-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
235 lines (212 loc) · 11.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function
import os
import gc
import argparse
import torch
import torch.nn as nn
from data import ModelNet40, Kitti2015Reg, SceneFlow
from model import DCP, DCFlow, UnsupervisedDCFlow
import numpy as np
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from tqdm import tqdm
# Part of the code is referred from: https://github.com/floodsung/LearningToCompare_FSL
class IOStream:
def __init__(self, path):
self.f = open(path, 'a')
def cprint(self, text):
print(text)
self.f.write(text + '\n')
self.f.flush()
def close(self):
self.f.close()
def _init_(args):
if not os.path.exists('checkpoints'):
os.makedirs('checkpoints')
if not os.path.exists('checkpoints/' + args.exp_name):
os.makedirs('checkpoints/' + args.exp_name)
if not os.path.exists('checkpoints/' + args.exp_name + '/' + 'models'):
os.makedirs('checkpoints/' + args.exp_name + '/' + 'models')
os.system('cp main.py checkpoints' + '/' + args.exp_name + '/' + 'main.py.backup')
os.system('cp model.py checkpoints' + '/' + args.exp_name + '/' + 'model.py.backup')
os.system('cp data.py checkpoints' + '/' + args.exp_name + '/' + 'data.py.backup')
def main():
parser = argparse.ArgumentParser(description='3D flow')
parser.add_argument('--exp_name', type=str, default='exp', metavar='N',
help='Name of the experiment')
parser.add_argument('--model', type=str, default='dcp', metavar='N',
choices=['dcp', 'dcflow', 'unsupervised_dcflow'],
help='Model to use, [dcp, dcflow]')
parser.add_argument('--emb_nn', type=str, default='pointnet', metavar='N',
choices=['pointnet', 'dgcnn'],
help='Embedding nn to use, [pointnet, dgcnn]')
parser.add_argument('--pointer', type=str, default='transformer', metavar='N',
choices=['identity', 'transformer'],
help='Attention-based pointer generator to use, [identity, transformer]')
parser.add_argument('--head', type=str, default='svd', metavar='N',
choices=['mlp', 'svd', 'pointnet'],
help='Head to use, [mlp, svd, pointnet]')
parser.add_argument('--emb_dims', type=int, default=512, metavar='N',
help='Dimension of embeddings')
parser.add_argument('--n_blocks', type=int, default=1, metavar='N',
help='Num of blocks of encoder&decoder')
parser.add_argument('--n_heads', type=int, default=4, metavar='N',
help='Num of heads in multiheadedattention')
parser.add_argument('--ff_dims', type=int, default=1024, metavar='N',
help='Num of dimensions of fc in transformer')
parser.add_argument('--dropout', type=float, default=0.0, metavar='N',
help='Dropout ratio in transformer')
parser.add_argument('--batch_size', type=int, default=32, metavar='batch_size',
help='Size of batch)')
parser.add_argument('--test_batch_size', type=int, default=10, metavar='batch_size',
help='Size of batch)')
parser.add_argument('--epochs', type=int, default=250, metavar='N',
help='number of episode to train ')
parser.add_argument('--use_sgd', action='store_true', default=False,
help='Use SGD')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 0.001, 0.1 if using sgd)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--no_cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1234, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--eval', action='store_true', default=False,
help='evaluate the model')
parser.add_argument('--cycle', type=bool, default=False, metavar='N',
help='Whether to use cycle consistency')
parser.add_argument('--gaussian_noise', type=bool, default=False, metavar='N',
help='Wheter to add gaussian noise')
parser.add_argument('--unseen', type=bool, default=False, metavar='N',
help='Wheter to test on unseen category')
parser.add_argument('--num_points', type=int, default=1024, metavar='N',
help='Num of points to use')
parser.add_argument('--dataset', type=str, default='modelnet40', choices=['modelnet40', 'kitti2015reg', 'kitti2015flow', 'flyingthings3dflow'], metavar='N',
help='dataset to use')
parser.add_argument('--factor', type=float, default=4, metavar='N',
help='Divided factor for rotations')
parser.add_argument('--model_path', type=str, default='', metavar='N',
help='Pretrained model path')
parser.add_argument('--k', type=int, default=20, metavar='N',
help='Num of nearest neighbors to use')
parser.add_argument('--display_scene_flow', action='store_true', default=True,
help='view the scene flow at testing')
parser.add_argument('--onlytrain', action='store_true', default=False,
help='Only performs training when --eval is not passed')
parser.add_argument('--resume_training', action='store_true', default=False,
help='Resume training from model_path or best checkpoint')
parser.add_argument('--eval_full', action='store_true', default=False,
help='Eval on entire pointcloud')
args = parser.parse_args()
torch.backends.cudnn.deterministic = True
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
boardio = SummaryWriter(log_dir='checkpoints/' + args.exp_name)
_init_(args)
textio = IOStream('checkpoints/' + args.exp_name + '/run.log')
textio.cprint(str(args))
if args.dataset == 'modelnet40':
train_loader = DataLoader(
ModelNet40(num_points=args.num_points, partition='train', gaussian_noise=args.gaussian_noise,
unseen=args.unseen, factor=args.factor),
batch_size=args.batch_size, shuffle=True, drop_last=True)
test_loader = DataLoader(
ModelNet40(num_points=args.num_points, partition='test', gaussian_noise=args.gaussian_noise,
unseen=args.unseen, factor=args.factor),
batch_size=args.test_batch_size, shuffle=False, drop_last=False)
elif args.dataset == 'kitti2015reg':
train_loader = DataLoader(
Kitti2015Reg(num_points=args.num_points, partition='train', gaussian_noise=args.gaussian_noise,
unseen=args.unseen, factor=args.factor),
batch_size=args.batch_size, shuffle=True, drop_last=True)
test_loader = DataLoader(
Kitti2015Reg(num_points=args.num_points, partition='test', gaussian_noise=args.gaussian_noise,
unseen=args.unseen, factor=args.factor),
batch_size=args.test_batch_size, shuffle=False, drop_last=False)
elif args.dataset == 'kitti2015flow' or args.dataset == 'flyingthings3dflow':
train_loader = DataLoader(
SceneFlow(dataset_name=args.dataset, num_points=args.num_points, partition='train', gaussian_noise=args.gaussian_noise,
unseen=args.unseen, factor=args.factor),
batch_size=args.batch_size, shuffle=True, drop_last=True)
if args.onlytrain:
test_loader = None
else:
if args.eval_full:
partition = 'full'
else:
partition = 'test'
test_loader = DataLoader(
SceneFlow(dataset_name=args.dataset, num_points=args.num_points, partition=partition, gaussian_noise=args.gaussian_noise,
unseen=args.unseen, factor=args.factor),
batch_size=args.test_batch_size, shuffle=False, drop_last=False)
else:
raise Exception("not implemented")
if args.model == 'dcp' and args.dataset != 'kitti2015flow':
net = DCP(args).cuda()
if args.eval:
if args.model_path is '':
model_path = 'checkpoints' + '/' + args.exp_name + '/models/model.best.t7'
else:
model_path = args.model_path
print(model_path)
if not os.path.exists(model_path):
print("can't find pretrained model")
return
net.load_state_dict(torch.load(model_path), strict=False)
elif args.model == 'dcflow':
net = DCFlow(args).cuda()
if args.eval or args.resume_training:
if args.model_path is '':
model_path = 'checkpoints' + '/' + args.exp_name + '/models/model.best.t7'
else:
model_path = args.model_path
print(model_path)
if not os.path.exists(model_path):
print("can't find pretrained/checkpoint model")
return
net.load_state_dict(torch.load(model_path), strict=False)
elif args.model == 'unsupervised_dcflow':
net = UnsupervisedDCFlow(args).cuda()
if args.eval or args.resume_training:
if args.model_path is '':
model_path = 'checkpoints' + '/' + args.exp_name + '/models/model.best.t7'
else:
model_path = args.model_path
print(model_path)
if not os.path.exists(model_path):
print("can't find pretrained/checkpoint model")
return
net.load_state_dict(torch.load(model_path), strict=False)
else:
raise Exception('Not implemented')
if torch.cuda.device_count() > 1:
net = nn.DataParallel(net)
print("Let's use", torch.cuda.device_count(), "GPUs!")
if args.eval:
if args.model == 'dcp':
from registration import test
test(args, net, test_loader, boardio, textio)
elif args.model == 'dcflow':
from scene_flow import test_flow
test_flow(args, net, test_loader, boardio, textio)
elif args.model == 'unsupervised_dcflow':
from unsupervised_scene_flow import test_flow
test_flow(args, net, test_loader, boardio, textio)
else:
if args.model == 'dcp':
from registration import train
train(args, net, train_loader, test_loader, boardio, textio)
elif args.model == 'dcflow':
from scene_flow import train_flow
train_flow(args, net, train_loader, test_loader, boardio, textio)
elif args.model == 'unsupervised_dcflow':
from unsupervised_scene_flow import train_flow
train_flow(args, net, train_loader, test_loader, boardio, textio)
print('FINISH')
boardio.close()
if __name__ == '__main__':
main()