-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvideo_dataset.py
77 lines (63 loc) · 3.05 KB
/
video_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import glob
import utils
import time
class Dataset():
def __init__(self, args):
self.dataset_name = args.dataset_name
self.num_class = args.num_class
self.feature_size = args.feature_size
self.path_to_features = self.dataset_name + '-I3D-JOINTFeatures.npy'
self.path_to_annotations = self.dataset_name + '-Annotations/'
self.features = np.load(self.path_to_features, encoding='bytes')
self.segments = np.load(self.path_to_annotations + 'segments.npy')
self.labels = np.load(self.path_to_annotations + 'labels_all.npy') # Specific to Thumos14
self.classlist = np.load(self.path_to_annotations + 'classlist.npy')
self.subset = np.load(self.path_to_annotations + 'subset.npy')
self.batch_size = args.batch_size
self.t_max = args.max_seqlen
self.trainidx = []
self.testidx = []
self.classwiseidx = []
self.currenttestidx = 0
self.labels_multihot = [utils.strlist2multihot(labs,self.classlist) for labs in self.labels]
self.train_test_idx()
self.classwise_feature_mapping()
def train_test_idx(self):
for i, s in enumerate(self.subset):
if s.decode('utf-8') == 'validation': # Specific to Thumos14
self.trainidx.append(i)
else:
self.testidx.append(i)
def classwise_feature_mapping(self):
for category in self.classlist:
idx = []
for i in self.trainidx:
for label in self.labels[i]:
if label == category.decode('utf-8'):
idx.append(i); break;
self.classwiseidx.append(idx)
def load_data(self, n_similar=3, is_training=True):
if is_training==True:
features = []
labels = []
idx = []
# Load similar pairs
rand_classid = np.random.choice(len(self.classwiseidx), size=n_similar)
for rid in rand_classid:
rand_sampleid = np.random.choice(len(self.classwiseidx[rid]), size=2)
idx.append(self.classwiseidx[rid][rand_sampleid[0]])
idx.append(self.classwiseidx[rid][rand_sampleid[1]])
# Load rest pairs
rand_sampleid = np.random.choice(len(self.trainidx), size=self.batch_size-2*n_similar)
for r in rand_sampleid:
idx.append(self.trainidx[r])
return np.array([utils.process_feat(self.features[i], self.t_max) for i in idx]), np.array([self.labels_multihot[i] for i in idx])
else:
labs = self.labels_multihot[self.testidx[self.currenttestidx]]
feat = self.features[self.testidx[self.currenttestidx]]
if self.currenttestidx == len(self.testidx)-1:
done = True; self.currenttestidx = 0
else:
done = False; self.currenttestidx += 1
return np.array(feat), np.array(labs), done