-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhpo.py
206 lines (163 loc) · 6.69 KB
/
hpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.models as models
import torchvision.transforms as transforms
import argparse
TRAIN ='train'
VALIDATION = 'val'
MAX_SAMPLES_PROPORTION = 0.2
THESHOLD_LOGGING_SAMPLES = 2000
def log_metrics(loss, running_corrects, running_samples, total_samples):
accuracy = running_corrects / running_samples
print("Images [{}/{} ({:.0f}%)] Loss: {:.3f} Accuracy: {}/{} ({:.3f}%)".format(
running_samples,
total_samples,
100.0 * (running_samples / total_samples),
loss.item(),
running_corrects,
running_samples,
100.0 * accuracy,
)
)
def validate(model, validation_loader, criterion):
model.eval()
running_loss = 0
running_corrects = 0
running_samples = 0
total_samples = len(validation_loader.dataset)
for inputs, labels in validation_loader:
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data).item()
running_samples += len(inputs)
if running_samples % THESHOLD_LOGGING_SAMPLES == 0:
log_metrics(loss, running_corrects, running_samples, total_samples)
#NOTE: Comment lines below to train and test on whole dataset
if running_samples > (MAX_SAMPLES_PROPORTION * total_samples):
break
epoch_loss = running_loss / running_samples
epoch_acc = running_corrects / running_samples
print(f"Phase validation, Epoc loss {epoch_loss:.3f}, Epoc accuracy {100*epoch_acc:.3f}%")
return epoch_loss
def train(model, train_loader, criterion, optimizer):
model.train()
running_loss = 0.0
running_corrects = 0
running_samples = 0
total_samples = len(train_loader.dataset)
for inputs, labels in train_loader:
outputs = model(inputs)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
_, preds = torch.max(outputs, 1)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data).item()
running_samples += len(inputs)
if running_samples % THESHOLD_LOGGING_SAMPLES == 0:
log_metrics(loss, running_corrects, running_samples, total_samples)
#NOTE: Comment lines below to train and test on whole dataset
if running_samples > (MAX_SAMPLES_PROPORTION * total_samples ):
break
epoch_loss = running_loss / running_samples
epoch_acc = running_corrects / running_samples
print(f"Phase training, Epoc loss {epoch_loss:.3f}, Epoc accuracy {100*epoch_acc:.3f}%")
return epoch_loss
def train_with_early_stopping(model, datasets_loader, epochs, loss_criterion, optimizer):
print(f"Training Model on {MAX_SAMPLES_PROPORTION*100}% of the Dataset")
best_loss = 1e6
for epoch in range(1, epochs + 1):
print(f"Epoch {epoch} ...")
_ = train(model, datasets_loader[TRAIN], loss_criterion, optimizer)
validate_epoch_loss = validate(model, datasets_loader[VALIDATION], loss_criterion)
print(validate_epoch_loss, best_loss)
if validate_epoch_loss < best_loss:
best_loss = validate_epoch_loss
else:
print('Loss of validation model started to increase')
break
def net(num_classes: int):
'''Initializes a pretrained model'''
model = models.resnet50(pretrained=True)
# Freeze training of the convolutional layers
for param in model.parameters():
param.requires_grad = False
# Override the last layer to adjust it to our problem
num_features=model.fc.in_features
model.fc = nn.Sequential(
nn.Linear(num_features, 1024),
nn.ReLU(inplace=True),
nn.Linear(1024, num_classes)
)
return model
def create_data_loaders(train_data_dir: str, valid_data_dir: str, batch_size: int):
'''Create pytorch data loaders'''
data_dir = {TRAIN: train_data_dir, VALIDATION: valid_data_dir}
data_transforms = {
TRAIN: transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
VALIDATION: transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
image_datasets = {}
dataloaders = {}
for x in [TRAIN, VALIDATION]:
image_datasets[x] = torchvision.datasets.ImageFolder(data_dir[x], data_transforms[x])
dataloaders[x] = torch.utils.data.DataLoader(
image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=2)
return dataloaders
def get_num_classes(dataloader) -> int:
return len(dataloader[TRAIN].dataset.classes)
def save_model(model, model_dir):
path = os.path.join(model_dir, "model.pth")
print(f"Saving the model to path {path}")
torch.save(model.state_dict(), path)
def main(args):
dataset_loaders = create_data_loaders(args.data_dir_train, args.data_dir_validation, args.batch_size)
num_classes = get_num_classes(dataset_loaders)
model=net(num_classes)
loss_criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.fc.parameters(), lr=args.lr)
train_with_early_stopping(model, dataset_loaders, args.epochs, loss_criterion, optimizer)
save_model(model, args.model_dir)
if __name__=='__main__':
parser=argparse.ArgumentParser(description="Training Job for Hyperparameter tuning")
parser.add_argument(
"--batch-size",
type=int,
default=64,
metavar="N",
help="input batch size for training (default: 64)",
)
parser.add_argument(
"--epochs",
type=int,
default=14,
metavar="N",
help="number of epochs to train (default: 14)",
)
parser.add_argument(
"--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)"
)
# Container environment
parser.add_argument("--model-dir", type=str, default=os.environ["SM_MODEL_DIR"])
parser.add_argument("--data-dir-train", type=str, default=os.environ["SM_CHANNEL_TRAINING"])
parser.add_argument("--data-dir-validation", type=str, default=os.environ["SM_CHANNEL_VALIDATION"])
args = parser.parse_args()
main(args)