-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_model.py
276 lines (211 loc) · 9.04 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import os
import argparse
import torch
import torchvision
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torchvision.models as models
import torchvision.transforms as transforms
TRAIN ='train'
VALIDATION = 'val'
TEST = 'test'
MAX_SAMPLES_PROPORTION = 1
THESHOLD_LOGGING_SAMPLES = 10
def log_metrics(loss, running_corrects, running_samples, total_samples):
accuracy = running_corrects / running_samples
print("Images [{}/{} ({:.0f}%)] Loss: {:.3f} Accuracy: {}/{} ({:.3f}%)".format(
running_samples,
total_samples,
100.0 * (running_samples / total_samples),
loss.item(),
running_corrects,
running_samples,
100.0 * accuracy,
)
)
def test(model, test_loader, criterion):
print(f"Testing Model on {MAX_SAMPLES_PROPORTION*100}% of the Dataset")
model.eval()
running_loss = 0
running_corrects = 0
running_samples = 0
total_samples = len(test_loader.dataset)
for inputs, labels in test_loader:
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data).item()
running_samples += len(inputs)
#NOTE: Comment lines below to train and test on whole dataset
if running_samples > (MAX_SAMPLES_PROPORTION * total_samples):
break
total_loss = running_loss / len(test_loader.dataset)
total_acc = running_corrects / len(test_loader.dataset)
print(f"Testing Loss: {total_loss:.3f}, Testing Accuracy: {100*total_acc:.3f}%")
def validate(model, validation_loader, criterion, hook):
model.eval()
import smdebug.pytorch as smd
hook.set_mode(smd.modes.EVAL)
running_loss = 0
running_corrects = 0
running_samples = 0
total_samples = len(validation_loader.dataset)
for inputs, labels in validation_loader:
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data).item()
running_samples += len(inputs)
if running_samples % THESHOLD_LOGGING_SAMPLES == 0:
log_metrics(loss, running_corrects, running_samples, total_samples)
#NOTE: Comment lines below to train and test on whole dataset
if running_samples > (MAX_SAMPLES_PROPORTION * total_samples):
break
epoch_loss = running_loss / running_samples
epoch_acc = running_corrects / running_samples
print(f"Phase validation, Epoc loss {epoch_loss:.3f}, Epoc accuracy {100*epoch_acc:.3f}")
return epoch_loss
def train(model, train_loader, criterion, optimizer, hook):
model.train()
import smdebug.pytorch as smd
hook.set_mode(smd.modes.TRAIN)
running_loss = 0.0
running_corrects = 0
running_samples = 0
total_samples = len(train_loader.dataset)
for inputs, labels in train_loader:
outputs = model(inputs)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
_, preds = torch.max(outputs, 1)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data).item()
running_samples += len(inputs)
if running_samples % THESHOLD_LOGGING_SAMPLES == 0:
log_metrics(loss, running_corrects, running_samples, total_samples)
#NOTE: Comment lines below to train and test on whole dataset
if running_samples > (MAX_SAMPLES_PROPORTION * total_samples ):
break
epoch_loss = running_loss / running_samples
epoch_acc = running_corrects / running_samples
print(f"Phase training, Epoc loss {epoch_loss:.3f}, Epoc accuracy {100*epoch_acc:.3f}")
return epoch_loss
def train_with_early_stopping(model, datasets_loader, epochs, loss_criterion, optimizer, hook):
best_loss = 1e6
print(f"Training Model on {MAX_SAMPLES_PROPORTION*100}% of the Dataset")
for epoch in range(1, epochs + 1):
print(f"Epoch {epoch} ...")
_ = train(model, datasets_loader[TRAIN], loss_criterion, optimizer, hook)
validate_epoch_loss = validate(model, datasets_loader[VALIDATION], loss_criterion, hook)
print(validate_epoch_loss, best_loss)
if validate_epoch_loss < best_loss:
best_loss = validate_epoch_loss
else:
print('Loss of validation model started to increase')
break
def net(num_classes: int):
'''Initializes a pretrained model'''
model = models.resnet50(pretrained=True)
# Freeze training of the convolutional layers
for param in model.parameters():
param.requires_grad = False
# Override the last layer to adjust it to our problem
num_features=model.fc.in_features
model.fc = nn.Sequential(
nn.Linear(num_features, 1024),
nn.ReLU(inplace=True),
nn.Linear(1024, num_classes)
)
return model
def create_data_loaders(train_data_dir: str, valid_data_dir: str, test_data_dir: str, batch_size: int):
'''Create pytorch data loaders'''
data_dir = {TRAIN: train_data_dir, VALIDATION: valid_data_dir, TEST: test_data_dir}
data_transforms = {
TRAIN: transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
VALIDATION: transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
TEST: transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
image_datasets = {}
dataloaders = {}
for x in [TRAIN, VALIDATION, TEST]:
image_datasets[x] = torchvision.datasets.ImageFolder(data_dir[x], data_transforms[x])
dataloaders[x] = torch.utils.data.DataLoader(
image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=2)
return dataloaders
def get_num_classes(dataloader) -> int:
return len(dataloader[TRAIN].dataset.classes)
def save_model(model, model_dir):
path = os.path.join(model_dir, "model.pth")
print(f"Saving the model to path {path}")
torch.save(model.state_dict(), path)
def model_fn(model_dir):
model = net(133) # Hardcoding number of classes for now. How to change this?
with open(os.path.join(model_dir, "model.pth"), "rb") as f:
model.load_state_dict(torch.load(f))
return model
def main(args):
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
dataset_loaders = create_data_loaders(args.data_dir_train, args.data_dir_validation, args.data_dir_test, args.batch_size)
num_classes = get_num_classes(dataset_loaders)
model=net(num_classes)
loss_criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.fc.parameters(), lr=args.lr)
import smdebug.pytorch as smd
hook = smd.Hook.create_from_json_file() # just added
hook.register_hook(model) # just added
hook.register_loss(loss_criterion)
train_with_early_stopping(model, dataset_loaders, args.epochs, loss_criterion, optimizer, hook)
test(model, dataset_loaders[TEST], loss_criterion)
save_model(model, args.model_dir)
if __name__=='__main__':
parser=argparse.ArgumentParser(description="Training Job for Hyperparameter tuning")
parser.add_argument(
"--batch-size",
type=int,
default=64,
metavar="N",
help="input batch size for training (default: 64)",
)
parser.add_argument(
"--epochs",
type=int,
default=14,
metavar="N",
help="number of epochs to train (default: 14)",
)
parser.add_argument(
"--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)"
)
# Container environment
# parser.add_argument("--hosts", type=list, default=json.loads(os.environ["SM_HOSTS"]))
# parser.add_argument("--current-host", type=str, default=os.environ["SM_CURRENT_HOST"])
parser.add_argument("--model-dir", type=str, default=os.environ["SM_MODEL_DIR"])
parser.add_argument("--data-dir-train", type=str, default=os.environ["SM_CHANNEL_TRAINING"])
parser.add_argument("--data-dir-test", type=str, default=os.environ["SM_CHANNEL_TESTING"])
parser.add_argument("--data-dir-validation", type=str, default=os.environ["SM_CHANNEL_VALIDATION"])
# parser.add_argument("--num-gpus", type=int, default=os.environ["SM_NUM_GPUS"])
args = parser.parse_args()
print(args)
main(args)