-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathA_extract_local_features.py
286 lines (234 loc) · 11.1 KB
/
A_extract_local_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
from pymediainfo import MediaInfo
import subprocess
from torchvision import transforms as trn
from torchvision.transforms.functional import resize
from PIL import Image
from nets.models import *
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from multiprocessing import Pool
import os
import glob
import argparse
from module.parser import str2bool
class ListDataset(Dataset):
def __init__(self, l, transform=None):
self.l = l
default_transform = trn.Compose([
trn.Resize((224, 224)),
trn.ToTensor(),
trn.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
self.transform = transform or default_transform
def __getitem__(self, idx):
return self.transform(self.l[idx])
def __len__(self):
return len(self.l)
def __repr__(self):
fmt_str = f'{self.__class__.__name__}\n'
fmt_str += f'\tNumber of images : {self.__len__()}\n'
trn_str = self.transform.__repr__().replace('\n', '\n\t')
fmt_str += f"\tTransform : \n\t{trn_str}"
return fmt_str
def parse_metadata(path):
media_info = MediaInfo.parse(path)
meta = {'file_path': path}
for track in media_info.tracks:
if track.track_type == 'General':
meta['file_name'] = track.file_name + '.' + track.file_extension
meta['file_extension'] = track.file_extension
meta['format'] = track.format
# meta['duration'] = float(track.duration)
# meta['frame_count'] = int(track.frame_count)
# meta['frame_rate'] = float(track.frame_rate)
elif track.track_type == 'Video':
meta['width'] = int(track.width)
meta['height'] = int(track.height)
meta['rotation'] = float(track.rotation or 0.)
meta['codec'] = track.codec
return meta
def decode_frames(video, meta, decode_rate, size):
frames = []
w, h = (meta['width'], meta['height']) if meta['rotation'] not in [90, 270] else (meta['height'], meta['width'])
command = ['ffmpeg',
'-hide_banner', '-loglevel', 'panic',
'-vsync', '2',
'-i', video,
'-pix_fmt', 'bgr24', # color space
'-r', str(decode_rate),
'-q:v', '0',
'-vcodec', 'rawvideo', # origin video
'-f', 'image2pipe', # output format : image to pipe
'pipe:1']
pipe = subprocess.Popen(command, stdout=subprocess.PIPE, bufsize=w * h * 3)
while True:
raw_image = pipe.stdout.read(w * h * 3)
pipe.stdout.flush()
try:
image = Image.frombuffer('RGB', (w, h), raw_image, "raw", 'BGR', 0, 1)
except ValueError as e:
break
if size:
image = resize(image, size)
frames.append(image)
return frames
@torch.no_grad()
def extract_frame_fingerprint(model, loader):
model.eval()
frame_fingerprints = []
for im in loader:
feature = model(im)
frame_fingerprints.append(feature.cpu())
frame_fingerprints = torch.cat(frame_fingerprints)
return frame_fingerprints
def extract_segment_fingerprint(video, decode_rate, decode_size, transform, cnn_model,group_count, aggr_model):
# parse video metadata
meta = parse_metadata(video)
print(meta)
# decode all frames
frames = decode_frames(video, meta, decode_rate, decode_size)
print(len(frames))
# extract frame fingerprint
cnn_loader = DataLoader(ListDataset(frames, transform=transform), batch_size=64, shuffle=False, num_workers=4)
frame_fingerprints = extract_frame_fingerprint(cnn_model, cnn_loader)
print("extract frame fingerprint: ", frame_fingerprints.shape)
if group_count != 1:
k = group_count - frame_fingerprints.shape[0] % group_count
if k != group_count:
frame_fingerprints = torch.cat([frame_fingerprints, frame_fingerprints[-1:, ].repeat((k, 1, 1))])
if aggr_model:
frame_fingerprints = aggr_model(frame_fingerprints)
print("aggregating segment feature: ", frame_fingerprints.shape)
if not aggr_model:
frame_fingerprints = frame_fingerprints.permute(0, 2, 1)
frame_fingerprints = frame_fingerprints.reshape(-1, group_count * frame_fingerprints.shape[1],
frame_fingerprints.shape[-1])
frame_fingerprints = frame_fingerprints.permute(0, 2, 1)
print("grouping: ", frame_fingerprints.shape)
local_features = []
local_features_set = torch.split(frame_fingerprints, 1)
for set in local_features_set:
temp = torch.split(set, 1, dim=2)
temp = [t.squeeze(-1) for t in temp]
local_features.append(temp)
print(f"# of Segments: {len(local_features)}")
print(f"# of localfeatures per segment: {len(local_features[0])}")
print(f"shape of localfeature: {local_features[0][0].shape}")
print("-" * 53)
# if group_count != 1:
# # grouping fingerprints for each segment => If frame_fingerprints cannot be divided by group_count, the last is copied.
# k = group_count - frame_fingerprints.shape[0] % group_count
# if k != group_count:
# frame_fingerprints = torch.cat([frame_fingerprints, frame_fingerprints[-1:, ].repeat((k, 1, 1))])
# print("groupping: ", frame_fingerprints.shape)
#
# groupping_fingerprint = frame_fingerprints
# groupping_fingerprint = torch.split(groupping_fingerprint, 5, dim=0)
# variance_fingerprint = [f.var(dim=0).unsqueeze(0) for f in groupping_fingerprint]
#
# if not aggr_model:
# frame_fingerprints = frame_fingerprints.reshape(-1, group_count * frame_fingerprints.shape[1], frame_fingerprints.shape[-1])
# print("Concatenate fingerprint for each segment: ", frame_fingerprints.shape)
# else:
# frame_fingerprints = aggr_model(frame_fingerprints)
# print("aggregating segment feature: ", frame_fingerprints.shape)
#
# local_features_set = torch.split(frame_fingerprints, 1)
# concatenated_fingerprint = [torch.cat([local, var], 1).squeeze(1) for local, var in zip(local_features_set, variance_fingerprint)]
#
# local_features = []
# for set in concatenated_fingerprint:
# temp = torch.split(set, 1, dim=2)
# temp = [t.squeeze(-1) for t in temp]
# local_features.append(temp)
# print(local_features[0][0].shape)
# exit()
return local_features
def load(path):
_, ext = os.path.splitext(path)
if ext == '.npy':
feat = np.load(path)
elif ext == '.pth':
feat = torch.load(path)
else:
raise TypeError(f'feature extension {ext} isn\'t supported')
return feat
def load_segment_fingerprint(base_path):
# base_path
# ../{dataset}-{decode_rate}-{cnn_extractor}-{group_count}-{aggr_model}/{video}.pth
# ex) vcdb-5-mobilenet_avg-shot-lstm/00274a.flv.pth
paths = [os.path.join(base_path, p) for p in os.listdir(base_path)]
pool = Pool()
bar = tqdm(range(len(paths)), mininterval=1, ncols=150)
features = [pool.apply_async(load, args=[p], callback=lambda *a: bar.update()) for p in paths]
pool.close()
pool.join()
bar.close()
features = [f.get() for f in features]
length = [f.shape[0] for f in features]
start = np.cumsum([0] + length)
# index = np.vstack([start[:-1], start[1:]]).reshape(-1, 2)
index = np.transpose(np.vstack([start[:-1], start[1:]]))
return np.concatenate(features), np.array(length), index, paths
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='A. extract local features')
parser.add_argument('--decode_rate', required=False, default=1,help="decode rate")
parser.add_argument('--decode_size', required=False, default=256, help="decode size")
parser.add_argument('--group_count', required=False, default=5, help="group count")
parser.add_argument('--cnn_model', required=True, default='resnet50', help="cnn model (mobilenet, resnet50, intermediate)")
parser.add_argument('--trained', required=True, type=str2bool, default=False, help="Whether to use the model trained with triplet loss")
parser.add_argument('--aggr', required=False, type=str2bool, default=False,
help="Whether to aggregate frame features")
parser.add_argument('--feature_path', required=True, default='/nfs_shared_/hkseok/features_local/multiple/resnet50_conv4_5',
help="feature path")
parser.add_argument('--video_dataset', required=False,
default='/nfs_shared_/hkseok/VCDB/videos/core/',
help="video_dataset path")
args = parser.parse_args()
print(args)
decode_rate = float(args.decode_rate)
decode_size = int(args.decode_size)
group_count = int(args.group_count)
cnn_model = None
aggr_model = None
pth_dir = args.feature_path
if not os.path.isdir(pth_dir):
os.makedirs(pth_dir)
if args.cnn_model == 'mobilenet':
cnn_model = MobileNet_local().cuda()
if args.trained:
print("load model...")
cnn_model.load_state_dict(torch.load('/nfs_shared_/hkseok/mobilenet_avg.pth')['model_state_dict'])
elif args.cnn_model == 'resnet50':
cnn_model = Resnet50_local().cuda()
if args.trained:
print("load model...")
cnn_model.load_state_dict(torch.load('/nfs_shared/MLVD/models/resnet_avg_0_10000_norollback_adam_lr_1e-6_wd_0/saved_model/epoch_3_ckpt.pth')['model_state_dict'])
elif args.cnn_model == 'intermediate':
cnn_model = Resnet50_intermediate().cuda()
if args.trained:
print("load model...")
cnn_model.load_state_dict(torch.load('/nfs_shared/MLVD/models/resnet_avg_0_10000_norollback_adam_lr_1e-6_wd_0/saved_model/epoch_3_ckpt.pth')['model_state_dict'])
cnn_model = nn.DataParallel(cnn_model)
if args.aggr:
aggr_model = Local_Maxpooling(group_count)
transform = trn.Compose([
trn.Resize((224, 224)),
trn.ToTensor(),
trn.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# video = '/nfs_shared/MLVD/VCDB/videos/00274a923e13506819bd273c694d10cfa07ce1ec.flv'
# local_feature = extract_segment_fingerprint(video,decode_rate,decode_size,transform,cnn_model, group_count, aggr_model)
# torch.save(local_feature, "testfeatures/test.pth")
# dst = '/nfs_shared_/hkseok/features_local/multiple-variance'
# basename = 'vcdb_core-1fps-MobileNet_concat-5sec'
# pth_dir = os.path.join(dst, basename) # pth file path
# if not os.path.isdir(pth_dir):
# os.makedirs(pth_dir)
# video_list = glob.glob('/nfs_shared_/hkseok/VCDB/videos/core/*')
for idx, video in enumerate(glob.glob(os.path.join(args.video_dataset, '*'))):
videoname = os.path.basename(video)
print(videoname, idx)
local_feature = extract_segment_fingerprint(video, decode_rate, decode_size, transform, cnn_model, group_count, aggr_model)
dst_path = os.path.join(pth_dir, videoname + '.pth')
torch.save(local_feature, dst_path)