-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmember_equivalence.Rd
139 lines (130 loc) · 4.51 KB
/
member_equivalence.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/member_equivalence.R
\name{member_equivalence}
\alias{member_equivalence}
\alias{node_in_equivalence}
\alias{node_in_structural}
\alias{node_in_regular}
\alias{node_in_automorphic}
\title{Equivalence clustering algorithms}
\source{
\url{https://github.com/aslez/concoR}
}
\usage{
node_in_equivalence(
.data,
census,
k = c("silhouette", "elbow", "strict"),
cluster = c("hierarchical", "concor"),
distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
range = 8L
)
node_in_structural(
.data,
k = c("silhouette", "elbow", "strict"),
cluster = c("hierarchical", "concor"),
distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
range = 8L
)
node_in_regular(
.data,
k = c("silhouette", "elbow", "strict"),
cluster = c("hierarchical", "concor"),
distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
range = 8L
)
node_in_automorphic(
.data,
k = c("silhouette", "elbow", "strict"),
cluster = c("hierarchical", "concor"),
distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
range = 8L
)
}
\arguments{
\item{.data}{An object of a manynet-consistent class:
\itemize{
\item matrix (adjacency or incidence) from \code{{base}} R
\item edgelist, a data frame from \code{{base}} R or tibble from \code{{tibble}}
\item igraph, from the \code{{igraph}} package
\item network, from the \code{{network}} package
\item tbl_graph, from the \code{{tidygraph}} package
}}
\item{census}{A matrix returned by a \verb{node_by_*()} function.}
\item{k}{Typically a character string indicating which method
should be used to select the number of clusters to return.
By default \code{"silhouette"}, other options include \code{"elbow"} and \code{"strict"}.
\code{"strict"} returns classes with members only when strictly equivalent.
\code{"silhouette"} and \code{"elbow"} select classes based on the distance between
clusters or between nodes within a cluster.
Fewer, identifiable letters, e.g. \code{"e"} for elbow, is sufficient.
Alternatively, if \code{k} is passed an integer, e.g. \code{k = 3},
then all selection routines are skipped in favour of this number of clusters.}
\item{cluster}{Character string indicating whether clusters should be
clustered hierarchically (\code{"hierarchical"}) or
through convergence of correlations (\code{"concor"}).
Fewer, identifiable letters, e.g. \code{"c"} for CONCOR, is sufficient.}
\item{distance}{Character string indicating which distance metric
to pass on to \code{stats::dist}.
By default \code{"euclidean"}, but other options include
\code{"maximum"}, \code{"manhattan"}, \code{"canberra"}, \code{"binary"}, and \code{"minkowski"}.
Fewer, identifiable letters, e.g. \code{"e"} for Euclidean, is sufficient.}
\item{range}{Integer indicating the maximum number of (k) clusters
to evaluate.
Ignored when \code{k = "strict"} or a discrete number is given for \code{k}.}
}
\description{
These functions combine an appropriate \verb{node_by_*()} function
together with methods for calculating the hierarchical clusters
provided by a certain distance calculation.
\itemize{
\item \code{node_in_equivalence()} assigns nodes membership based on their equivalence
with respective to some census/class.
The following functions call this function, together with an appropriate census.
\itemize{
\item \code{node_in_structural()} assigns nodes membership based on their
having equivalent ties to the same other nodes.
\item \code{node_in_regular()} assigns nodes membership based on their
having equivalent patterns of ties.
\item \code{node_in_automorphic()} assigns nodes membership based on their
having equivalent distances to other nodes.
}
}
A \code{plot()} method exists for investigating the dendrogram
of the hierarchical cluster and showing the returned cluster
assignment.
}
\examples{
\donttest{
(nse <- node_in_structural(ison_algebra))
if(require("ggdendro", quietly = TRUE)){
plot(nse)
}
}
\donttest{
(nre <- node_in_regular(ison_southern_women,
cluster = "concor"))
if(require("ggdendro", quietly = TRUE)){
plot(nre)
}
}
\donttest{
if(require("sna", quietly = TRUE)){
(nae <- node_in_automorphic(ison_southern_women,
k = "elbow"))
}
if(require("ggdendro", quietly = TRUE)){
plot(nae)
}
}
}
\seealso{
Other memberships:
\code{\link{mark_core}},
\code{\link{member_brokerage}},
\code{\link{member_cliques}},
\code{\link{member_community_hier}},
\code{\link{member_community_non}},
\code{\link{member_components}}
}
\concept{memberships}