|
275 | 275 | changes during the calculation.
|
276 | 276 |
|
277 | 277 |
|
278 |
| - \subsection{Implicit /Explicit approach} |
279 |
| - |
280 |
| - \subsubsection{Explicit} |
281 |
| - The time derivative in Equation \ref{eq:bilance} is calculated using an |
282 |
| - explicit method. The computation is therefore sensitive to the size of the time |
283 |
| - step. The size of the time step is controlled by the Courant criterion, which |
284 |
| - needs to be kept below the theoretical maximum value of 1, while the maximum |
285 |
| - value in practise is lower than 1 |
286 |
| - \cite{zhang1989modeling, esteves2000overland}. |
287 |
| - |
288 |
| - |
289 |
| - The sheet flow water level of the next time t + 1 step in Equation |
290 |
| - \ref{eq:bilance} which incorporates the sum \ref{eq:routing} is calculated with the |
291 |
| - explicit time discretisation scheme for cell i as: |
292 |
| - \begin{equation} |
293 |
| - h_{i,t} =h_{i,t-1} + \mathrm{d}t (es_{i,t-1} + \sum_j^m q^{out}_{j,t-1}- |
294 |
| - inf_{i,t-1} - q^{out}_{i,t-1}), |
295 |
| - \label{eq:bilanceexpl} |
296 |
| - \end{equation} |
297 |
| - |
298 |
| - |
299 |
| - After inserting the equations~(\ref{eq:infiltration}) |
300 |
| - and~(\ref{eq:powerlaw2}) into equation~(\ref{eq:bilanceexpl}) the |
301 |
| - final explicit form balance equation can be written as: |
302 |
| - \begin{dmath} |
303 |
| - h_{i,t} = h_{i,t-1} + |
304 |
| - es_{i,t-1} + exf_{i,t-1} + \sum_{j}^{inflows} |
305 |
| - 1/n_{sheet,j}I_j^{y_j} h_{j,t-1}^{b_j} - |
306 |
| - 1/n_{sheet,i}I_i^{y_i}h_{i,t-1}^{b_i} - ( |
307 |
| - \frac{1}{2}S_it_1^{-1/2}+K_{s,i}). |
308 |
| - \end{dmath} |
309 |
| - |
310 |
| - |
311 |
| - \subsubsection{Implicit} |
312 |
| - Alternatively the equation (\ref{eq:bilance}) solved using implicit |
313 |
| - scheme. The right hand side can be expressed in for time $t$ as: |
314 |
| - |
315 |
| - $$ |
316 |
| - \frac{h_{i,t} - h_{i,t-1} }{\mathrm{d} t} = \left(es_{i,t} + |
317 |
| - \sum_j^{inflows} q^{in}_{j,t} - inf_{i,t} - q^{out}_{i,t}\right). |
318 |
| - $$ |
319 |
| - |
320 |
| - After inserting the power-law equation (\ref{eq:powerlaw}) and several rearrangements the formula above can be written |
321 |
| - as follows: |
322 |
| - |
323 |
| - |
324 |
| - |
325 |
| - $$ |
326 |
| - h_{i,t} + \mathrm{d} t a_ih^{b_{i}-1}_{i,t} h_{i,t} - \mathrm{d} t \sum_j^{inflows} |
327 |
| - a_jh^{b_{j}-1}_{j,t} h_{j,t} = h_{i,t-1} + \mathrm{d} t es_{i,t} - \mathrm{d} |
328 |
| - t inf_{i,t}. |
329 |
| - $$ |
330 |
| - Here the known part of the balance equation (rainfall and infiltration) are at the right hand side. To |
331 |
| - extract the unknown $h$ form the power law a following rearrangement was used: |
332 |
| - |
333 |
| - |
334 |
| - |
335 |
| - \begin{equation} |
336 |
| - (1+\mathrm{d} t a_ih^{b_{i}-1}_{i,t})h_{i,t} - \mathrm{d} t \sum_j^{inflows} |
337 |
| - a_jh^{b_{j}-1}_{j,t} h_{j,t} = h_{i,t-1} + \mathrm{d} t es_{i,t} - |
338 |
| - \mathrm{d} t inf_{i,t} |
339 |
| - \label{eq:impl} |
340 |
| - \end{equation} |
341 |
| - |
342 |
| - From the equation (\ref{eq:impl}) the system of linear equations can be constructed. |
343 |
| - |
344 |
| - As example, lets show the equation (\ref{eq:impl}) for |
345 |
| - $ |
346 |
| - i=5\ \mathrm{and}\ inflows\in\{7,8,9\} |
347 |
| - $: |
348 |
| - |
349 |
| - |
350 |
| - \begin{dmath} |
351 |
| - (1+\Delta T a_5h^{b_{5}-1}_{5,t})h_{5,t} - \Delta T a_7h^{b_{7}-1}_{7,t} h_{7,t} + \Delta T a_8h^{b_{8}-1}_{8,t} h_{8,t} + \Delta T a_9 h^{b_{9}-1}_{9,t} h_{9,t} = h_{5,t-1} + \Delta T es_{5,t} - \Delta T inf_{5,t}. |
352 |
| - \end{dmath} |
353 |
| - |
354 |
| - In matrix form the above equation can be written as: |
355 |
| - |
356 |
| - |
357 |
| - |
358 |
| - \begin{dmath} |
359 |
| - \begin{bmatrix} |
360 |
| - \hdots& & & & & & \\ |
361 |
| - \hdots & 1+\Delta T a_5h^{b_{5}-1}_{5,t} & \hdots & \Delta T a_7h^{b_{7}-1}_{7,t} & \Delta T a_8h^{b_{8}-1}_{8,t} & \Delta T a_9 h^{b_{9}-1}_{9,t} & \hdots \\ |
362 |
| - \hdots& & & & & & \\ |
363 |
| - \hdots& && & & & \\ |
364 |
| - \hdots& && & & & \\ |
365 |
| - \hdots& && & & & \\ |
366 |
| - |
367 |
| - \end{bmatrix} |
368 |
| - % |
369 |
| - \begin{bmatrix} |
370 |
| - \vdots \\ |
371 |
| - h_{5,t} \\ |
372 |
| - \vdots \\ |
373 |
| - h_{7,t} \\ |
374 |
| - h_{8,t} \\ |
375 |
| - h_{9,t} \\ |
376 |
| - \vdots \\ |
377 |
| - % |
378 |
| - \end{bmatrix} |
379 |
| - = |
380 |
| - \begin{bmatrix} |
381 |
| - \vdots \\ |
382 |
| - h_{5,t-1} + \Delta T es_{5,t} - \Delta T inf_{5,t} \\ |
383 |
| - \vdots \\ |
384 |
| - \vdots \\ |
385 |
| - \vdots \\ |
386 |
| - \vdots \\ |
387 |
| - \vdots \\ |
388 |
| - % |
389 |
| - \end{bmatrix} |
390 |
| - \label{eq:sys} |
391 |
| - \end{dmath} |
392 |
| - |
393 |
| - The system (\ref{eq:sys}) is solved using \texttt{scipy} package method \texttt{root} |
394 |
| - using \texttt{krigov} methof that shown the best convergence. |
395 |
| - |
396 |
| - |
397 |
| - \paragraph{Implicit solution with rill flow} To calculated rill flow the water level in rill and needs to be calculated as |
398 |
| - \begin{equation} |
399 |
| - h_{rill} = \text{max}(h-h_{crit},0), |
400 |
| - \label{eq:hrill2} |
401 |
| - \end{equation} |
402 |
| - where |
403 |
| - \begin{equation} |
404 |
| - h_{sheet} = \text{min}(h,h_{crit}). |
405 |
| - \label{eq:hsheet2} |
406 |
| - \end{equation} |
407 |
| - |
408 |
| - Mannings formula is used to calculated the steady state flow in |
409 |
| - the rill assuming rill is a channel (description in section \ref{sec:rill}. |
410 |
| - $$ |
411 |
| - q_{rill} = 1/n R(h_{rill})^{2/3} i^{1/2} |
412 |
| - $$ |
413 |
| - |
414 |
| - |
415 |
| - The balance equation becomes |
416 |
| - \begin{dmath} |
417 |
| - \frac{h_{i,t} - h_{i,t-1} }{\Delta T} = |
418 |
| - es_{i,t} + \sum_j^{inflows} a_jh^{b_{j}}_{sh,j,t} + \sum_k^{inflows} 1/n_k R_k(h_{rl,k,t})^{2/3} i_k^{1/2} - inf_{i,t} - a_ih^{b_{i}}_{sh,i,t} - 1/n R(h_{rl,i,t})^{2/3} i^{1/2}, |
419 |
| - \end{dmath} |
420 |
| - where $h_{sheet}$ and $h_{rill}$ are defined as (\ref{eq:hsheet2}) and (\ref{eq:hrill2}). |
421 |
| - |
422 |
| - This formula is rearranged and, for practical purposes, the linear equation is the system is calculated with condition \\ |
423 |
| - for $h<=h_{crit}$ as |
424 |
| - \begin{equation} |
425 |
| - \left(\frac{1}{\Delta T}+a_ih^{b_{i}-1}_{i,t}\right)h_{i,t} - \sum_j^{inflows} a_jh^{b_{j}-1}_{j,t} h_{j,t} = \frac{h_{i,t-1}}{\Delta} + es_{i,t} - inf_{i,t} |
426 |
| - \end{equation} |
427 |
| - % |
428 |
| - % |
429 |
| - and for $h>h_{crit}$ as |
430 |
| - \begin{multline} |
431 |
| - \left(\frac{1}{\Delta T} |
432 |
| - + 1/n_i R_i(h_{i,t}-h_{crit,i})^{2/3} i_i^{1/2} \frac{1}{h_{i,t}}\right)h_{i,t} \\ |
433 |
| - - \sum_k^{inflows} \left( 1/n_k R_k(h_{k,t}-h_{crit,k})^{2/3} i_k^{1/2} \frac{1}{h_{k,t}}\right)h_{k,t} |
434 |
| - = \\ |
435 |
| - \frac{h_{i,t-1} }{\Delta T} |
436 |
| - + es_{i,t} |
437 |
| - + \sum_j^{inflows} a_j h^{b_{j}}_{crit,j} |
438 |
| - - inf_{i,t} |
439 |
| - - a_i h^{b_{i}}_{crit,i} |
440 |
| - \end{multline} |
441 |
| - The later system of equations is constructed in similar fashion as the case of (\ref{eq:sys}) and solved with the same solver. |
442 | 278 |
|
443 | 279 |
|
444 | 280 | \FloatBarrier
|
|
0 commit comments