-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
54 lines (39 loc) · 1.68 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from flask import Flask, render_template, request
import os
import numpy as np
import pandas as pd
from mlProject.pipeline.prediction import PredictionPipeline
app = Flask(__name__) # initializing a flask app
@app.route('/',methods=['GET']) # route to display the home page
def homePage():
return render_template("index.html")
@app.route('/train',methods=['GET']) # route to train the pipeline
def training():
os.system("python main.py")
return "Training Successful!"
@app.route('/predict',methods=['POST','GET']) # route to show the predictions in a web UI
def index():
if request.method == 'POST':
try:
# reading the inputs given by the user
ppf =float(request.form['ppf'])
efficiency =float(request.form['efficiency'])
capacity =float(request.form['capacity'])
size =float(request.form['size'])
Horsepower =float(request.form['Horsepower'])
Wheelbase =float(request.form['Wheelbase'])
Width =float(request.form['Width'])
Length =float(request.form['Length'])
data = [ppf,efficiency,capacity,size,Horsepower,Wheelbase,Width,Length]
data = np.array(data).reshape(1, 8)
obj = PredictionPipeline()
predict = obj.predict(data)
return render_template('results.html', prediction = str(predict))
except Exception as e:
print('The Exception message is: ',e)
return 'something is wrong'
else:
return render_template('index.html')
if __name__ == "__main__":
# app.run(host="0.0.0.0", port = 8080, debug=True)
app.run(host="0.0.0.0", port = 8080)