-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGrebowContinuation.m
23 lines (19 loc) · 1.06 KB
/
GrebowContinuation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
% A continuation method - Natural Parameter - adopted from Grebow's Thesis
% (Currently might not be used)
function [tCorrec,xCorrec,DF] = GrebowContinuation(XGuess,NoofFam,CorrecPlot)
family = 1;
fprintf('===============================================\n')
fprintf('Obtaining the Corrected Values for family:- %d\n',family)
fprintf('===============================================\n')
fprintf('\nThe Guess X value is : [%f %f %f %f %f %f]\n',XGuess.one)
[tCorrec(family,1),xCorrec(family,:),DF(:,:,family)] = DiffCorrec(XGuess.one,CorrecPlot);
deltaS = 0.00012; % increasing this will fail to converge(typical value is 0.0001).
for family = 2:NoofFam
fprintf('===============================================\n')
fprintf('Obtaining the Corrected Values for family:- %d\n',family)
fprintf('===============================================\n')
% Continuation Process from Ref[2]
GuessX = xCorrec(family-1,:)-deltaS*[1 0 0 0 0 0];
fprintf('The Guess X value is [%f %f %f %f %f %f]\n',GuessX)
[tCorrec(family,1),xCorrec(family,:),DF(:,:,family)] = DiffCorrec(GuessX,CorrecPlot);
end