Code to automatically run object detection and classification using Tensorflow and PyTorch through a docker container
- Docker
To get a local copy up and running follow these simple steps.
- Install Docker
- Clone the repo
git clone https://github.com/tachillon/Inference-Tensorflow-Object-Detection-And-PyTorch-Classification
python3 build_docker_and_launch_inference.py --workdir <DIR> --imgdir <DIR>
build_docker_and_launch_inference.py/
inference_detection_classification.py/
Dockerfile/
├─ results/
├─ model/
│ ├─ frozen_inference_graph.pb
│ ├─ detection_label.pbtxt
│ ├─ resnext101_32x8d.pt
│ ├─ classification_labels.txt
├─ images/
│ ├─ img1.jpg
│ ├─ img2.jpg
│ ├─ img3.jpg
Caution: models to detect/classify objects are not provided.
Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.
- Fork the Project
- Create your Feature Branch (
git checkout -b feature/AmazingFeature
) - Commit your Changes (
git commit -m 'Add some AmazingFeature'
) - Push to the Branch (
git push origin feature/AmazingFeature
) - Open a Pull Request
Distributed under the MIT License. See LICENSE
for more information.
Achille-Tâm GUILCHARD - achilletamguilchard@gmail.com