-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
560 lines (453 loc) · 27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
"""Train pi-GAN. Supports distributed training."""
import argparse
import os
import numpy as np
import math
from collections import deque
import torch
import torch.optim as optim
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from torchvision.utils import save_image
from generators import generators
from discriminators import discriminators
from srt import data
from srt.model import SRT
from srt.trainer import SRTTrainer
from srt.checkpoint import Checkpoint
from srt.utils.common import init_ddp
from siren import siren
import fid_evaluation
import datasets
import curriculums
from tqdm import tqdm
from datetime import datetime
import copy
import yaml
from torch_ema import ExponentialMovingAverage
def setup(rank, world_size, port):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = port
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
def load_images(images, curriculum, device):
return_images = []
head = 0
for stage in curriculum['stages']:
stage_images = images[head:head + stage['batch_size']]
stage_images = F.interpolate(stage_images, size=stage['img_size'], mode='bilinear', align_corners=True)
return_images.append(stage_images)
head += stage['batch_size']
return return_images
def z_sampler(shape, device, dist):
if dist == 'gaussian':
z = torch.randn(shape, device=device)
elif dist == 'uniform':
z = torch.rand(shape, device=device) * 2 - 1
return z
def train(rank, world_size, opt):
torch.manual_seed(0)
# cfg (config.yaml)
with open(opt.config, 'r') as f:
cfg = yaml.load(f, Loader=yaml.CLoader)
setup(rank, world_size, opt.port)
device = torch.device(rank)
#wandb?
opt.wandb = opt.wandb and rank == 0 # Only log to wandb in main process
#max iteration -> pi gan에선 필요 없을듯
if opt.exit_after is not None:
max_it = opt.exit_after
elif 'max_it' in cfg['training']:
max_it = cfg['training']['max_it']
else:
max_it = 1000000
# -> pi gan에선 필요 없을듯 22
exp_name = os.path.basename(os.path.dirname(opt.config))
if opt.rtpt is not None:
from rtpt import RTPT
rtpt = RTPT(name_initials=opt.rtpt, experiment_name=exp_name, max_iterations=max_it)
# out_dir = os.path.dirname(args.config) -> opt.output_dir
# config.yaml 쓸 거면 metadata['batch_size'] 말고 이거 써야할 듯
batch_size = cfg['training']['batch_size'] // world_size
model_selection_metric = cfg['training']['model_selection_metric']
if cfg['training']['model_selection_mode'] == 'maximize':
model_selection_sign = 1
elif cfg['training']['model_selection_mode'] == 'minimize':
model_selection_sign = -1
else:
raise ValueError('model_selection_mode must be either maximize or minimize.')
curriculum = getattr(curriculums, opt.curriculum)
metadata = curriculums.extract_metadata(curriculum, 0)
fixed_z = z_sampler((25, 256), device='cpu', dist=metadata['z_dist'])
SIREN = getattr(siren, metadata['model'])
CHANNELS = 3
scaler = torch.cuda.amp.GradScaler()
if opt.load_dir != '':
generator = torch.load(os.path.join(opt.load_dir, 'generator.pth'), map_location=device)
discriminator = torch.load(os.path.join(opt.load_dir, 'discriminator.pth'), map_location=device)
ema = torch.load(os.path.join(opt.load_dir, 'ema.pth'), map_location=device)
ema2 = torch.load(os.path.join(opt.load_dir, 'ema2.pth'), map_location=device)
else:
#generator = getattr(generators, metadata['generator'])(SIREN, metadata['latent_dim']).to(device)
generator = SRT(cfg['model']).train().to(device)
discriminator = getattr(discriminators, metadata['discriminator'])().to(device)
ema = ExponentialMovingAverage(generator.parameters(), decay=0.999)
ema2 = ExponentialMovingAverage(generator.parameters(), decay=0.9999)
if world_size > 1:
generator.encoder = DDP(generator.encoder, device_ids=[rank], output_device=rank)
generator.decoder = DDP(generator.decoder, device_ids=[rank], output_device=rank)
encoder_module = generator.encoder.module
decoder_module = generator.decoder.module
else:
encoder_module = generator.encoder
decoder_module = generator.decoder
generator_ddp = DDP(generator, device_ids=[rank], find_unused_parameters=True)
discriminator_ddp = DDP(discriminator, device_ids=[rank], find_unused_parameters=True, broadcast_buffers=False)
generator = generator_ddp.module
discriminator = discriminator_ddp.module
if metadata.get('unique_lr', False):
mapping_network_param_names = [name for name, _ in generator_ddp.module.siren.mapping_network.named_parameters()]
mapping_network_parameters = [p for n, p in generator_ddp.named_parameters() if n in mapping_network_param_names]
generator_parameters = [p for n, p in generator_ddp.named_parameters() if n not in mapping_network_param_names]
optimizer_G = torch.optim.Adam([{'params': generator_parameters, 'name': 'generator'},
{'params': mapping_network_parameters, 'name': 'mapping_network', 'lr':metadata['gen_lr']*5e-2}],
lr=metadata['gen_lr'], betas=metadata['betas'], weight_decay=metadata['weight_decay'])
else:
optimizer_G = torch.optim.Adam(generator_ddp.parameters(), lr=metadata['gen_lr'], betas=metadata['betas'], weight_decay=metadata['weight_decay'])
optimizer_D = torch.optim.Adam(discriminator_ddp.parameters(), lr=metadata['disc_lr'], betas=metadata['betas'], weight_decay=metadata['weight_decay'])
if opt.load_dir != '':
optimizer_G.load_state_dict(torch.load(os.path.join(opt.load_dir, 'optimizer_G.pth')))
optimizer_D.load_state_dict(torch.load(os.path.join(opt.load_dir, 'optimizer_D.pth')))
if not metadata.get('disable_scaler', False):
scaler.load_state_dict(torch.load(os.path.join(opt.load_dir, 'scaler.pth')))
generator_losses = []
discriminator_losses = []
if opt.set_step != None:
generator.step = opt.set_step
discriminator.step = opt.set_step
if metadata.get('disable_scaler', False):
scaler = torch.cuda.amp.GradScaler(enabled=False)
#generator.set_device(device)
# ----------
# Training
# ----------
with open(os.path.join(opt.output_dir, 'options.txt'), 'w') as f:
f.write(str(opt))
f.write('\n\n')
f.write(str(generator))
f.write('\n\n')
f.write(str(discriminator))
f.write('\n\n')
f.write(str(curriculum))
# Initialize datasets
print('Loading training set...')
train_dataset = data.get_dataset('train', cfg['data'])
eval_split = 'test' if opt.test else 'val'
print(f'Loading {eval_split} set...')
eval_dataset = data.get_dataset(eval_split, cfg['data'],
max_len=opt.max_eval, full_scale=opt.full_scale)
num_workers = cfg['training']['num_workers'] if 'num_workers' in cfg['training'] else 1
print(f'Using {num_workers} workers per process for data loading.')
# Initialize data loaders
train_sampler = val_sampler = None
shuffle = False
if isinstance(train_dataset, torch.utils.data.IterableDataset):
assert num_workers == 1, "Our MSN dataset is implemented as Tensorflow iterable, and does not currently support multiple PyTorch workers per process. Is also shouldn't need any, since Tensorflow uses multiple workers internally."
else:
if world_size >= 1:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset, shuffle=True, drop_last=False)
val_sampler = torch.utils.data.distributed.DistributedSampler(
eval_dataset, shuffle=True, drop_last=False)
else:
shuffle = True
torch.manual_seed(rank)
dataloader = None
# loader for SRT
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=True,
sampler=train_sampler, shuffle=shuffle,
worker_init_fn=data.worker_init_fn, persistent_workers=True)
val_loader = torch.utils.data.DataLoader(
eval_dataset, batch_size=max(1, batch_size // 8), num_workers=1,
sampler=val_sampler, shuffle=shuffle,
pin_memory=False, worker_init_fn=data.worker_init_fn, persistent_workers=True)
dataloader = train_loader
# Loaders for visualization scenes
vis_loader_val = torch.utils.data.DataLoader(
eval_dataset, batch_size=12, shuffle=shuffle, worker_init_fn=data.worker_init_fn)
vis_loader_train = torch.utils.data.DataLoader(
train_dataset, batch_size=12, shuffle=shuffle, worker_init_fn=data.worker_init_fn)
print('Data loaders initialized.')
data_vis_val = next(iter(vis_loader_val)) # Validation set data for visualization
train_dataset.mode = 'val' # Get validation info from training set just this once
data_vis_train = next(iter(vis_loader_train)) # Validation set data for visualization
train_dataset.mode = 'train'
print('Visualization data loaded.')
# ~
total_progress_bar = tqdm(total = opt.n_epochs, desc = "Total progress", dynamic_ncols=True)
total_progress_bar.update(discriminator.epoch)
interior_step_bar = tqdm(dynamic_ncols=True)
#
epoch_it = 1
train_sampler.set_epoch(epoch_it)
print_every = cfg['training']['print_every']
checkpoint_every = cfg['training']['checkpoint_every']
validate_every = cfg['training']['validate_every']
visualize_every = cfg['training']['visualize_every']
backup_every = cfg['training']['backup_every']
for _ in range (opt.n_epochs):
total_progress_bar.update(1)
metadata = curriculums.extract_metadata(curriculum, discriminator.step)
# Set learning rates
for param_group in optimizer_G.param_groups:
if param_group.get('name', None) == 'mapping_network':
param_group['lr'] = metadata['gen_lr'] * 5e-2
else:
param_group['lr'] = metadata['gen_lr']
param_group['betas'] = metadata['betas']
param_group['weight_decay'] = metadata['weight_decay']
for param_group in optimizer_D.param_groups:
param_group['lr'] = metadata['disc_lr']
param_group['betas'] = metadata['betas']
param_group['weight_decay'] = metadata['weight_decay']
'''
if not dataloader or dataloader.batch_size != metadata['batch_size']:
dataloader, CHANNELS = datasets.get_dataset_distributed(metadata['dataset'],
world_size,
rank,
**metadata)
step_next_upsample = curriculums.next_upsample_step(curriculum, discriminator.step)
step_last_upsample = curriculums.last_upsample_step(curriculum, discriminator.step)
interior_step_bar.reset(total=(step_next_upsample - step_last_upsample))
interior_step_bar.set_description(f"Progress to next stage")
interior_step_bar.update((discriminator.step - step_last_upsample))
'''
step_next_upsample = 0
step_last_upsample = 0
if not dataloader or dataloader.batch_size != batch_size:
step_next_upsample = curriculums.next_upsample_step(curriculum, discriminator.step)
step_last_upsample = curriculums.last_upsample_step(curriculum, discriminator.step)
interior_step_bar.reset(total=(step_next_upsample - step_last_upsample))
interior_step_bar.set_description(f"Progress to next stage")
interior_step_bar.update((discriminator.step - step_last_upsample))
# input_images, input_camera_pos, input_rays,
# target_pixels, target_camera_pos, target_rays, scendid, transform
for i, batch in enumerate(dataloader):
if discriminator.step % opt.model_save_interval == 0 and rank == 0:
now = datetime.now()
now = now.strftime("%d--%H:%M--")
#torch.save(ema, os.path.join(opt.output_dir, now + 'ema.pth'))
#torch.save(ema2, os.path.join(opt.output_dir, now + 'ema2.pth'))
#torch.save(generator_ddp.module, os.path.join(opt.output_dir, now + 'generator.pth'))
#torch.save(discriminator_ddp.module, os.path.join(opt.output_dir, now + 'discriminator.pth'))
#torch.save(optimizer_G.state_dict(), os.path.join(opt.output_dir, now + 'optimizer_G.pth'))
#torch.save(optimizer_D.state_dict(), os.path.join(opt.output_dir, now + 'optimizer_D.pth'))
#torch.save(scaler.state_dict(), os.path.join(opt.output_dir, now + 'scaler.pth'))
metadata = curriculums.extract_metadata(curriculum, discriminator.step)
#if dataloader.batch_size != metadata['batch_size']: break
if dataloader.batch_size != batch_size: break
if scaler.get_scale() < 1:
scaler.update(1.)
generator_ddp.train()
discriminator_ddp.train()
alpha = min(1, (discriminator.step - step_last_upsample) / (metadata['fade_steps']))
#real_imgs = imgs.to(device, non_blocking=True)
imgs = batch.get("input_images")
real_imgs = imgs.to(device, non_blocking=True)
metadata['nerf_noise'] = max(0, 1. - discriminator.step/5000.)
trainer = SRTTrainer(generator, optimizer_G, cfg, device, opt.output_dir, train_dataset.render_kwargs)
# TRAIN DISCRIMINATOR
with torch.cuda.amp.autocast():
# Generate images for discriminator training
with torch.no_grad():
z = z_sampler((real_imgs.shape[0], metadata['latent_dim']), device=device, dist=metadata['z_dist'])
split_batch_size = z.shape[0] // metadata['batch_split']
gen_imgs = []
gen_positions = []
for split in range(metadata['batch_split']):
subset_z = z[split * split_batch_size:(split+1) * split_batch_size]
#g_imgs, g_pos = generator_ddp(subset_z, **metadata)
#g_imgs, g_pos = trainer.visualize(data_vis_train, mode='train')
g_imgs, _ = trainer.compute_loss(data_vis_train)
gen_imgs.append(g_imgs)
#gen_positions.append(g_pos)
#gen_imgs = sum(gen_imgs, [])
gen_imgs = torch.cat(gen_imgs, axis=0)
#gen_positions = sum(gen_positions, [])
#gen_positions = torch.cat(gen_positions, axis=0)
#print(gen_imgs.shape)
gen_imgs = gen_imgs.permute(0, 2, 1)
gen_imgs = gen_imgs.reshape(-1, 3, 64, 64)
real_imgs = real_imgs.permute(0, 2, 3, 4, 1).squeeze(dim = -1)
real_imgs.requires_grad = True
r_preds, _, _ = discriminator_ddp(real_imgs, alpha, **metadata)
if metadata['r1_lambda'] > 0:
# Gradient penalty
grad_real = torch.autograd.grad(outputs=scaler.scale(r_preds.sum()), inputs=real_imgs, create_graph=True)
inv_scale = 1./scaler.get_scale()
grad_real = [p * inv_scale for p in grad_real][0]
with torch.cuda.amp.autocast():
if metadata['r1_lambda'] > 0:
grad_penalty = (grad_real.view(grad_real.size(0), -1).norm(2, dim=1) ** 2).mean()
grad_penalty = 0.5 * metadata['r1_lambda'] * grad_penalty
else:
grad_penalty = 0
g_preds, g_pred_latent, g_pred_position = discriminator_ddp(gen_imgs, alpha, **metadata)
if metadata['z_lambda'] > 0 or metadata['pos_lambda'] > 0:
latent_penalty = torch.nn.MSELoss()(g_pred_latent, z) * metadata['z_lambda']
#position_penalty = torch.nn.MSELoss()(g_pred_position, gen_positions) * metadata['pos_lambda']
identity_penalty = latent_penalty #+ position_penalty
else:
identity_penalty=0
d_loss = torch.nn.functional.softplus(g_preds).mean() + torch.nn.functional.softplus(-r_preds).mean() + grad_penalty + identity_penalty
discriminator_losses.append(d_loss.item())
optimizer_D.zero_grad()
scaler.scale(d_loss).backward()
scaler.unscale_(optimizer_D)
torch.nn.utils.clip_grad_norm_(discriminator_ddp.parameters(), metadata['grad_clip'])
scaler.step(optimizer_D)
# TRAIN GENERATOR
z = z_sampler((imgs.shape[0], metadata['latent_dim']), device=device, dist=metadata['z_dist'])
split_batch_size = z.shape[0] // metadata['batch_split']
for split in range(metadata['batch_split']):
with torch.cuda.amp.autocast():
subset_z = z[split * split_batch_size:(split+1) * split_batch_size]
#gen_imgs, gen_positions = generator_ddp(subset_z, **metadata)
gen_imgs, gen_positions = trainer.visualize(data_vis_train, mode='train')
g_preds, g_pred_latent, g_pred_position = discriminator_ddp(gen_imgs, alpha, **metadata)
topk_percentage = max(0.99 ** (discriminator.step/metadata['topk_interval']), metadata['topk_v']) if 'topk_interval' in metadata and 'topk_v' in metadata else 1
topk_num = math.ceil(topk_percentage * g_preds.shape[0])
g_preds = torch.topk(g_preds, topk_num, dim=0).values
if metadata['z_lambda'] > 0 or metadata['pos_lambda'] > 0:
latent_penalty = torch.nn.MSELoss()(g_pred_latent, subset_z) * metadata['z_lambda']
#position_penalty = torch.nn.MSELoss()(g_pred_position, gen_positions) * metadata['pos_lambda']
identity_penalty = latent_penalty #+ position_penalty
else:
identity_penalty = 0
g_loss = torch.nn.functional.softplus(-g_preds).mean() + identity_penalty
generator_losses.append(g_loss.item())
scaler.scale(g_loss).backward()
scaler.unscale_(optimizer_G)
torch.nn.utils.clip_grad_norm_(generator_ddp.parameters(), metadata.get('grad_clip', 0.3))
scaler.step(optimizer_G)
scaler.update()
optimizer_G.zero_grad()
ema.update(generator_ddp.parameters())
ema2.update(generator_ddp.parameters())
if rank == 0:
interior_step_bar.update(1)
if i%10 == 0:
tqdm.write(f"[Experiment: {opt.output_dir}] [GPU: {os.environ['CUDA_VISIBLE_DEVICES']}] [Epoch: {discriminator.epoch}/{opt.n_epochs}] [D loss: {d_loss.item()}] [G loss: {g_loss.item()}] [Step: {discriminator.step}] [Alpha: {alpha:.2f}] [Img Size: {metadata['img_size']}] [Batch Size: {metadata['batch_size']}] [TopK: {topk_num}] [Scale: {scaler.get_scale()}]")
if discriminator.step % opt.sample_interval == 0:
generator_ddp.eval()
with torch.no_grad():
with torch.cuda.amp.autocast():
copied_metadata = copy.deepcopy(metadata)
copied_metadata['h_stddev'] = copied_metadata['v_stddev'] = 0
copied_metadata['img_size'] = 128
gen_imgs = generator_ddp.module.staged_forward(fixed_z.to(device), **copied_metadata)[0]
save_image(gen_imgs[:25], os.path.join(opt.output_dir, f"{discriminator.step}_fixed.png"), nrow=5, normalize=True)
with torch.no_grad():
with torch.cuda.amp.autocast():
copied_metadata = copy.deepcopy(metadata)
copied_metadata['h_stddev'] = copied_metadata['v_stddev'] = 0
copied_metadata['h_mean'] += 0.5
copied_metadata['img_size'] = 128
gen_imgs = generator_ddp.module.staged_forward(fixed_z.to(device), **copied_metadata)[0]
save_image(gen_imgs[:25], os.path.join(opt.output_dir, f"{discriminator.step}_tilted.png"), nrow=5, normalize=True)
ema.store(generator_ddp.parameters())
ema.copy_to(generator_ddp.parameters())
generator_ddp.eval()
with torch.no_grad():
with torch.cuda.amp.autocast():
copied_metadata = copy.deepcopy(metadata)
copied_metadata['h_stddev'] = copied_metadata['v_stddev'] = 0
copied_metadata['img_size'] = 128
gen_imgs = generator_ddp.module.staged_forward(fixed_z.to(device), **copied_metadata)[0]
save_image(gen_imgs[:25], os.path.join(opt.output_dir, f"{discriminator.step}_fixed_ema.png"), nrow=5, normalize=True)
with torch.no_grad():
with torch.cuda.amp.autocast():
copied_metadata = copy.deepcopy(metadata)
copied_metadata['h_stddev'] = copied_metadata['v_stddev'] = 0
copied_metadata['h_mean'] += 0.5
copied_metadata['img_size'] = 128
gen_imgs = generator_ddp.module.staged_forward(fixed_z.to(device), **copied_metadata)[0]
save_image(gen_imgs[:25], os.path.join(opt.output_dir, f"{discriminator.step}_tilted_ema.png"), nrow=5, normalize=True)
with torch.no_grad():
with torch.cuda.amp.autocast():
copied_metadata = copy.deepcopy(metadata)
copied_metadata['img_size'] = 128
copied_metadata['h_stddev'] = copied_metadata['v_stddev'] = 0
copied_metadata['psi'] = 0.7
gen_imgs = generator_ddp.module.staged_forward(torch.randn_like(fixed_z).to(device), **copied_metadata)[0]
save_image(gen_imgs[:25], os.path.join(opt.output_dir, f"{discriminator.step}_random.png"), nrow=5, normalize=True)
ema.restore(generator_ddp.parameters())
if discriminator.step % opt.sample_interval == 0:
torch.save(ema, os.path.join(opt.output_dir, 'ema.pth'))
torch.save(ema2, os.path.join(opt.output_dir, 'ema2.pth'))
torch.save(generator_ddp.module, os.path.join(opt.output_dir, 'generator.pth'))
torch.save(discriminator_ddp.module, os.path.join(opt.output_dir, 'discriminator.pth'))
torch.save(optimizer_G.state_dict(), os.path.join(opt.output_dir, 'optimizer_G.pth'))
torch.save(optimizer_D.state_dict(), os.path.join(opt.output_dir, 'optimizer_D.pth'))
torch.save(scaler.state_dict(), os.path.join(opt.output_dir, 'scaler.pth'))
torch.save(generator_losses, os.path.join(opt.output_dir, 'generator.losses'))
torch.save(discriminator_losses, os.path.join(opt.output_dir, 'discriminator.losses'))
# Visualize Output
#if opt.visnow or (i > 0 and visualize_every > 0 and (i % visualize_every) == 0):
# print('Visualizing...')
#trainer.visualize(data_vis_val, mode='val')
# trainer.visualize(data_vis_train, mode='train')
if opt.eval_freq > 0 and (discriminator.step + 1) % opt.eval_freq == 0:
generated_dir = os.path.join(opt.output_dir, 'evaluation/generated')
if rank == 0:
fid_evaluation.setup_evaluation(metadata['dataset'], generated_dir, target_size=128)
dist.barrier()
ema.store(generator_ddp.parameters())
ema.copy_to(generator_ddp.parameters())
generator_ddp.eval()
fid_evaluation.output_images(generator_ddp, metadata, rank, world_size, generated_dir)
ema.restore(generator_ddp.parameters())
dist.barrier()
if rank == 0:
fid = fid_evaluation.calculate_fid(metadata['dataset'], generated_dir, target_size=128)
with open(os.path.join(opt.output_dir, f'fid.txt'), 'a') as f:
f.write(f'\n{discriminator.step}:{fid}')
torch.cuda.empty_cache()
discriminator.step += 1
generator.step += 1
discriminator.epoch += 1
#generator.epoch += 1
epoch_it += 1
cleanup()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=3000, help="number of epochs of training")
parser.add_argument("--sample_interval", type=int, default=200, help="interval between image sampling")
parser.add_argument('--output_dir', type=str, default='debug')
parser.add_argument('--load_dir', type=str, default='')
parser.add_argument('--curriculum', type=str)
parser.add_argument('--eval_freq', type=int, default=5000)
parser.add_argument('--port', type=str, default='12355')
parser.add_argument('--set_step', type=int, default=None)
parser.add_argument('--model_save_interval', type=int, default=5000)
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--exit-after', type=int, help='Exit after this many training iterations.')
parser.add_argument('--test', action='store_true', help='When evaluating, use test instead of validation split.')
parser.add_argument('--evalnow', action='store_true', help='Run evaluation on startup.')
parser.add_argument('--visnow', action='store_true', help='Run visualization on startup.')
parser.add_argument('--wandb', action='store_true', help='Log run to Weights and Biases.')
parser.add_argument('--max-eval', type=int, help='Limit the number of scenes in the evaluation set.')
parser.add_argument('--full-scale', action='store_true', help='Evaluate on full images.')
parser.add_argument('--print-model', action='store_true', help='Print model and parameters on startup.')
parser.add_argument('--rtpt', type=str, help='Use rtpt to set process name with given initials.')
opt = parser.parse_args()
print(opt)
os.makedirs(opt.output_dir, exist_ok=True)
num_gpus = len(os.environ['CUDA_VISIBLE_DEVICES'].split(','))
mp.spawn(train, args=(num_gpus, opt), nprocs=num_gpus, join=True)