Skip to content

Latest commit

 

History

History
356 lines (220 loc) · 10.4 KB

README.md

File metadata and controls

356 lines (220 loc) · 10.4 KB
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

Mode

NPM version Build Status Coverage Status

Laplace distribution mode.

The mode for a Laplace random variable with location parameter mu and scale parameter b > 0 is

$$\mathop{\mathrm{mode}}\left( X \right) = \mu$$

Installation

npm install @stdlib/stats-base-dists-laplace-mode

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var mode = require( '@stdlib/stats-base-dists-laplace-mode' );

mode( mu, b )

Returns the mode for a Laplace distribution with location parameter mu and scale parameter b.

var y = mode( 2.0, 1.0 );
// returns 2.0

y = mode( 0.0, 1.0 );
// returns 0.0

y = mode( -1.0, 4.0 );
// returns -1.0

If provided NaN as any argument, the function returns NaN.

var y = mode( NaN, 1.0 );
// returns NaN

y = mode( 0.0, NaN );
// returns NaN

If provided b <= 0, the function returns NaN.

var y = mode( 0.0, 0.0 );
// returns NaN

y = mode( 0.0, -1.0 );
// returns NaN

Examples

var randu = require( '@stdlib/random-base-randu' );
var mode = require( '@stdlib/stats-base-dists-laplace-mode' );

var mu;
var b;
var y;
var i;

for ( i = 0; i < 10; i++ ) {
    mu = ( randu()*10.0 ) - 5.0;
    b = randu() * 20.0;
    y = mode( mu, b );
    console.log( 'µ: %d, b: %d, mode(X;µ,b): %d', mu.toFixed( 4 ), b.toFixed( 4 ), y.toFixed( 4 ) );
}

C APIs

Usage

#include "stdlib/stats/base/dists/laplace/mode.h"

stdlib_base_dists_laplace_mode( mu, b )

Evaluates the mode for a Laplace distribution with location parameter mu and scale parameter b.

double out = stdlib_base_dists_laplace_mode( 0.0, 1.0 );
// returns 0.0

The function accepts the following arguments:

  • mu: [in] double location parameter.
  • b: [in] double rate parameter.
double stdlib_base_dists_laplace_mode( const double mu, const double b );

Examples

#include "stdlib/stats/base/dists/laplace/mode.h"
#include <stdlib.h>
#include <stdio.h>

static double random_uniform( const double min, const double max ) {
    double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
    return min + ( v*(max-min) );
}

int main( void ) {
    double mu;
    double b;
    double y;
    int i;

    for ( i = 0; i < 25; i++ ) {
        mu = random_uniform( -5.0, 5.0 );
        b = random_uniform( 0.0, 20.0 );
        y = stdlib_base_dists_laplace_mode( mu, b );
        printf( "µ: %lf, b: %lf, mode(X;µ,b): %lf\n", mu, b, y );
    }
}

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2025. The Stdlib Authors.