heads == embed_size
), "Embedding size needs to be divisible by heads"
self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.fc_out = nn.Linear(heads * self.head_dim, embed_size)
def forward(self, values, keys, query, mask):
# Get number of training examples
N = query.shape[0]
value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]
# Split the embedding into self.heads different pieces
values = values.reshape(N, value_len, self.heads, self.head_dim)
keys = keys.reshape(N, key_len, self.heads, self.head_dim)
query = query.reshape(N, query_len, self.heads, self.head_dim)
values = self.values(values) # (N, value_len, heads, head_dim)
keys = self.keys(keys) # (N, key_len, heads, head_dim)
queries = self.queries(query) # (N, query_len, heads, heads_dim)
# Einsum does matrix mult. for query*keys for each training example
# with every other training example, don't be confused by einsum
# it's just how I like doing matrix multiplication & bmm
energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])
# queries shape: (N, query_len, heads, heads_dim),
# keys shape: (N, key_len, heads, heads_dim)
# energy: (N, heads, query_len, key_len)
# Mask padded indices so their weights become 0
if mask is not None:
energy = energy.masked_fill(mask == 0, float("-1e20"))
# Normalize energy values similarly to seq2seq + attention
# so that they sum to 1. Also divide by scaling factor for
# better stability
attention = torch.softmax(energy / (self.embed_size ** (1 / 2)), dim=3)
# attention shape: (N, heads, query_len, key_len)
out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(
N, query_len, self.heads * self.head_dim
)
# attention shape: (N, heads, query_len, key_len)
# values shape: (N, value_len, heads, heads_dim)
# out after matrix multiply: (N, query_len, heads, head_dim), then
# we reshape and flatten the last two dimensions.
out = self.fc_out(out)
# Linear layer doesn't modify the shape, final shape will be
# (N, query_len, embed_size)
return out