forked from huggingface/optimum-habana
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_trainer_distributed.py
183 lines (145 loc) · 6.42 KB
/
test_trainer_distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Dict
from transformers import EvalPrediction, HfArgumentParser, is_torch_available
from transformers.testing_utils import TestCasePlus
from optimum.habana import GaudiConfig, GaudiTrainingArguments
from optimum.habana.distributed import DistributedRunner
from optimum.utils import logging
logger = logging.get_logger(__name__)
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
from optimum.habana import GaudiTrainer
class DummyDataset(Dataset):
def __init__(self, length: int = 101):
self.length = length
def __len__(self):
return self.length
def __getitem__(self, i) -> int:
return i
class DummyDataCollator:
def __call__(self, features):
return {"input_ids": torch.tensor(features), "labels": torch.tensor(features)}
class DummyModel(nn.Module):
def __init__(self):
super().__init__()
# Add some (unused) params otherwise DDP will complain.
self.fc = nn.Linear(120, 80)
def forward(self, input_ids, labels=None):
if labels is not None:
return torch.tensor(0.0, device=input_ids.device), input_ids
else:
return input_ids
class RegressionModel(nn.Module):
def __init__(self, a=0, b=0, double_output=False):
super().__init__()
self.a = torch.nn.Parameter(torch.tensor(a).float())
self.b = torch.nn.Parameter(torch.tensor(b).float())
self.double_output = double_output
self.config = None
def forward(self, input_x, labels=None, **kwargs):
y = input_x * self.a + self.b
if labels is None:
return (y, y) if self.double_output else (y,)
loss = torch.nn.functional.mse_loss(y, labels)
return (loss, y, y) if self.double_output else (loss, y)
class TestGaudiTrainerDistributed(TestCasePlus):
def _test_gaudi_trainer_distributed(self, kwargs={}):
output_dir = self.get_auto_remove_tmp_dir()
command_list = [f"{self.test_file_dir}/test_trainer_distributed.py"]
command_list += ["--output_dir"]
command_list += [output_dir]
command_list += ["--use_habana"]
command_list += ["--use_lazy_mode"]
command_list += ["--report_to none"]
for key, value in kwargs.items():
command_list += [f"--{key} {value}"]
command = [" ".join(command_list)]
distributed_runner = DistributedRunner(
command_list=command,
world_size=8,
use_mpi=True,
)
ret_code = distributed_runner.run()
# ret_code equals 0 or None if successful run
self.assertTrue(ret_code == 0 or ret_code is None)
def test_gaudi_trainer_distributed(self):
self._test_gaudi_trainer_distributed()
def test_gaudi_trainer_distributed_hpu_graphs(self):
self._test_gaudi_trainer_distributed(
{
"use_hpu_graphs_for_training": "",
"use_hpu_graphs_for_inference": "",
"distribution_strategy": "fast_ddp",
}
)
if __name__ == "__main__":
# The script below is meant to be run under mpirun, on a machine with multiple HPUs:
#
# PYTHONPATH="src" python optimum-habana/examples/gaudi_spawn.py --world_size 8 --use_mpi --output_dir output_dir ./tests/test_trainer_distributed.py
parser = HfArgumentParser((GaudiTrainingArguments,))
training_args = parser.parse_args_into_dataclasses()[0]
gaudi_config_file = Path(__file__).parent.resolve() / Path("configs/gaudi_config_trainer_test.json")
gaudi_config = GaudiConfig.from_pretrained(gaudi_config_file)
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_hpu: {training_args.world_size},"
f" distributed training: {training_args.local_rank != -1}"
)
# Essentially, what we want to verify in the distributed case is that we get all samples back,
# in the right order. (this is crucial for prediction for instance)
for dataset_length in [101, 40, 7]:
dataset = DummyDataset(dataset_length)
def compute_metrics(p: EvalPrediction) -> Dict:
sequential = list(range(len(dataset)))
success = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential
if not success and training_args.local_rank == 0:
logger.warning(
"Predictions and/or labels do not match expected results:\n - predictions: "
f"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}"
)
return {"success": success}
trainer = GaudiTrainer(
model=DummyModel(),
gaudi_config=gaudi_config,
args=training_args,
data_collator=DummyDataCollator(),
eval_dataset=dataset,
compute_metrics=compute_metrics,
)
metrics = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
p = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
trainer.args.eval_accumulation_steps = 2
metrics = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
p = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
trainer.args.eval_accumulation_steps = None