From ee3c172514f235609ee7b1507d83942f7335aa63 Mon Sep 17 00:00:00 2001 From: souzatharsis Date: Mon, 16 Dec 2024 12:11:11 -0300 Subject: [PATCH] fix math blocks --- .../_build/.doctrees/environment.pickle | Bin 4162293 -> 4171337 bytes .../_build/.doctrees/markdown/intro.doctree | Bin 47874 -> 48447 bytes .../_build/.doctrees/markdown/preface.doctree | Bin 18511 -> 18547 bytes .../_build/.doctrees/markdown/toc.doctree | Bin 13874 -> 13910 bytes .../.doctrees/notebooks/alignment.doctree | Bin 331125 -> 331298 bytes .../_build/.doctrees/notebooks/evals.doctree | Bin 850743 -> 850779 bytes .../notebooks/output_size_limit.doctree | Bin 90627 -> 90663 bytes .../_build/.doctrees/notebooks/safety.doctree | Bin 183787 -> 184709 bytes .../notebooks/structured_output.doctree | Bin 163694 -> 165384 bytes .../html/_sources/notebooks/alignment.ipynb | 4 +- tamingllms/_build/html/markdown/intro.html | 6 +-- tamingllms/_build/html/markdown/preface.html | 2 +- tamingllms/_build/html/markdown/toc.html | 2 +- .../_build/html/notebooks/alignment.html | 13 +++--- tamingllms/_build/html/notebooks/evals.html | 2 +- .../html/notebooks/output_size_limit.html | 2 +- tamingllms/_build/html/notebooks/safety.html | 10 ++--- .../html/notebooks/structured_output.html | 39 ++++++++++-------- tamingllms/_build/html/searchindex.js | 2 +- .../jupyter_execute/markdown/intro.ipynb | 2 +- .../jupyter_execute/notebooks/alignment.ipynb | 4 +- tamingllms/_config.yml | 8 ++-- tamingllms/notebooks/alignment.ipynb | 4 +- 23 files changed, 52 insertions(+), 48 deletions(-) diff --git a/tamingllms/_build/.doctrees/environment.pickle b/tamingllms/_build/.doctrees/environment.pickle index 8527e3a6cbc97a13427d29adc4bd388786ecaed3..ba61b5768f26d9d309cd36c0e2a1298fdf8e560a 100644 GIT binary patch literal 4171337 zcmeFa37lNlStn{+Yq$2*@+Ms?w$)Np)vbMToVYE^vaH35B`=Asly6tv?pvkWT#KZ( ztdJ0rxF;8qKm`ap6Ua>F4Ub_DlYuvcUmm>Q%zH3EhHV&@dB9^Bwg&@mW`KGB|97@~ ztE;PS$x1Lm0k^vE*}wCh?|l1t-;z(fLrx!xIz7Wwsh=WH}usO4LYASe_Yo#?UguvQ7iTeYd8-yCl?^5ZSP zQmoFLK7FRCe=V0QiC=S59AP}GyJ>c!rD!L;?HRf^G|tzm)5V!iv`R0>{Jr#;DzNh( zsa*~ljbb5a%5qlMXJ@$PX0F+qEeD-wdBtx9jiO)fM5AG=QqHx)pn~s9>W!d@X|8u4 zbG3S_SgW$5XmxNE&8mJmS1wjBH9Hsae`C?o6UA28p6W!q!d9!^JUTu;BOkK)T4lUh zYrpEZLch^0#zE5w{ARRSMnR26K46ErW_xC$6 z&T*ramDy$sfUWpN%*{8;D7Lt~3m0T(ywiSTCcw|?OxwpVXKIC@+&t<{dgmH`zE#Zo zW$#2AQ1V(e58LRSE4HTna=GbU!2-NnTXl-ycUv3wIT-|RGxLn;> zv~kz2Y_UFDoyz6IAb+V|D`NN1H2e7Z-1%0mfklp72-}sZX0`yxFIAY<38H)L7PV^m zoawt#Y&HQoKy#%GKJ8yF0(m&T`Y`1;gLVVxVD~V-aap~g#abNEJJA~Ku)-^ii99=_ z;cUGIe8Prz=AzLySLIjp0N`9Z+T3mixk|g-Dsp<*<0+t_Ol&hZG#6C;sd9jMw}NU@ z(2mepk*}3&)!cM|Zh*0cTDj~ufWl!XT1LbvPR{}(n(e73`fU?kf#NN{d8u4%wg8m1 z(l^$ZYXY1VOhxb(xKnP`I?-a{Es$T(7uD|q*n_J9CSGv#0km|m-n+i~(YeH?Ee9AEtZptmIuU76g`ceCU>#jIcH5(ALqb1Ft)s~CAi=b@iv2z{V zG^!s5XV4cR9aYfSmHOc1cydT?^yU*>I4ZWSqKLqE{UwgyooKWAn#I>FXnN34f7?4f zrxxKRBj;3K&zn?b5ZhLxIF+pgAcDmLC`|IZI*$u}-lA&vAOz7}x~K<*4ni-yKU^Pf z2sehC!p-5G;eFxOaNFzQTfzsz2g8TL9pPBG6Q6eBxP`mJOqdPFqpbzM<&XPi>3+iIIsbSgX@o(a!}Pe;qH28vFG?|eOcCOjWr2%im~4_^r1H5a}+ zd@+0}ycn%eG*|D_3XLj{38t(oO{r2|2c%QD$QR4a1cs{K#ueXe<{W($@|F0sNH7GpZvL@)a+9wr*UiIQf5gzMxROhaupvp<((Q$;;5bV>qU%m9+l3Zj%7uc;p%7HT z=z+z*S_takCZ77A_+PYKF<(y*{9d^P8qI;Ym^wOi(u0vdsf0W1+ zzPAPbaVZFN8wZ@|1o9d!0^ij+`{9na*@L zVm9d@Xt*?9)(FawHbG7Fhb66A!JoB%j>w<6=}N0}R<&4O))HeUx&voPeOv+J=tDGt z^e%kxGW9oPPgTA}5n8a+O4^jI6Dk&MzQ(P+p1o$uu3rP?yskU;W&(&vS6f=pm~OxN z>TIqBk*NvriU>3pEz@;mwSN-+sh%gh6$~(6RzYfmFl_{B64S-m24tXUEd+Z@qc|MI z3AreR!O4)pS*nRjX*)pKRzs}O9fIGl6)31hBkk67=5Pj_mYRRKE4-}gt}RyQNwU!$ zyLK4}tt@~DL-YfpQ(EZ*109rs!)KmF$+^c+`6iR#<{Wwcdp=0K0BpV1w!;3ud$f(EclHywpqqLIU* zp_MhgH37`lD{UM{3*z;$Z#nAksODMp%HyEyva*fwa;+CpjOU0Uyh6F}DEYW`mWyr{ zcLe|hg)hJku3QLXplRQI>VW2ODnlRIEGTEnn0Qz#L%m}NK(tC&c6tC*L+C8hRvzj zC<_KduD<846bn3bx|Ld!TrN2Cyqt<8R;X+c$~IxCI+Y2gImLGS`v=0WvA=&X{E+<}a=7_DQd0zZZTQ_& zj5f*i!S}Xu?K<=mklBR!vyGL!-2~cA!EOP*)Rw5G;79=&a)V%6c+$a-@E7~a2az#1O&_{QC{zu*TtEEmH5e(a_wVw5Iv89n@&JL=|sMX3T zb}lv{HL4(=D&w?VIh8!NAGJ1)4!o~6q1DY(S8dDHI6PN|0kxZ{_n)25FYB!tw%u-# zMXM>wnCPLxyVgz9q1P32&pN;=3kS~t*Q9;p-8#rWw7mAqYbfwCd8vWDMPfbP`sSA{HX^n z3Hr)dO{HxTZoTuuYooW_X83jw^vACU&jd5auhz#PXMmXO^sbG1_+JAm*hbY;AG3`> z?$ELE7qh$G`i}QJaP9io&evXi>EcT-T^yg;?d^E!r3W6`vGZYXeB68BA+HiZ3i3c` zyeqhM0}m_)Y$OHU+35Ar(eYioM!j9$GXmwNr)hh^<92$`7*;&rI}56oMJ-l*6cT`6 z@viaPb+1MHU`r~{1PIIp;8@kxQ`5d~I`)p8KkpfUd9`V;iheM|nyH`~t2H;hYmYyD z=Da}Tx_80O=w&tR%gV|qGgVkpVC(Tw3sp5AHXKt;cAH@gaDg1nmY0WdEbt!D%gM^0 zT;Lc4z5u`^G*um6<_aOlBTGCzE3hpWF9#lGD%(|@_Qo_6%^=)G^q}TwW>8Q|mo}^* z{byfk2aVbD8lfi3W!qI2xN{r^t}z14d*toX8rZa@m^-ygJkyz!>6?3=LCs%ew+N z=$fNg8AwaJEOn~hOv9g&+OjWxwSaXC%6j!;09wvXmm=v%wXE)FaVQYRf>*41N=p*k zMp4op!$j3qVl~G|jH<2OGJQ4sb3%t$V>cFpqZC}NV^3j^ZU(zO(i--lYMmyr;D%#= zck7K&CGIN$bDX3lS(!A2qZ^WP3={=DZQs7zBMo`HmVcZSL_Qe=xQr?yOVrgq@ozbb z50A=@0fdj&yeokxwrUSs?Qs|^&W(dIO}d&Mp}PIa1%-$NCeh->i*EPS%AcsUu@f4{T;WWu725zoz(k<~c&to~NZ_5QwG=MK#w1FN zxhm!magT8fvQ4rrV>@1|?${ZJwBQ(eVXs;FV@v^GL6X4ZCaG$#z2?OyuKv_hjd#jc z$>pm)vy|z_IF#$1brVa<*4xc+EY>_(m$OkcO+ldPJ@im~u&gKqwhU!2zmbqsd+(nrtUrDW^9oKfz*y zA#XxM<)jED`YEj$oR*9f6Wx*ZTo+oJQc{Xlxi~3EOFF9D>3{7^)fALu1z#oT_Q>gr z&QCkb(FRe_Y6Pq_E~>$-Z9BSGWF}g5#i%Rd1%RSGb4ou!b&L@m)u13dA>>3)O6?Ng3pFBU=qxDD*i|Me9rGn$ z6}JYwQ;H276*sHZt|uA}Y~#D!_eKDr9;(tX@Wt$57PKy21&kB4SFj>!DBAfMZ&!UR zV~wuV8kcBBIkjY7BX|o#PmIe~m27b%=@JK!=#KZ?5BstVd#|h4fWW7m!Juqb{WGIX4tMiw#lHmI zr=mvm6cEK4tahs52Kr!^1EtP1+U3%3#P8yDxE_nu=^Ax;38xC}mn+kQ3)(}a@3{kU z4cndugN9`XATHJfpw5Z*=UsKC*o1dIcoBFVH#>F_>&-wtNb_1#7Nc}(1)EJtZ^CM4 z@1PScH)eH>mzzu%RV)&IF2yp4Y1@Ekiz&@FYVeA)mUxQ{90DHJ3dAIY*sW!|9?86S z`&(bux8W+OqS;pzF9tb;FUsEvd6zP}6j)AAx3jBG|3#@uLxdR&MI(0;?E3k)K)tMndK{?5D<8u0B{*$Q#(6msIE0!k%Qx-(y| zE91aCL%6E2PAc?V&PEpXSrAIWYqn=FV(k)aWd`NhOce-D(3Q`W-9_bUJx8BipZb^_ z^?Go6X@;mF6TV-0UgyXFw5zYQ0T!4W3%M5V7wrt9Yi`#yHQ&eM2}2XK3Wz;GbPMWR zW85ZSJPu({u7lC47PMPQ2aZQ0wnPlH8|hBM^xJAiVMMInh3-oy(Fk+ zaL{bEEv}j#&KQNG+xNI?t6ep*`}7>=(i9B|1$Y`JNL0pkv(|Nk%Hl#`XA+w*l@y?m z$?`j0Tjecb=EYAE1YC-%Go28IX6&BT_i)n($OC4N(` z-AY|1><=PssxY2jc9P%5cyWw%vVCughgg7g8;jL_Syiyx%lZX)_J~fkG^3GXT?oSCj9zAhBZ1#f#H>>H$&!Tjbdd=2QRq^~I{ z1k*~b#igbMgYjUPA?HVP!GT}8RVDOIQv8YaFuGH^l=!in-_)EL%wC<3CdSkkKaXop z^d{~)S3nSA1Q&kI4VxLMLUPDp@N$N18vhOj3{%=HmX^@87)Uy%wzUUQJQa-hiIKsu*>R<&O*#qppx;rnCoN13x1gYCHe8veW9`H+T* zngI6zmO@OKeyOq}W&#ST1xlIPdA00M!Mb6})xzWDO`!{#-k!WHpH)3GJdpf$vQp{2i;R!ZDpXKvHr0G2lWD`3qLs<$9yXx@ zB%>%^E8Oy)7yZnulbLttF6v(xV8sX}oJ@8G9d8`rH zl*I}n0jQq#57NYab62TSq1&D}pjcWdvxdmTooLf}T&FOF!p_fw;9Vp4ZLqhyiMm-g zJ&6l;p(dP!k;s&HJ86KO#N8;aK*k4WT!i@qt~4(8eW%)-`JuUp^Ae09K55v9@COkK zdhTe1M>+%FlVa>l>Ut6g45n9AL>v!eLtEzf^PK34>N1V#fn>xju7VC2=&nIz(_Qek zB_m^8Z6m~KnOj)TjBCRr;86%IZZijc`gJI*o`@;rOHF!&v>6242qY%oN1z7-Tbtul z?m$ZcHT?MA?7r-N`vG?eb@S|N1bj>|L&$cbea+C{d*EPZGT8gvtK<8FbA^-bgYTX_ zIey^XCz|i7PQA4<@l^Tg%Bgdu*1;FvedMX9E=@iHQALD#W!nO9eQ1~e(KE4$ z&bJ&qs)Ld(r2SzHO(_HPaxv3 z?~t9+FM#Nkei1*~+7Fl%S8s^Hu^3HaP#|}f(S)+Y5WNu*YRm_O;0nKd#h-0LH1-*B zwcPQqE3;C0ca|pwvDKyo7aao0;oU4gSZnNObpUb3vg$YRy>i*;@7CnS@J7SGNsOY* z5aEw9!wuX~9eB!szB(1>=7ioEFH|w<;!$Q5b&1x7&T9SMeeuScy`$c7T1ns+p~*mS z{80)dI&5ZR6W*6NK>iiPpy3pY0@hGG7V3LgDbv8Rxtnl>j(^SN8A!UgQYqve7r!o6 z2*M=bUGfB-XQ)g+Z;-`RvC|j(2qTZ;lZ*E)u};y_J$tfyvlDK3JO7}3N%SX56BJwF z1~Us2wu71w%_g#Yvin^>wid!qE%u-Ji`(rwx43TLdb&_8J7YN6uvRA;)9nxi4Xzek z&a1)LHE6LKt*5J}aZrwmbIJ9c54*XnEbQyOlu;B|t;&)^*&}gC*r8GB)mp6*+lY-i zbAbs=(%Dg#_+@zfyKzk#1PbP@VjT>sUHvBAgDKKR0|#aX3)|YJBVz;sF?7*Xw$|Oc zPyACZ*5Hs<4`+?Q;X01C>T1-l4yd|Nh6cni3qiOi))h}HtX{-Q4UWYeL0>nkbklODxp4vDEIdoT;1x1waVyG%Sa=_yR%GcZVD_d(J$^B;ay_&&8TTh*Af zD7)dTf}vM@XB(lEtCXb|%Y_<}Rt&nw()O#rC|xa<8ZCvjkx@}+!)HLNC7ve>-bZE5 zSaweTW5%_K5F;3;zzU`R8Ix4eH3>BEYLcx9VD}XBqaA(zI$AgoTiOvN5q9I zl>lN!5E(vwTm=m$x&RNDj7LTTJ0dO>Mnl8c>G}|jv&3O{MU#H4JylwQ`ST)MtJkch z>ukPr>W)aK6EL}WvQWxb5&IAz#mVg^Qrs05si#KZ4$4eYCfgfwE}dF#k{Q@0qKIRC zot(fHl>E!SGJ0?tI^BXTrRc}+I%k6Yt{Aq?sYUa~XPhJ&bWaNx7CwhnShpIdMv%ct z#c`cF(vCK2qC=@4D5IhRaKo=pe1|^?JgE`HX_OMQ8v{Ocolz{-YBBr6j=-H^0;D^D z@zE;9K@!V(K{ICn{5_B`h|G>UoVeHk=Q${GQ0o$0$ze{(!MedLPPi#wk5<+Z7)NcL z=z1f#(yI(j_}t7YP|&PD4&H+`?b!#8M=KlC`B>YBOk1*6&_=+|wvjCct!e21$SvF% zdt$ppPpgHUajrL|hj<`Xqm5FiT&0vvxY4e|fPcm|<;>T0#-Ii^Xj(K7s5%<@h$I#B zKRAa_OA?>j!^kPw5%^*XORzmd@M1K7W0>9U*v@E)<~4w6sb_Bq~A0#vHBC7Z^M& zT1lA9ID%?N60#&leI?^bI(+f_c z5g@x*0cV2K>@f(ZNy?jL1V!m1*qrFz`6IEG9^_-P*M!hLrk+slabjB&AsV3?>qVW( z#^_I!iXa%DIP4$VyZ`XM{J}lb2lwvJAI$p`hYM4O3I`4!+&eL`_pqP$3;9EZ=_7{^ z74{sO-ap|7hw=x5iT%_5k^P0es`t&wv8lOI1>3s{Ag;qFi@tA-B9cL}4_Z5!p-+$!Dw7-99&z=MO_71zz|1 zblUT)Sd#IXS`7{l%9BwoeoI&DreF38s;Il;X3?+g4OE$hitgC2!ctHFNGVoJvAC}5 z+xwP$;uQYj|4h0nSj`F&!h|~mEyd#mw}sAvIRaT%D+HO6aXDsJ25V7;mnueETY+mUF6gwM$jEB8B=Jq7 z0me9<*o?kYJBF!^gj-~4kLsztL!FRtiJ8vh=0o(zuE})iMV|&&!qlP2*MfhhTi`!} zU257R(Q=b?Ahz`A;WyB;fyW!_!@=*R^zeH(;5Vw__nd;CKM>%i!Fdhv6$ZX9JPFP0 zBocix4)&jGR@^X&#twFiY`9`HmQh2N0iik|sjy)kC&-HE^hL@1CfO@ok;_8=!} zd6q;8I@w}_QDXiSLLrcI4iOw6eStSqhEp0CAde;n4@TSq4in?#8QoTbMx@4ZEqm+kWM2zOakO((EFohx$E(y+v=jf7C1Yw60gNrqWM77@2(G#l{2f`tY5fn<1)ut9i*6lX9IIw>;?Py(*pYPDB@DYl7h z5B%RGss_SdrRil<$S)KS1yJ!B4~A8H=ju2ZZnyx4<>-NC9|Yo7VP;`_N&Jh5Pnjdq|H@BDF?SW-h?oM6b_EK;~kVfmt{s zF)Yg}YBL71J?c(WjDFYShdg}I9>KTa2y!!Sox5A-?$)^*{@m%i_=Q{N=+^yp>;Ag& z`zv-;U5#H={n<tT;&XFT94)nBPI6 z>+Lbld;!TObb`&3FP?*_3A>S#(63y%f@oy-z=O!=N^B=Pg2+#86xrr=F*?6@^kZ)1)M}Lf>glHOkQ+EUA z)>q4On;rY4Hx7A}J`sN7sYPa6Om~B~<+&HN`o!CF)H`VyZP*2FV4H+b@4ZQPE-;Fb zD;F$xoA~+En`q;SQ*WZ1x!uCGdJBKDdq>Qfi|Ze_g{Hyhx*H$~lG0FR_GGLmLnEf! z(K~ewZbDa;l(j#GOK&x}1UTDfN-}lLv^a}qN&H%3@XO3-aUaefCYTZLK77;@bmwrJuIXVd zQq^Nsr$(3uucZcFdIES2KxrSlRD7|EaMqs3{YO1@>b&#t)eybNX^DpNPCI4Jjhsk@ z6EL6JHw}88$PD&~nsYDJM9e-8*~;zeTT<^TF5(+Fn7vnR59Vf#BHMbP$UABCGYQ0sMXo85Pu)iD^q>2Nbz0EZEhYJvNm6R}JH8mU$?*%%Gf}TndzX z!J^!OqfpQV-f=!^;hpg7H-cSau_?&fcCV~fU( zV?FkHA>1%+9_`U4G8cO0Kn5DLj0~BX!NV4g)@(6o09c`pCv`kkCrOl-n;q9frr7Zp z?T#Nj>YW!$D;3Mgn_O+)$et^kXzxwG+id#$q0F}TtKv5P(l8sJnp2P6-0F1<(n7oQ zck7*>>9LCo?YwDI=+Oq*J2kU+Fr$D5w+IFI*xui5_8uTpwL~2)@haU{@`%}eJ#32I zFWTKdbQIPk<9m~#Cs)CnG|%bW2qIYLoZh(bpuvT{0~@qRS=(UK` zT%ARddo_}Lq{oIYge0cT>pj{;4;Uml1nEDyJsCTP7`{Ac@C9J)Zs5fmBnii;K^;Ar z6sTiw_rpiM$6#Q%L<7VVa0yVhkz))60ZNH+2FVk&%spf)x1rykdPBJsa(Y|!Ui|Z3 zaJ5(R;mnktd}bPx$B$YiBXKMMxS718#r8_Zs!c;I*sNL_8j}=O-F-w?7&z<6rGT@g zh)2|od!#hSPH3vg8Ys z=hekpNHwZ!C2?@2fsGzE1#C7MBC==VC~yx}Hon_sz_LK8gUD|W4Uz2{BLA@$L^hhU zx@UrDq$lHmvB{iG&Nf~l35Qh%4tlT@aM(7f@?Kr_CV?aj>lYsJ8HBpf>~A45u%3g> ze;*n)4`|r@RWI0Vh3%J_xvpk>s4X!;;eH{j>Iph1Z8J4JA2?&z60e$s*J=YVJ%NSb zH5L=CmLD_z;ra-<4-Nzy5Wb%74&e+)avstkSgTvYRmD0KMEhU7|HWg+yvN>^IeRQ~ ze$v~Yow)d7KA)MI%~bPX0W#u-eKGM3dP*K~r^8&+)q^S@iIzy?m=i~72j{@X3%SEY zi^QF0pSk>)6A^yRD)lS8t&ml(JZ>g8j@gbMK74hb^3ub@#pPB<#z3qftY_5&Uyd5z#xT3@z8Dl8jR$8ZWx~K)J^lzUF%BL zWXdt7xS=?Hf8B?8|TL7^DQM4o6Tsp}E5YsGmBY6~i z`pZ7t6pbM5(@~YWKob5T$N;G$c#cjGo#`5O*QpG;cbFP85G_YAl=#-f?%(*gB-LC) z?5ANy(=1Ch;S)x$8TvKF$cgel3vYvKpK|=1U$zjPffw8-qGj+2k=$)?s65*vMCe2C zi0lqk;xgoFCN0uRX(*K7@ywS85Mglf-YV)W(LCuJFe! ze_Z2_>-_Om{PBML2&ji zXasLYA;TA$Tl^t+9Y{T2{9U0q7!@vbHX7A`O2#YXM#4)ObfU$`$a4`PXIF~})z&le zkm`n5Ap*}<(G3;*tRs@}Wi@absmpi)qA7!=?onS%#ymXngQO_NmG><3vq=N(+soi8 zPGT$j`KuoG|_4J6ugEe@;_4TMb z;3^(x8r_?W#!?w5a^f_{Z6tmV<57a9?oDoLb}s!Kn?$au*bgSomQ`4$QY#B(}e1|b3?lak6Rtdb2O zDx)C@4SU2Zt^%2oY@I4p5m4_P!FV$wIeSJys;5#B!;BYwNltKnfr{{EmDHm-mnRx; zo44UKU2KVmF3=3Y1B^OY!}L+&A)HZp`VjSSXLnVJ(1*F(Qr;!eqCJO>7M#j33qSW2J9JAEj^P%0C`{ zUHIAXN5cOQ{%Ywq3hIATx(ol5HuJ|L{Be{&eExV3e|(TXzM4Ni!yljKkI(bR|HdD` z&L6+RAAi9gf5sn@^=*_RzRVvN@uMA$a5^eE2bL)lnhQTZ7k+jw{10<7lR25loJ?X) zCNL+1&&j}ZGU%KPI46V6$v|^5$Xq*oh~3H(AH@>SV~O7s{%ZKS@NdH3REwj*S1pb< zI<+`jWYprQp;wEe8dfciibJ(HD!|m@sQ4+#;;813#R)gwj#k+_9Xldhu*xvx3{qBK z7=LZ*NmR|c_!m_VJQ9dZWvW(2G7!ZkNY#y9A8qZCM70q!sx(@k=wH%aFvNXRcVD{X zwrCWWnfB!Gj{aSCOnLa@d|t>E$J3?AXT%FE@p*;)ETm(F zW^a+IW`@B++5Bj;Awz?# zPni&oSmc;3(E6pwhKQ{j93pnpqPXIrS!=?rNHuU@bo>p3W@(o*3D3F*;aT@ec-Ba? zLcIndQSC8uZlahF@zyhl@Aw&p2P5Es`MhRpZ9L3|N3~}WZh&Y6rtLwP3#<$X%P1Ew z;YBL2(DTbw*j~6fx=Fq14GZrx1OM%0oY`9; ziEKT!7>^q6Mze8=@mpcy@aWJLyWv(JN0>-ED0`3dvBs*paW+TYpWQ4TPd|&tWCmN2 z`dnraB&LkmuX<6%QTpA}&!Bg%8ZXO|K^#XuZ1gN`y0 z`{frAoCJ4X%bbeQCFWcrW&z_bEYUoCnb7Or86CL>SX-ClMDUh3hVik#41vSbrQ9i6 zcWBr#>jW$ikcAHj)c25Bs9DTIQ>tB8AWavLSzIefchg`tjXMOoQmB$WGv~jqbqrV&;>wf2b-`2f4v%L!Me&>DP{^iHK-+A9ByKoQl?1_Dto@f2f?+M=( zKm1U~A@7QWe&w!$$B2`aEk}v8N9QB0A~47=qjQ`(QWOSqX>E>>2s(-Bu?ZC86G+m) zv1qZ(B3jI$kqo|zCeDDUM!p1`4>2>2vsID@Z&U#6q( z?zsf2C$Fw<%;If3s&8Avgt+VKow%+pfILZf>_RktYSv3$4!aRUOEwl>k4f@%0`Icp z9)Pn{K5Qyt#rIO{c&-IesLV;~2sz1F6Pa{i3!X0K)qRC0LD6~|8I)A0EZ(z(HHl%n zB%&3GPt~;D151o}N_*^st z&0z#O<0S{YT$&d(FJf4cPYGjB1-NRl;CjH@N3!@Tw7k-wM$eUl#?)0YJty zYXDHA3cVxl*L-cJT6|UCZU}CTU8IW190Qm6KL}z$t$rl@D-*q9_rf>C?*)M6_R)n4 zUw9WN>MhLtQembep@~fyOhQ*KNJ6RXISr93b|Up@5duPDrozZ+)Z&x3I9BB0`IZcL zRG~U;5>14_f#=tZ9yOi_(l5+HIaJK!bW3cxNDPLEpcBT{gHvuH;{kAHRtOY5^4m~} zLM<#@C)%P`dj?5>6r&Hlf}Cj(Qdr4EL?A5|swVq4V^uZprxjO1W z4T+Nv%3jArNP!fwL|`368cYrX4CVm|gi;IW@s#9pfCe<*O`nxdCDT4|IixBQGLR(k zZDg%Ug!D5LB%mpo5<-Ho3A#n614$rZLiUFm4l~@G#tYIHS>PLzWRN@uRBZ1ic-7&P5?>IV4iGh2&;c4TlY9IwjAOUQ? zf=2;CR&aNcoZvEVWT87~1k8%E+cUO0GqPf3WZEjzFPH%JOphW>U}~xu5$lU{Z5o(Nqh`p@O&lW&}1&R-y(jfQHT@5M)}osY}ykCJK=?5h9IR86;+!x&Q$g z^rcK?FO4W=V;#bbK_&;Ag6!2=V6meKHDn5SaDf#Nt~N+B)27$H3{WtXr`*f;m!>I@?Qq{xLYv^T86|+(VzmLL7=M1^h?Mn6xO^eP@M7T ziQ}YV!btKAfhDoSu|5%0Cr|1S58V-IEhvHTUy8wjxTv|5d>QV9nP8UWZ;FBu$U;&W zk|~ke1wcv}mYINe;s z>C8~_*oV!L1iGWeZlP2Nhyt;0U7@ZS3jv=P%d178!IV&Bwq6Hj14g`Y7L;ps`q)@n zb!+4Qp>4dQ9$y%adTdybdNj45J5vK)01=^i0B50qTeu45M)1~JM!_V2X{y654C*4( z$5G{h+zko=Z3HzH&;-?Z_W7tH)Ke9nwkovcGSeUz$MwjaM6RM!Nt$)x{8^B z9*Dp5_(L30M;i=>k-0#B)Y%|`qBx;RiwtcK6i*k#uVxE+pjHS;Dv{`I60#CB`(<)4 z)(+D0k^8L$rcSg*U>10=#3wg}|2zE@XcE6u zPvN)O3|>Nat33R|gcql>>hTGai*{xFm5G@7MY~HI3o#8HdwUo_ zVRn#VWeQtQZDGbB+s7!bSKvAhJN;(0%_K^Gjai^aV{6em@mOcE%rNLFmGdsFIq@7b zT|>c>K#bjs6xbFPLv0G&a5vZdrEu6?bIW1(P3o|F0Qcc7huvsMhuz(`9Ckq{&9fi3 z9CnjWue`||cK07RY(4mIWMk8z{Cs z!R>p^(D=;`{DFlA?%`Ftz|g}u?A9?{PlsK4(WZ3RU4yEnQT|}Gp}g2N&xe+E=A<0% zulLjal?~vw^=g=x7T_iRd-z|;d+h7L-P*;1#auol%emc>(s!Z<%Ui^E;k!_P9Y9}r zv+cX_hkK9ECyibhf{Ph06RaPqKg68$!L{93mJf&-#fUAeFL!b`%`o=06Tv? zMHd6G^QTjEF#tRN&lFt@z|LPz(ZvAl{OuH748YDmOwq*v?EJ4Ox)^|+j5`~Eo%;r0 z=LjOV26VB10CsLj(ZvAlye~x;1F&;PiY^9V=bjW@48YEZQ*yqKbk0oXZ{qKg68`AUi|24Ls46kQC!&JU*OVgPo2 zG({H!u=A6HyEr@mJ3p18ivigAeJQ#afSo^pV*s9hAw?g9 z%tk+#rjG%5`m1UB7=Wk$DNP>(@br(;^f3TW|0+!%1Mu|rrTwoa(vLj@@N`B0KK{Yw zAS&?{j#I7XmogU-oB(^}BI?dn`q(>uLNXEU$3HhE6A@hU;PaAr_V@svTM`qlbVE3Fq_bnFeJ50cq4d63J7v?!SkNmAzwnS*KN zNfVfXfCrQAV(|q8Lcl{aN|qWo(d}?Wd<&BMcxS_HlH6x4ll!bkLZ6NJZ!`Yeg8%Nu zfA^}a742|qxHH^#YE|fk_lMiVhuB;t`nj>(NAHw;Cw}>gKT9uW38G?j9l|jXv3`=y z*YqAQ)EEShs5vCCfV(y-oRoMh25D3!`vCpRYw(EHUeFWKm!M|{wqxnQMsQ66Tx&JB z-mXBkKu)Ap=Mbk+^UfiD1X*F!7EVN6U)>zer=P<+W&CZY)?v#qhaimab0Q;BY|lCQ zx0yZG9juWBENRv1#eB^1HyS<0z(zzXkE;CGW8p62DibX?WoAY0gIi2B{bF`vP9;5` z4I1~51R_ATSA;9ZW~H5Ukamj&Ib>(4%qtxWA2Snm)ve3%yy{5PzR*ef$O0>P*zZ0} zk)bs!Z7da!Ea5$ewS9=mV&WSVKZpvWwuc|U!mlT1J{Ep;^25BP{iCk(iD=s~22&g} zPrWt0=L5u}A)s-xP(bu|)5hCw4?oj;ea6YVi(uF_-p4!~d_P1zCfCed36MWIHPrTcL6fP17hPOUTrai^BctKSE|^o3TxG5&n5WG-R1 zX3;-8Xg!ly&ld(&y75KdIa&4M>GXT7`;Qi0_x?WXzSFNJp5&dk^#43)Rb2Y-52|$I zOJ5sb_hYr%CAZflx)?6J>;rw4y|#wLROT6ChEAHTF0DkLgI0qjmqt?5yYW?Tn)J>x zhzb#r=MdV&WHtyeiY|psL%2@A`lfX0u`GXZhHp*A}G}E{<##Z;_A<&sCVP5 zU;cEvh3q5z&V@%)i6$Ij{1od(YOrcQF&fainL#Lrje8 zjqUW0FT8x^Q@ijjc8|{Bo@v)JNI8kH=-3Db8b6w1m4wC*NxhrFysSBfKuPZz`=(25 zu}sdq014+}nSO7fD|-#YtusvctzL?;hxm&r7x)V)>S4P}Kc@gOJg>4v$A!oC*#i!= z>oEYxLsmUSyGZ#iFARV!^;u-zsm3=s0|Y?#W~-S5I?X|6cI-j*-Vh`N%Js z<<)L+=rv1J`qx8$Hz*uzm^2w6yh(Z7YOJ|4hGR?&+y}?{F^uaaw}d<;hzz-SHY?M# zr;Ps9Y4B@0MLoUt{s00XDOdKd#Gc+eXj<&46bFgxlkY4kRe_?xiNB$JNc^p}PsFa! zNc`y9Xq_HR%Cm8$!+rAw+Z{2nR#LtWBmR~?z2GKy-y{eH{z1-|da^rZ*4s;;(ybwz zT7AO{43;^`RAqR9uI2IhGNc7K-7ht0g%#w zxkV)7isTta`Xf=T)i4^8Q%W*szNyW;ok%D$)h;4wwayEo5;H+Hfv10v*;rDf;It!^ zq@*#ygOe3%3|c47U0`Ac{j}OKsD#SU)G;Z-v9jOB%{@|_wK0vBw zS%prSr_)t~d?9rlU-M&jJ7#QQKX?=jsq(N=ZwA>%J)~L)nH~aZTR%n_1kqS5|RRx{JDdSWUX=FKoTBg;lyM1Dt{jnZ55iBrL=VV3#ENb zrnspv*>x2e{$`Mw&nO^oZ7(t+ekE?N6P|uJHBBHrpd$FLe)Qlhx)b4)A|w*x=8-rE z>CKQnlDWotetqP025L7YwGdbn$@mk?&nl+|@9eM&>r)+pygz&m75}JXFKwAi4u~Gh zy(=VuZIHQ+=o~v_hAtpsIPxzdEeVpM;G8syD)CcH+~;JO0SP2Z=WJ)*0`LuDmZO57ADRl@(}xO1@6mbEpkBiH#)ZvOj0Cg+`L`A*2zC2fs4+slywEVp{&5oqauE9Yp&_(& zK7>Z1H342p-kp|`24j|C|D{$0DyBUu$*rohV}-dMZ3^BGADSLACNyLKIwq+2eX zFlY`l;U%*L1E}p5Q;LJlMEY=WtHLZvzB}xLN~1-_F_HSSOpdl;xjz!viZAK61>(o9_Xqrb%naXS<&Rm zt(ylo#dQDquw4~|RJh6OoD2+40}k5^*#evg^@OJ+%BFIk>10Kajc01>iMDGOCG`WP zKL!kp=o;PAXQc*T`_^$gd1u!^sStL%Mp!dTLD+B62>WJ)uv@R0a(c`)i(RE5l?HQ7 zn^c(lsa?A+$Rneoh0}@PiLe(MegPb2jn6LGgr{WVg!18uuUdiPI&n>M`bkPZu!%tG z0-rnreH2NYcO5c_;;9Rs%MRl+awH2@b&=M?U8s}9 z(e?A!WKgqLk=vnnbak5wBOlNhY33vt`L%B@5V|FrS*Axqv%UjEAfaiK3JL$ou3b+; z+)+;jP?>T@L=@6AK}FHVn9SwKZfP@-*P*y+GW9HN*z&@XWZ^_Rym$)nY1)S4k_dcVSEt5w|R~E`yE>S8zKv z(=|jYqizXvzEKaICgHu7h6YSKt$6f6(auVu3g7!5D%Z0M*&_H0;Y+gNHcBq)*x`?0Q0Qz7Lpjg)3af|TDa z#PLlHRJUw1^YoZ%*8F`#V5(`83R8c6*RJP~J|491bS)2;qAJn!Sh?0NXsiSN5xp+s zNsMHg>i8`T@`g^3Ki4QX%c?U->na_+lG+t%4d81(>%pk5h$rrNyfUV>26%W@i|t4| zT_{dNrP?k_UhgLG8qV5oDwuLJC{JfX9<(lPWEbE0D_!W8#NpLR02l=B{_M8#H@mt^ zg}u8q_L{i}_WtDGb67i=m}R9$Z3B=m4uRUHjYI8)^$74dhbBusUbz%6)lR{g9I+6L zz_{88mqMx226|n^%a&PM!%P1$sakQy)YuT8wGJ(jxE#j}4_bF>}!t*9xQ zaKp3`A9WWvsU} zP@*WUDvow^>B~5wme+8S$D%2#&tQ68RgiX`TLdLQ9nBO z1VR~T=mIr0&w!8-VN?_u1#-g>?UdphQkRf^Y%m(gyCZm=C}@H%H@Q)Hya;J%=FRWe z0qJdB&|es_4UqP0ARVzt-M0nr zVRu-=?h`}6&a`o`Tll((mQG2~83rct63*s#OEkQErFu8t5;u{#F;Hk^<|>_^J#^N`7=e|NXA6 z`d;3~zWjC#cQX$WRzLCP1fN@~nQeL*)U5M2?78j>o{$`(Y4dBgO&<>NwOzZO;5*F< ztGY2z-ORoC8NYzXo)uqdT+8@KD|jDyD7jrN^Tp^XJ}-(`u&Y8b;B3dI&H7{3a^%~H z^M6UqS`nM9L9E0#2kbRn9rXpA!K-&@yfU*8ys9Me>Prn2w*)hb^!Q@tzeF!S4L4`n zq{5f?E5&iEt=tH{CsP*=C9Q0P&OLS{~aLYKar0CEd3b4ZUs zX7-sO5XiJig+OywpL-JWkk-lu-Gs-|2nh1neX&m|1uou`hcmDCW_8+Dm=5TYOEi(^ z35j9_xacDYz;ED*XE>}XpD#Y1+=LCbw*$ZnT|1scqzzgT8=twsq@HDNCvsgKr$VJk zjY?)#f=Z1fHTtqZ%B{mpB|S!&MLatMMwvDaqhcI_>-hc` zZc~vpmx7?qb0NA;r2>r;X)x$8i@--mUgOlBrbr<}+XbK8jMpWnXsI?2q6&MVOZ*Nb zu8Ap|p#SjUhjy6*8?BuZ4j6fZH_GjF$iOPU{zR+^WeXR+BRZ5WpL#93@wxM7v64yC}(7yl+Lc(VIA3}Vgm$jx3;99IJBDcQD{5AAHWKs%OQ80i9=t@w=9Cbt{ zt&`gZEHGwKT#c-gacMlXi8rEM>EU4TY?vkvp*DBTVPP^8Eu|-Wqu3d0a=hQ>z&4)N zXlT|f-1f&3dx(qu?|c^>V9Z3*^WtWS4)5KmDQyLd1rgCg{-pw76{Sr$~qfGEPLcG4s_ z4Ts{Q6eO8jkdDV@yVSJkk_t9Uy}fpQ8c{#+nj>`qR{)+{(-J2Bsn?ZyPDQmF-#pRJ zTm3o~1rxbZ7R}kcs$>GZYJBQ9srbcJOd#luy z+e^LhIO>p|=i3b!5$Ka9I0#Jf!AS$dWRGclrUeI%Ry?Acuy*NLg zrVJqmy?58HbJpm1G8rZQ1cTkF3VR031hxf-l@_%Cxg%AOc|6KnENqk$idFj88arl; zK9IhkHRzDxEqW`xN?jmGD!sP$pRT#v2UT+rf2C`!8GQpRY}~ z#9i}oc*vEZn}^B=To@^~y6UIpLVz{3u2t+kQ)x*O8|_tsG%|(~6p?pjCWPCpc$c8V z-i(FHFVmIdh90@dL7=V}W^N(rpp8IF8=PX?mf$kAbom%j_z*=N+8W7&tPmV4Yi%UJ zg0nB&F)_1R37QW`N*6FsBZ)!MBI!XT3m)g}B4o=@9up28kXy8{zi_$6v;q=#I1cSg>=KKgA8*ph zVHQblLQf7-g`puer6J`H0V&fa6{Mb;tTG+|){a1NJGGd4RBmA>r^a+3U{&b7Oy)z3 zgw%!^T)LTEI@nzs8g_^pP1M)2qm>{1Zd3d|IzOHjg2$ntcPVnt1X?uxpe(?cU!|TesBD487D)FZI(yY_e(d zDch#c6?5b<=9PrXFD4mSnHuOXdSKz};qI#v?r5WcIS+532M3vdJv3yB8Ztj&S2_5y zF>O*oX5!507$*Wv7^ECpOhss_Ddj^#5o-W4d_xC^Umh9`B@KsP8UhZcO)5BKlb3GO zM6wUKa))i^VDQI7!{CyJ!5N<->B{WetHl zbjviXsA=OMFwA9Os7#CqTN`P#Ub)u6sTM4$C;;7M(4)w$eB00~uj-Y@<}t)&aO5l; zerae`_D*A0mAv2Nw{hO_oP}Rd*@9!5Y@ zrBWn70|ul~82!nJkDb z#)^)Afl2fA*ji1TMvv_twbHt4_rXE&+fqXj`s(+_^wn(*%uiZiI(>EY=abWPUn6Z5 zhRQ5!w+LnYj8X{ziYa2P#+f81W;l|Q1(hmn)^v!GoVxU6fZ%`_k@q7eg zQk9-Ojh0!I#OASrIQ=skXQft-PoFOBOrY(&%Ku@m-67OJON~%Q=XrHLCJk}Nzs>qf zIH#p}dRm+!@U%!=OGFfTCx%*vNWZa8+~R+7=*7RP7ymhXj0WFYrp;$qH$ z6T|x?D0454Cv|Mstx>T7z{zhGA|c-5v&s#PC6hEob-jP|NC*<@o@CE^8dsYIGO zgAX^_+`;6(3=NalG)(?r2$+~QsbF&NsvH3tPpcu zukSY9GK~;p+N4_F;WP9nz`irdJ>JZL40(Y;6n#EQM6`PAmT8R+cK!)V2qdqvA&ZFvnqh0+qs40 zQ!m8u4j-7mf+2W^w>;)IK`6At8^{6DUsV{W5eq9ah@YyiTgsK8m-0cql$PC$!FQr* z^NMZLhZD%E)n2OBu9SlUUd&N08;X%u{B_)a%Pf4@W)22lH#7`Bq+#$8yPm-?Fl|!7 z;Ot3+%!sYE28YO)xS$L{2s%9$;&BgeEXdAeU=w z(arAG!SH*BhT(@b4FB;EFf?sa!SLjyq+_7&h*t_2D4d~gtWv2`$7sr&Jh|JOga;A@}1$K+d#D1-Z#dT&_m%)<-9)vha~nF|YZ7 zHc??|ui=}}lY`VR4h^X}4XK|W0#c@pgOs~P2j9Vl(z&b3wJv=+aR+z3Nj>i(*0)}o zi@5It()wENTgL(UuTldUm-Odjmvp3I{TCM2u}k{3$CPJUK}FSD7d;y*EZ%5ZsbqtK z;C>@&alBoOfFTtl7R^|h$=A(?Z=csw=e?}0v0&bJH>J&~r-YsV?byzLOwVkC?jRnh7CnS~*KmCx zbH+$K>=2Y)b-xOm24o-;sA~6UELmM3*}H+8_yegYZrHJp&!6!~v^Jf!NG zpc5^|?HG2Vk*k&RQKWQ(Ss+@DY|cz*A4me{y@WB<(%VjbJ^FTA9V2hQpCE7Y3VUpe z=j(_K-oz+IABt|M*I+;sERKvrxLjJ-vdAohsdSJ(WG=7 zKd^tL818;EaMx|2yP#fp0Jw|z5z+Oxz;bgJtyF2w?KqfjW-8#r&5|CUk?ml^aZBL~ zXqmjcvm1Vp`Epw<3P|*f6bH=9&9wY*QE%Z3m~{BJ)9)K((Wda1KozF4$&NmO6k{sg zEbX4~^p@y&W>?31dl(D{^b(G((idYosHM9WI%`u?@xcHkA-r5K)?eO?F-=5)d(M`jwG<~#?fsvyIv72lJl;5Qj*rMrmjD+L(x7zjjSDLvd(p_nr z@lJ<#Dwu8ZZN%x~3{pSQ*TX=2p<=h}A5IN@TxSo)uCwpf81e(U16*gniDI+w;ZokI z{T?GdYHmC4n2h@_K*WIW4^S0;u&@~&Qwi{s=?Mqaa!?CWZ#Gzt6ET+K`}KxT=?<{zLzuuW zo}A_>h8T@NS_Bn0sJQo-7(%&V$xG%qrgYd+&vi5_5Vi1^RWSmy=$9pak%R*hlYlwl zi@kZnQGAI7_!L;khYjg~DE14W3-es(6^9OFWfy>PF%eP?H+H=Sw?YjI@2M3)o50W@H+zMKXW7 zz53>^=6&IAxQrjr+hxX%pZi{yCdrFw^R;%n`VJ*qY}%yS;wO)VLH?33cUl+gG_WSQ zX`PA%IHZWB3_lmw_v z-Z2k$%~DK6&!+8LHY0WK4*EYgH1vOX9%XlsES*W*areQhow$t1g@Nx^Oun8=%fUg)4AJu})D9ZQ-XIJ@CK8QTT*D4uIU#;2Va#z!c}w0BMo zyxTjD(1n(0ATeIC1qWPDy$3PpExLjs zrv~QkmzzvmSgJwXRNPMr}qKIX%H*^7ptp=1(_?ZiYnEgpf2a zoJbgsq%@#faPt#NbS{~PaJ$&*Q{YTzq(E90 z8vYfMK%^qAfNIfB#@O)~IBe;tK)*P05Og)Q;;OIH5DX6d1Aq*m+Q*F=mVZg zyb%C1KEhlA38TfP*lJVZs|`Z16~QosObU491H)7i^+#d^4MnXn1E{J8uFwG|L+ykl zRc2LCsd(TBT8YCj(lo>B&WA;KHz2n-0Lj=d(tpwV0X8TuNX!B6w;8|AG^|$wBzAyX z4{Tb1Oi^wIs8?{G06H8TbrI#_AZFz%(O<{d7S2p(k7fT=JSFMP1XX!|9fJc8;(_kw z_R;j?g_y)b=OREUkqQ?NDTLX_v*fR!%fU07 z|aQr~-QUb)GS z1nS~=p6M^oY-7yH?k;f0vb-IGna1q&iwA=%o988#y5*i&z2Z4IkqGw#a&AX zh#OQ=O&pPXnsOBO|@J-p0aDhW7;&-^ZfWt>Eh3l7BUaSEP{@uM@3Ccug4l z5QLjqZza4D)y+fOYqUiE>;&Bz<5#J@4i`~N9^FMIA>Yc0PX?u)LT+j{SH**)o$H-a zm0Ps38Qs~lRvCx%Uz`y*TI+7$m(0H z=P3SD{z8}cs4sz1&^B}QbkF6>eiM%}azx$0eppFGQ=^q*ipFy1)E&_%vdh~)mqhE3 zDyEggYFh24sk9_oQV6EnGw5$MGEp*%3Ti;PS;3bPWLL=tTvX@vXmzm)!kVMHnT|Yg zjcd22Glw(CG1-akO%~?hl~Zfvknp+yg)`vHspeaqXbtoR$zGO7FP-SVu9B`UO5Y3w zidL(B-5gBody@rSjia?(Llb}s0V2F&3DjR@m{UN!fWPkufax0;c-$!D;+{W%!%}5_ zAVi9V9KDW;S3BX-Xf+OGE$2Q(cL0&2RfTq?p0kJtz{&?4qM$(u8r`gsFOs{4+wVTr zn?bu!%faaowbtUS;6<2Ryrp0XP8m63$nfkdhh**yWyV5iB*CX;=0Jq^M=P-y<_A)K z6u=r?El1l@vvaW%ZRT$n1g?!_y|KgWt$;0G0cpVg2^3w&Qw7Ya&Hxc57`Jm~?T%=5 zJ*c~5&&90d7b;NXa70^-k0?Gjv&wfQ3l4s~6K!HmnE;MauBGEM=xZ6&GY?Me2Rv6d zrt@9h^NZ{LA=5n$t51}LOq4AKt!Wtp$9_C)RmvD_1ZlEyiVCf;b82}6&0DdOv&YlY zt(3Y3^0XprbI~ID zlbmf&MavaA!TAL$!mU!gS90(mhbOtLZXG6NB{rbhbQ4s3ELwvUZ3VGOW%wH+A4Z}( zyQ@lKL|iW4&@mo1(c(S(_8qiWy!@fASQrieJx+fwhsXJY#c#&aFY(rak1kfT&dmy% zHgJf|PU(v%w!`0k$c&BO?7+Xb(7-+VTVUvRv_7$VUWp4ps`QH(uIE&L7X@u@$+T%M z&*KyUUf!G+JK;*d87*U>`ZlJn-1|xuv?)3^4$N=-kZS5bya8LwzYQ4vMt*ZVA*oH z4XD*tmDF0iC5DkAlOz%0fN=66(Cp+L;->+r3w&72@(MW zZSo2bj0RVLU^JZq1RdWB5Ok3UASxpNeNX94r4N!w^gw9D z0rORP>FUt=1h;vwb!smh&6Hx2GHgTRo7F)JkdC0+SAd3DJ(D2?X zo3EQYin9gH+Hp#OAe-Q(>cjR}_Ai5nU7^g`=BmfKRB)j4N9f<1gIit<6mO6-BNUx{ zGczQz^blPM5DMXO*Y>$W&heb*t?bV1eEEA9nBowgi_66imS{=v(qJ)Z4Tr?OLw6sh zI3^`ZAxF!xQJlN?atPFwj2bUkVId&Ae}xL(=2y2{Z(*7SOMTljDJ^q z{vi!~oVEF2FyB(fOMNsfA{WPcmKk{;|6Zb4KmN76(4KKWDBKzXT!Md42whSxjE>$u z*AAA!)XGQaN>`TF9lUyd>4xCgrV`48ZEDrwxoU1|HYRkFJK8tBes}&qV>U5Yo|&zU z&z07eE-zhQS_FlEAXp&@LrOmKpz8oX0N~`|5}PS`w}T^xYcP7lp$JD3iz-R(L8II} zjl=+`959{MGn07)s=-vFa|>n>BL#B|P)qXMc$djld}6AutT3fDkHNr3`CnVQm8&k@ zaHzD78(F%MXUt7Fk8j5RpNIdi$Nx8+M9NUMv<*9OEq0)k1GGjJq|Cm9Q~976Jf1t2 z%j~U|>%bsH9%B*yCHMKe(|>-Ce0kl$)$7&gi=oNFgEdoDTau4Xe3RK-J;F8XW%5f} zObiZ9dpC^mR9^>GnC5WlDl1?uH}}kf+y%FseEQ{FiAkN*6MB}K(28;NQ!PT}g`3x# zmgdI;!2oZJA*pS;2yP2tb+_LA6$FUzhS%q88t9q*X2RSf-5Sw>elik|V zqup1i_|F}%Q$@(Yu5kw-U?9kzw%W_RG3fZ z7!Cjlkn9K#ax!Vt7LFiR^^_SeC}EtX!3k0Uy-I417M5v~C}!%98mNt>fChMpYVnjH&|MUM-5^lgwj<*) z8=}}zvEq9`Vxg)yAl(`Rr0WGp+p-?NAzmrdo?$eVSEq!Dlo5R_VX|^BT3{j~J#!!R zaSsMGImN-?wip-RL_ImrxIXydkpLb*@0G%XaM&IDFMe0StPZ<~xUx66fxt~PIVKPjA+RpRa~BSQK^#;lNWhR*Z@=$OSazI1JBU-rjA+)n zJH;Bf))%FC?jqKD)YusPgSV8h);QsH(5l5&U#k>TtbuDCPw|{yYdpD=CqT=Me~2SJ zn1pT|>7-BRZcNw~wLL?z$k1;XcS65CL(c=&EP=6&S!_jE{q{{Gz4UBt`RR4rQS5tq zZf8^hFWpjl9}$$+!0WUvs`76AIu0Fc1qnVaIzNJ|RR2U>E)Fr12o9H24igW_VjdZU zmb9cPQ!cX$hB{gcXoO>#ZA7#pM*wyN25K>o6X&~ij50|IH>d=u2M_=O0RUNSbl4&7 zw8m~Pu-lXn<*6ejtC>cdiIL2rNBljF=`tY}OyGwmz(VuSPW% zsHgK19di8F)W|`^ppo+WIK(({4aPeTLG{!$oa5T4FMw~J;#OFh8vutbFq1z6zq8a@ zM|d71fg3uMR`#qwm4IE(xrZ#^a;`kxoe0tu*| zXd#u5OJ;C%rceh2=n@)gwxL$##m<#e!a0Q`06X>0ak+F612HJ+B2vcUdT*xBN8#_2r#Jf3w zm9sTK#!j)LDv}}FHMY5f14~uNSOXskp7YMtk3{ef4uWnqUsiRXlOfYCcN}(qJTiK$ z3BK|>e0tr%bq2xB+`#$P1aEkfpl=-PE@5yDf-w-Mbq*-*8K#5lb||#p(TVl~$;!vD zcykD;+5yV5a8;B{ya{|Z7QDm3Vwpv-sM&(oX%K(2Y7z(+40}Hm=+{>M5(CB^$r9H9 zf7x8T>kwYR;$)$Yn3mdHw`@LldW1YfkMml_g1+d1u6 z1pkQSu|B~J?(>g4+Lgt9{*fO~U~-Q&q*u=$q-PW_eH^*3LzpNQI(fDW!pM1V*`X&0 z(mT#0)8jD4f9rgDJCBRNwVOr885Vy)9oq-2;~a+|YFomGi%|PrDpd;Qopfnt!{0A* z6u0s%{cIpaU`5^;_(Ln3@G1_0fnaHi`A{=mmW^WzVI@oz>bM#5r234H8bVcv99~QM z+{-Dht=uJ_tK5zM7>=ynj=dbn&*YJ?ElVJLSsHy5AzjBF9^YQA%+^l zPQ_UwCBh9F>R%3>-pIY`!@Iw>@;cepcoF0^9CdBw5qY%oTKp%10d9U>&V@85#=H52 zzUKX?OlIEZeHBGH6%sCIs}7%86Lj8i(Ei1~XZ>^YJL_xJjHxY*A#7_*rf!g<`%O3d zPxd|g-<{vtuhyDa_v!bz>*oK(zUTkBe&-*14pm;o39PL=lw#Cb^{C>Z!W+ixg-${r zu6!RJ3=`LIJi*-vXHh;^t>&lmTeDlTqodaQPiK`!OcF$+jYhSawd46ZNbacz@n>Sm)nxAflJNusDj(MKp z*4*}DR!4`g36|=gZidJEp5aR#=NX>vdxoWcXPAn(S-cK~HTx#Z>ktKrvJ`OkZqGuJ ztQA|?Et|J&8{NERi$UzTN8DDusc%5MF+Ct&r&bqxqA$LE^bR{`^~25XJ$=va-Sa!U zrCUIX9x>{lZic_o_Y8k=erLFNYccDXnf!3G`~ALW_sRL4-O^FAitPp`%}+POFZDgc zFZMgb$CMBUrx1v;ExY;F(XD2Y{w252WlSsS>s(okH&UK@m&&6Taq6w>dvvh`!;5B^%;F0tIcvv322*P`3-?Mwi{LaqEms*WBKOOvjw(lAKm-(IH z;!z*H<%gTy$NQe$Z_o4W;#k99_dUD6?00sLDe-Mi zh&_GJaM%3Ka4`-yt9Pm&ZigS}dv+)Ko!w(fY-^`budG(yr2dly^s|$!(2(7{*(yk} z&p1##)Hf*3r3Xb@9*rl)Sgr1d`<~rf=680>MmKM}efw=zZL+@|1mEBH9Dizl=eYDX z665WLpP8R-hX1Ya8UFhG&X97jBS!h*X7{Ik&+b$G&h9ZK#^-brBeD*BQjB@Rf#F~J z2E#w42gBFp(TgC&E0*ST-MfU= z{}(9-i1JyxcY@AH7D>QFp)Bo$Zf03l0l};cUhVd@3u3Kg`H^)8hfJuHiw$sJEd8|2 z@C?>SjGIJ@N>G3VlOb6&@25ZyVnh>mnkF)~OCF~2fFiGmxs=^9G%IgTjR1&;{TM(h z@vvF5)F05VhvH#>fnjakf(B)wtUag#Vv)VB0$rzSIq2NLFj(ctV^z~8BlH+(hp4-D6_I~67jI|M5gB)}38PA>VHG*+wJz!% zmG@&25Y0=h(t9I=#(R`?tkNa}b~7aj#(S5Fpn1~5)o~j$Z4>q7kw+x^nTW>tTDxKo z(FTGmi-=oeItB_jbp*^ng!?-5?~dgXdxT6Seo)4r ztfJq5#E09pSxP7^bzAq*2);7@2ku@L`Ep?+!Kx0h8acJg9XI&@j0_%648O~#*Bu-+ z#9*c-#PGH!GA+xRFjk{N=X^ncS!PLMiF zEgw~W-M-X2&H2PuVGzf75`i|3>R9+O+b`6-s8cEE^tESCRIdgorBuFbB~eSX!a}R%NLjKl*ldQELhmp*j;sSH;^-&E16g=(7$8pE|#?mvD%j$vG)Fw*8nhB ziWK&7RN3*G0OE{lPqGGSaA}S?+?5Y=BHr2Ii4`uG@NbTz^8Dl^tD>PkEGV{sqFKz` zLi&d!WGN992YP`8WKljJQiG9DZ9V%8q;3$c>wJXwk&}X^A9-e!P`1_CErwiC*aO*N z6Qvq+XN2q-qQ>1J?V}zVz6hD3&8qxrFk2DBZlOtE2Wd7~#}aH{vWRXQPyl2^tP3&z zkayH6k6eyt$Z8!PZ|aACh!ncrFb{_=9!h@FX?CV;4LdgIvNat_ozb1rD0S&e&1hXO z{R<8r_oRjgRKPDA74S9#lRf%%Uj;nz8l0ib>H?xcr}N9?$O)p#9?9qLH2@CYA(>VM(A+Nb#CgA*A__Ifs=P z?lcFLjt5f35z90)1v4hofow^|Y!%NzC+a-Y$v-F+Xjq!oDufgOj`Fiww6KzVaPK^B zh9}J47eSqQ5oS+D28}&3Od8J}1|7|mqsy7+{lP6rp3u=Y^BJ396yD$>=6fc(S(#sBafqLMKP9+JIEJw zE!o!|b+JWHv zscm2Ct#}3>9vM04@p>VGb7Gj<>&^sVKhI4Zkt_sfjsPHWNU4)vE~F&bq0W@qD=T!) zm5Nn#;DVCppDlb`%t7jCF$Yc9IAmDJG_0&;)*sU23SthILfYSZBS;v=?`yiO)u4CR zdv5psb7bID*uB$Wx0#k;_kY}xc?tm6E!|8$J>uGR|AfWCSa^vNW?xE$xW6`VNlPQ%9g?{^obNX2a+TalSMV; z_qmo9+T2)pN6a%KKAM4LBxP!G%v!LvD^vbN1h>LS`<$NZG^iW%gxkeGjC>?^LyQUI zPJ_T^ih{t8?qC-^PipKFywc+FF$1t$vYB*x#I@`Fcpr#sUrL3zlaM>==u0ZHH8Jk6 z6txzlJ&vEoLJuAYDM9l(sq+F!9C*hdvO(zT^L(C(oQzxdk8b zOi7h2ephn%c1;6%!Ft3hgJHuFO~1aiDZScDc4)br)(l&n z=qG{#_RsSbS&R%`bg^^vw80FzI{1d!dC>-kBZJ1HvUY9kHmGc-B&d9kuL@oa@Ej7G z@zW!*omy9v*>ONRd$SHBxC;(Em+F_-J1mvoFQyJwyB0Fl|R>7X&-hz!30^ZoW5jZ0~M>iN-Vwnde3y zl|@G%cI$m*-|O9P);nvbp1fZBl3Q=gA+uB!--lBoD}`n2KA1f;go_<*%20sPbFmv+ z3W_#JUn}ocaF=L|kdv+DKvYDz8Y)bVmY*d!2jKIAdsBBb7q+6|+_SRABDBey3(^~z zgC%TyjJ7FTf<8M;0n6QHb_7x+5V{5g$Z=IDsUvdYi; zi`9$wi#i7AgW{Fl4AR$)w+@P633^mdp}F7E30RTQ(T1@85q@{w!DFoaVo;Mn2bZ)C zvlA~}r0U%1Eu>+=7M9bhg)3#=qkcUq;#E;-lumA~{TY+pSyVV=H8v$mi4G_I5^1dK zkhP6KM8~;c{{glW${a8awxx~6Fm0LImV%|4X4yPPPNLXrOw7FxD`;l z5oPZh8>B8CWQ34;NW%@fNmI2y#~}kRW;bU7wi#Ao-NQU$D2i&8RF70+Cv-6v!c;ms zy*%eoq0dO7bmr*d;zrGvjj;AnTlP>QqE1T;Ad3akUBZt@>B15WVbEkD;i3p1ysvTx z|J8L1ccEY+%3+3eGP`gA3%1DEcWpEV<_718)!k%Xwc=SEG5kVZg*B*<38l-aBOG2G z&mD|%o8oE8t8Va|vh0YGE{PMyT}uE05zd9({RY z_a`EZr1BRi$YxCK!4_NVE;S{Jni&$_D}T&ys2X_bIg8_Ue;S!$nAZ(gzQVF}=_}*? z5r&I1zuL-pm4D&DegVAC;nlth;8p&eL!@6cnWk3}@1KRFWZeZv9Ruih=gZ>FC;pzuwQxRUo-yZx!=fl6_EtcE<)YeI6gPq$ z_*0y|E^Rn^HNG+WdhA1Pw$DwC^U&AVd;0qK8oInmkKjw9!TWJc;)LfZUnt|uW@Et& zN>!EW1r=RkWG^LKh~Olq6r@L}g2SxC%_xwWMj4W*NSkgXw32R%q6A0ti|c1u{}?5Y zAyL3kGmglS0^}?yis)oKCDBfmAz(l(Zk>gU!)~rS3`2Md&DibUmejjvaP8$?wk^Gx z<-{Qz!XqPhm(LYZYndGR}~}@CFd-&U@*7SMKqaeqWfgWyE1E$ zR;Tl)@gX*-5Z4)(--KF^2%rh2nLxH@{p%WxBrVA2v<*W?F~zvmK)H;AD&$V1n&_g{ zd5F$=6q1rqshK<+&f+x2k|0DA#uMnfBo(|_yi~bE>H-EjMG!AFX@^9Jh21{yL)bT3 zecGyhsAwuMP5@T2dt&t@JP;JdiukG&w_8*L8V=)~xOP5*@4B7X1trcfIH6g}sf_pYS>yha^m)3!CW`ieUD9i82ZJ0bU zOB0R6YBuZWu-s%`1k%jhgWyGFL>}x_ZW$g560o4o^9VnwMaVwPPu6r_t6?dO{o@^{2f5?(e>;?$Ww=ccfz7*y8&UFyHV`SuLaiZOj<)>@0aK2MrO+NNP| z?k*mFID(839CtG|>##W9<(Au*---+y3u42@PZ=CHlM)<%^%D;_w=OfY^!R2M^~)A@ zVu2y}W?xE$Z+}KUu5~1{O}-8Z?+j`yiQ;0U3sJ7fwHpvCkacNTy69kVeKe4#8J0w+ zi+PDC)2>xw<195tcun#fb?zjXuplwJkB)K-9Uf_(3n zI=^Z4fNn;+6aN|F)r%q4I4elIg|H7;c}^i$atbv;%C%D>P610)Qkm8dtWf177j182 z2%Lui0heAs<=jQ7XveY8bmcQMp`*njNs zq3lM8e~r^jIm?Rh_2T0P4@fKO0tr*zVse_;kHpF(HXe$1Ji|_Pb!&9`d+{}L4{O%P zzW|3e4MiBG!%PLiO|cfbd@)&VpOmj6v6Ts=+G2z|kPX>O&2&fej#gKih75@l5GmI( znqW=$J@b4c*R2SfJ;J_`0lT?|?|4@nRSiW3iRU-kdoy%MdvDAXgx^d(PDm67f{=4I zvxDfiqc^%K$RH4?T%(iP3v8*}O1LPO?6WN-Bk1Z)WJfF*wF`DJr_~_Apwz3WX z@!hVBIqBB^bSYYfu`gMN_Z6j?IKJn9y>w=-XYaA|%JtfNabQlqs}*~`wi4R!1M^9( z9xTmA45JU@^+kFsABf$k9^Sz2_}=NQjGwu4PHMz*7aToK&)@vsLPq*zVr_1fQ9$)R z?Tm-RZh?2k4Fm%`uyB4MoXXY7Q9*o_*8`F!PD7_e4g@O^^#e(>IyPRdPn`B%I`RFm z{1%FnG~|yd(Q%lE(+)()zzZc;#^@W_0eKVgIO>A-Jjk^Tnd}P@q|$8d7|h^*LqkLI z-(xyvi2+Scq0+)BWll z<(JoS)O82(1r=@dhF)J;%-7?_AF$)QDHV$6=I*^L7%ZMEPK=4lFn8~z!Ag0O4ZLWO zKzMbxiMUhD9etH7G&NW4#SyJBRA58n+!`N$rhAnVs$D# z_+4-}XO5`k(c?vU?BSd-+C%ym+%f-~8r(*b>y1AML)qtrq1^ST-ms6@4fCv;e~W+u z<<7_4>988-yb)Exq*oM%k$D^SjIqrq1_Y}lq@g@ily(jKf&ga84Pi$$Dr{6|UA(JT z2ng_Q;!FqkpQWKmX>d4m@t#xxqf^m}hiik|sMsQxDp@9XcfG)E4qNJPf z6Ie1)C{wHKVJ&4bUpAzpez@g*sh{PUh{?TXg&{>iAKwF1>ap zpS3gTP1xKZnz-yspRq5+_$}@^rD+OV0)FHi6XW@b(+mLv)%jKSXpB;k@1Ys`RTe{gKluMTmB^no0ne5X1&;K)=>){Y}U?;TZNmG88!WW*$ExC z6H4AM`%xGL8kiex^w92AL@qZ_RTt>GX_x!& zn{5kUbU=FOLN;!n*|@V7PT05?UG!qyw9LTi_s-6#W#^QcfHTbPA82$0G&wN z#YENZ(huUqG={7bdmtr8%pViT;L0iK7Xees_<=(c!myFy2aREig7TPp6kI?F%EMx~ z0@5hUk{Bzz=U^T&W|yOf5A5BMd5EIT!}8ef!-tOVJ#ie@^qHzI?>ltt_|f}zAK!QQ z5N>%~+}u8LAKwvvp)MWW`;z6y@1f(z_yrYrDrm1BFjJ7vss&(T;ZXn1R8V;rP`mPO{`m>~p`z^B1&)3cqrImGg;xF} zUXcC~UF`vt_v`Vr1ps3y3&6X3jrW20@jisx))pa(|KhOXe|4PXCU3;OVE~o7DcUjZuNp55qd2|H$n$01up*5yMP@QX`bpWO(;NhS>TdUP+IF3M3!-{U~0jpg|GQ?O7 z!A1H4>536^us`i!X+Y5D&dlZwVfT@Cl91>P)nwC5321&026i+iKrmETByT*cgAcy09_bUm*f$>r}d`t4c(kMfCmuBai)y^8x%n@XOPpv z6dg#^5UVmd4u;ApMS0yDZdl0~aydU!9y?u}9joTYi&gBagQar%3=eG@+VH^UlezW` zkN`5+Et#RQT}Sqf-MjZ?%5eyM!h7KI2GxdTVEXZ7u$^wmjrNWQ;ho;U-2-}FJL^p@ zgG+oMG}V*pQMD3_(wImTk6xMK1Ye1^Mi|pV&C7{5Z>w0tl;lUjV9zYhYS@U5D9;!K z9UR^8B{z-S-0y2n$lI_ot%V$(z0=OKxBvTZ2S%tpe7+t7GPW&t6g+gOe%3{*5^!|z zSw(306ytMr0i38MqC^O)c*GlX56A}(A6)v(D25_j1{6NVnzRlM_Xg%!Z{uO75i+fj*J58 z8?B~#JoahPFSPwkX$A?8qu+--7q;6O3)yZl08`_SiuW26g87g+Ra^m8+ejA-iqxEx zb*X7F+ti0LwW#3nQ4+Vzx2r^>0Gt^nfT05%Zj`5_h_9ZS+!l^xmu%o{0@U`^U~Hkf zfh;B|Hvvc?SA;FRm_-K|+gClXo41d1C%hQ$j+dMEZGRh#x;^&Aei0-F^3UVIVaPcoSErSnT z3Bbwoct4N!ViWb5SuMKXj0Bi7+65j$gI)mW`h^FEFm-y9hEC#RK5%8_p^v12moy<| zRXBOQ$0x<2tUn0Y%cJ^py9xkc2v(k5T0yJ~ix-|Cm1lNB6W@`!IkT^ZE{tf^)`@LB zr=ZW@dQB!WY4(8(EwIrwe`eF(119CBt5B_ znJt2WRoD;pu3A++I*^%Hu^L&oPexhBAKgq(A=0p$9TYc@FhE)uI2OR) zxpv2x?-pADY@K|N6)#v65Dop%J4kskp=+ah;J!m}Fyu1Fia5ivpps}bsD3?U>) z?I|KSrlH8Lo!c6 zK<@rLK}&%2kipbjMjs}`9`bhWVfm~i+4Vr82pm-jU4=6~1ntZZH>Qwshm0Y~v$N*_ zSDHDCuB&2O#&S{2gy}e}YJz-!*oG0O0bUJb6$~n6fVaVXoeA6)(+_F`(q)NWvp5x| zRP8UrU{Neao&)d|LBUGKl8ZX*DtSX>^4bj174pU;u^>gfkRT459YHDz>>a0$hUJ13 z;fWx=AOK@A*p45YzaT}V5u>`&=z5mJ*P6$|rk*~HrZSo`xZU4t#J-KD%fm*~#j!?HZwAiZ;~7mK3>i&xVl;&* z6Q`(Fr63#X)4@n1z+Pj@v<24bO&%<*^DT_&jHfq<@pPMQGhx&+6z_-XWz2L5PdS6w z8&ezVU>be1XBvI)>#b?@b#|vb)98P{o3;}vh8W3zu;x(_#7&*+P++H0|3v)87-orn z90}xe(HeaLPn9CKrUwUh3A1*lQxW#DVXWqbl3-?dXbNa#hcFQpNLs8FoQ?J9{IA9{ z%f3Cb31PFWix)AOxWta138c5odb4*J zcp;YA4d_p*Vh)j-3!E5J=!a}kSa6hlTr;V)^btE(wvLUkswWj^^FIb2>id3#V2sh! zWoX8y?OOc@b}3g7pJ$|~(KHOG6(BPxkD?ET#88414a{j7u*L9!NhsS{t!n*~EJT@t zVFr8Pq_Sn;E0Pt=aRnsG$cRt_*d27`RHakM0-AW$OG^#`(PW-7dDr|qly`bF#zck} znomG~=LbVJJ&Tp0X~^7tn;j+)`l>u|vu9XUpi(wY3mkb0X~A~=)nZNM&o(zGH@Grs z@;;1^_{c-@3io@6n?1AxZQiR`*Ubz}X=L%ZBv`qpw5o*%hlcnViowz4CEBTFUNAdw ze(o*L^yl96tgdly0)hK{$H!H!$O~@G+^pAC_7?WA2}Hr3%Z?f56jKwe0!jZPXy2|5cILunoV4HK!}J%GCdX!?XUTS`BJg*}Qs*IL7qL-)9DmTY9A z(BolEVaj+lqykXrpet*%1_mN32MJeXCH)rK(9h0Dk-;0}$# zJImqgp2=;eT}Jp3pN5bW?ra0m$6&2iN#k}a6ae^rdx@lc2I=@ckfL)lx*XhgFl)uz z$v_?zxt3Go4|j!^-gM3gs&#J(TFMmkuq(FjY2Np+KlmpP4#d|4d=3So074GD>6*i2KyM+;hr zntyq1C|7|c8Be%VKy9nGOR5{j5V>$@R%LU1Z~+Y#4$Xx_6ND#~$R#6W;n1|F&BCE6 z0u7{?zyZsvU^m(znedq&Xcl#AC9{^by4@seNC2$(UzCU zRcF2UQfl)H%xE9<%xJ&$DQiaiq6Pc~7%_sHP6eRSEdD$RfI)TG83as)o1zYi9*t;= z+VJ{ZZW9Z?Y+}9pVy<R6+d@eHYN3Boge0RWLi%Q}5&I^j%fp1UG?tLO8C)Djz4T^XU_>iUj1Q9nGAdF` zx3QrqXYk;z6JxtyeBYsa$Bym$-n|fmM>pet-sQtD-Fx)Ft|Pd!*wAsZH-@YXW5}{t4Dn_Viy_0^_|Oj`wbbT!|2#OE zRUwTf&6rQgG?0WDGMMfhnku53d3lriPj)o7Jv#|MXerC;P0bd}VpbNQ3LE(!?Q1)S zXp2|vvUjnacJf=EIKFe}xHXTO$~Y)KD8WJGY|Nb6=m+t@sDtjvw4|zNAumXX#Gq;+ zp>a|jVO<#nc_N-odOS4Bs3tOrLKUbWFJyzjtclTmRePyukm(diH+igco zVkg0?JX`B_ZN5?#)4sCNn4b>UYxe6L4orhlX7gY>bG>R9sPC+;jM*Ivi$cK)DHf~)PS9r^uS(zN-xcBWZ%yp^=OJh8`Im^Vt(!B)5PdH4kvaVe z25;eBVn8eVjY#^fCv-cBTc4Fi@ID(Ay!mEMLV~qj))rk2o|unY#`A+fl6jH8FMCiJ z&zpK6U7w1qjHVdR8+(n|H+Eea#;)hYVwX3ASnNuau7XX<=&uB<2X<`Ty!j*(uU}rv z<#I6B=r-^oU?gpLUG0ojmv1gr0&W{lK|iQIas#76XluTVroRyLp@ zI8#SMSmqqi3rHn=5|RF({n=t3X?ut)FCfH!23hXxBf91GjhQW*w`@Zvt)`>|pcy9~ zfD~GW5C3k6oY0`M_mXi?ShRlc``{esKxmMOoEM}Fw3(}ke{u$U&%vWqL$|x#XvbM@ zG65o&kusikIZ_sF(uk_4{)zselhWo6+5dw;tHG-3X{%p^j9NpvZ?v>UTZj^Z1F}fS zoX*t8tK})lX+o71laf_~okUuLsyH_9F^aF0qR1EV*pi+{Sn89>p8O*KviqxytrJeRax9f7#S7tu(F2Ig`Ymqy~?x3of zTo<4eis+XOjZKd6yc~)d)e95{)r5IHCx^GqB4aLQwLYce#Zr|am$jXt#u29&T7eH>~rXuMsnqQGr?2GR>pNt4xP6WBH~;0Up7vTGMF zDnZszXSgWuVVpGMLm+o*6hXwU}Ml>A@wyT;(1HlDSdbM2*&?lZha!j)ZjCo!x6>f1cg11bhR7hjX^h-awe{Zr ze1~vm5)8mSL1&k0lhQ#?PkYosGv+us`w2xJx7}vD3`=!KK#xM?{$AgxaV2_o`<$3O z38l#W*RHp(^)5z!;;X`fb`>-WVuI^FlbQgYV^|Ucf0gYMg03QZ71T+~v}+h(h3@LC zqEgK=z*Uk><|N8;3!i~$9MUzoi?4C?Fpy^>26AdhjHkh&f#yJAbq2F2pmPOmBr1Vd z63v@Z0j&;eygp#aRg5;`v4nSZfwOjWXhU z3i3~`aRN2TSh)cQn>6!is%c8k1W7~31eEo^b8!VQ-ZS|szKD(DJ}3Z#r$b8;7H5?| z*L%s2FY3zC_D7gen4>+XCw3SP7xRQ8ftN%+l8WOEJC0{2DID()EysH%VrFli_Y}uX zhb?Be(=$vDRqnBzFBZv!VS2AQhS{4vchtW2Ic`^>_sE`N69li!zO-j#9z-#EN+DLP zl0>47q-V%%l-rthl%cGm8NA{s(oKLVV_=94D*(^`zz+QFeu%ZS4F}JNqf`$JeF(#M z$Vs#ZMz4~vU~P-x33R`d@p0@9G9}C8KuI_Yh-6^Cffot&Ly)hn6+*`v zb*h$L}S`30N&D$Kt;ED(o4|A*Iv6zyZzGs^AL6%#c&khmbF#;7E%(j|EOefr%~v z)ryNLPXZ;~HGZW=mZTH_QJ!5`OD?mIwr)zl+;z7Ey8@BN%aC?6`2wV1n4iEPF%O^t%Y_Lit6N!L zhS%b>TeJWR{w-KQm?Jz6JsnenqX7tFeGVwAQ>?+K0T&Bbr{Z%&2A4s*ZEjRw&dt5; zpH5vO|6>eiMDzdI2=j|@)DG0Q9JTX~qvv0a44R6g<{U>glM;^lA<&?*1U$~ zMsS~hthy39!#JHg3L%=qC=-?#yyJQrN12#e zD0kG)Qk{^>ekjpuVTMmYNGU+%s3LM6y2>=`7h(yb!zn8a`iMM@SLpEL+o|!xcviM` zLyXF=q40uizkaH2Kfex6zW=UjBHTyqF0_4*NmG)1ThG(2q>wd41yFq6c@`RDyI12-x&&L1tn$^ z4iMG~P;mir(1q|C&{BRH-6)!{AdC1E5y7s!D(ssKi(s%_$8Wch$dVs)=({HJ$=I{S zsJyp23^r310qvcl@-AQ;u;R&xacr!Io&u zXFuyQ2Gb5`PiNHg5w_GQLkCnmnw*Jz8oWnMM+IX@s2QvVoILz56Q`*jGR6)cRg*xL zhB!&2po&CqIhL$Xc-m{Tlk#EJBpdp>YWNDS-avPv1}u+fAYf1?05}+`+m&zK7GWY` zzO`yMfD+nH!>GF4aX9+I$e^h>)9sEknMsi|1ve((k5@g)yk}@5T!3m-2cp@;iT_HrVa9EQ$x7%7U=`sC$}T0&l;zS!NfDwxXRDd@IvnFDC7}1O_@xso?TAN4&DNY-13f*dg zLBx`$01gP@x|(gtl04?wl?6T+A@DE@d{&R$GQ6YbeTRc+vr;kD8P)Pp&+Y`!D>$b zuvN&k!bPn!B2XFK&Dx1b?D`@-l-f)L87QO^g5t{vWA|toBu-V50rkR-klacUE^A|b zzyvY0)Owq2fL#@g>IR|WnXy=h#P8~d1&QDM1&;qXbaB{NSp`AIng1^Lv82Pq=NZ(} z82MJ;-DZDIcEAv;RM^_r+*adS(y@28_@VD2i zXOLli79u;yfPQ#1|7p^b2OQ29#GpWv4ow#@X-LLO*d?US)=UYpt{6pI9C{f4Y;467 zIRyvd|DGDc#&EW)8)*A9oShWm2}nVABU#0+v*0-t38-UgoS}(SLAzQ$4WAqU3#TGr zjmTfAx_u3!Y*J8{~ z%upE_ImkS@y+#7a97iBiP1QOQyOZL>D%_ro8$oOnB@pq1oG+vcu@jYFAx8{@1dNSc z7`D-}Bpc7l8NM+`QzhdZG^f`GguKt_EfnG)ZxCu{(;g@;?B$%FuD4+T11Ipa9F(;Q z8730gfVCiKOo*LqMjNOsG4q=EE?E_4mcFhx_zV%pJ>sxrS>!XZ+if(Qy^fU4 zG{xZa4>0&Vvo_8F(f}eoxp`3hcS|?1@E3CPUQ0!8$AsMWnRAqmD%c4mEc|$JqEtgD zc~Q<`$Vj+>Y+)wpH0o1)s>uA>kfcO9&`wBke1Q&x$eQ&T!~{`|rv;YIDf1N&t^SIV zsBkDla?;cW0#kN-SWcUa_gV}x*tNmh}4yh(OALQLT!_r`=hFoc`< zoI|=zkq^dVkD=as9QB$B%R#(Z4&ntY=nD(nUKm)WX8_(tJWp?A8uyO(S{eord}Cx} zS0N844#a77%pPDIxG#HaVx*}N;--qdgD#|B5;9Y^Z+%qywX^dDX{2Z)2T7uyZ<FERC=qh~~w!6w!-tiWf=b zQ0l<6x}K;{U^ph0HTj> z)?txX0$D*qkT_d2Ko$oa#b%VZKy8cKnR26E6AJB0Jm(_#9VVXZdc(_5P~0O9C%!N8 znN(zSuOlNfO(CPtArR+jzEcizX65Or$pc%v4{GvWbJXO_i_z@UevRFpHrdUTcVZM$ z%JCB9RD;>-R1u1ss3TZNO0+}*w~-*Jawi#tg#(DTCL58C(`Z^9H#3OnZ%|C+p~WKw zG%iYD9fm^@9U)x$=|R3#I~3lB1ar*;ng~QUkz5FbI%`9kXko`^NQF$o((EJ}hSVmF@M$CJ!-losbNNJ~tt6ybW9&v{^pVOY7WEb-tK__%RuRzY8d z2IN1Qip;6Zw>;9+!H`03b;!ZfomQh<20k<^`f@^^*4k`CBZie3)0cc1;{b#G(Auvc zwjxdnZ$W&91`O^(%0(Th38i;J7#PnZRG`BT2T7dScj7OnvgxI0as)s9#4{O*_S@lD zLq-qh}1SpBWgY)rS8vu}A4bAb^ppIB8vBQ~lO&~Ldv*;n=Otu^N8d_5K zTmwKfEnHQ^bQik}`jes`itje+cPeq&}jjkp!Hoe zIyuhwiPW6W_{ENPV|gB9zc0kt2OaC{W(^e(wIeIfOlz|Bzu z(qVrK1e56Wl5 zP(~Pq0Zm6rj9Zm~vKyxq$ef0QE3l?56@;}ScpeUlx!?*^F)Dc%q@-E!tRBZz$KD>i z+N8)V>Q>9l4`@RLT~X}jN;%@#rNI?C;ciS{KNMVUuE2R&oI4aO*M355z$!-0Lt1U- zPzejiRIPxLyf0;4kEYv>D-Q(&IzO@A!21ITE=5@rv}nMO73wo%4CBDhLH)DcsN&bk zR(%5f@DTEfyUn@EYZf7F8i8rsf!vU&c^Ni56#mPQPF;T&}8;j7g2ExqB}Q1`(&yGC!9DtC)H*#+r)l zrn|bNP#kYhVZ1BgF=j0jJRwDjv2Q z!S&&rW5q_J-WXHLd_&beE>E=Pf-4nHjJZ*k$S8Bc4Us#MAu6L+1DIE+aXa6>K71qc za&VQ16#!HTAgW?bbHU0g$``azJq{2r;P++4+FWoA3rjW%V=xP_xFpKg3#6BVo+q(P zK%`t4vvEkl75R3njy8VgQgB%r7`3v{o}L-ASO>t$1<6}R4lcLuO1UEW7uPDF<16*v6z&F~BZC(52KHge@+Yf`=en%`7vO;_=;0Tc%U6%|^g zxqFufH-O%z$1Hi;1&lQj6oEcdXa0Y�!VlkyIU$2TlmQ82|RUrjPYdEF|Eh_ecl0&2A+%@1fc*_^`>7F>B2 zB!ukxS}V(c;Q$^8o)vvm8pt9k)189B;?X;{*}fy{hdQTm#MMFl-Rf9(e#}48D${t4 zry^Ff%FPO`EtteGSE=E)IfR4DM(xM>Py6Zb>-Fg_Blh@sJGeTuexBkzU{$H&b6qF< zD%@yuQzp&p!BYGv1Hcc@14_IUX$ql}B;zS5V^llFAzxBl**nNARD@EBR*^ zOILof@+GDSey#Fvs2W*e#6jhE2Jq*j{PSUS5UFH&?PheysT}6NzMubMYxTZ$9b89=puR%j(auq!1w;XgRssQ(NO+ZR@#jC`4+X?+ zq^ji;x>AuxMk+(o3X_!|1GGD2Nyg1SN_-mUSlj0+KaL-U5~3sgr{ocCjUVA>lSjBM zeuNJvk8peZ2)~^?!X5D={I7%&7MBa)8?m7L^Atmj#t-p@6hmx@AL6SihS(ZE#J{8% zVq5$WmtGT(m;`46X0AvvL;`BAPBBCRZr+$;hy>)^kYb1g?A)3>#Fhl?+?isC1nj&g z#SjVD`H~bvBw*(QDTYYE&SHuo60ozLVu%FnoJ}!A0(QP8#SjVD`Q{WuBw*(|l84xu zfSo^?Vu%Fn{OJ@!Bw*(+q!=OrJAWg^5DD1%KT-^lfSrGoVu%Fn{7i}=60q}2DTYYE z&abB!A^|(Uoje3Ilh~7e$+d~6*|r4iyfVcQ3E26Z6hkCn=gldGNWji)iXjrP^R^U2 zBw**R6hkCn=e;S0NWjkfQVfxRony&EY)`<>a*81mu(O$Bhy?6>IK>bN*!hMOLnL75 z|CeHj1nm5=6hkCn=lfC&k${~aOff_PcK%9=Ari3jqsc?unt+|3Off_PcK&IKAri3j zb18;Mz|Ox*F+>7(elx`o3E27F6hkCn=fLX3)9ls+?7Sw$5DD0MLy931uycL#5Vs{@ z=V*!{60q}oQVfxRoqJOZk$|0tQw))Soi9r zF+>7(-jZU71nk_NVu%FnyfeiR3D~(W#SjVDc`RXwCA7vTpy$anV3h?Rk$|QjNHazPp8isbF_PRyznNx? z1U&sjnlTda^pDewk$|Uvoo0*#JpFQ-F%t0f8)?Q!z|((EGe!cQE_+t&`BvIkdR6It zrAJF2D}AK&<%i&-zeYdine)e_z!_p9y7xB+&{$T;F%A5J;wfyrz{`o2XVaLeI zr}&4ppevX056i<;p36TBRIl94KMZoLl<=n=tn`CpB+Ou?@i;ReM_pkIlzC2th4@$0 za|jkeFwOLMy=voaMeO7~dESPNTNlShL!mA_UvxxwqY@dLLXe7p!Hd;5a(g zG&dm(uPv1v3c7yi++E9Gf7vCEEP30eOR$ajUvQ-gH_aiaN5_~hXNV&M2yI9}Fn}m7 z9UU3q3(HX=qKcH58Yjp2BNY*;-(RLfg6!+1C8p-{K(ItYki1(#=6>YXv=Dlv+g~5E zbIu%=+&z^`F%T?1j;c0zGsPP^I2Q%KSpTLqS6USejM-%YekKO=kOVy;#uEv_!C=0{ zkXs4tVH6VL8f4R!nSe>Gc8Q9d!M~Ol+B5D4qXPw>`HaNW;J=U`w%k6~4wkj@Q+#xe zwbLb3H8{4ZgyPhjTJ`aA9{bdo*o5#G3=5` z2VqDl(i|+RnIx$B7|8}%mu@B6o1DAYY(=I69lX|r1CJs@5wI{ji{M0mu~+SHSIha# zU04{l2LZh%Z>RHyo66nkr?N-IQy*Nt9$SN{c#+Tu%|^=JOj&I}sLwLPk~f*X)FWK8 zUKX-M8pHTYV1^OX&zibR`Ecnf6NM8jH}}l4+y%FseEQ{FiAkN*6MB}K(28*+#1#=C zjG7eQv~&Q_Krp}?V<;#y-Enu=B`&$gK{_h3yyJ1yq)TQMZdtGDv8;_9kxZ6eGiMDa z$`Yxw7NrYW63AU>hDfgB?rXMNNa?VY7Mq_nP4HeLAg?k+rUrFV6F> z6rs4z9bJO|4O_b0kUzZL6lN0zZY^1E}HtBxQ$31RB!K80X; zIey$`ek5kCaQgS&(pAV8Tm z-K6<*k>8mgS{#IM0z6`m3AbmJn-Uh(EfdEO;~QDtK>- zMR2h{k>WYG*sv7p=f?57bxT$8&vCr&oTWpq>vAw0K zy7X|hnxD>loBC{+fnqilL2WS@%Du zSP$3zjTFya_`17SnOMtw!rm62ZE=$2ptY(wIr`ZcFU^UtI>mE(t?@|DgA^vQ_=h;s zgGtlkNGE+*xG~|H(B@DjR)l^(k0w{|{(5ve+Hg`h#sk)>iLq04S@n%_Y&Z?`WDiSS z<-VR<7cJ0Hx~23!A|u@dYqbfxa#X(#6NWXTo!9^rJRk*gO%Vc9>35hegbk=#Kf!9= zt&A>2K`vZsqYhM-W&foix$4FZBR{(o!GUbOroCj5Ez!|6fUPP~Z%8Ump+u3MA_^WO`(70<)^(^@ zXA$+*Fd5aPj?M1sQVU7fD%zMaRipSW6Z%ntiCXGL))v-}Vs&g~;Mb}`le$di7+f&y zfP{xp;|BAh(woQhs@3d7BM+Dq_-PmeSe}W~)g9vvaB#6*b7o@Jd}JRcy-dKs>D90T zu)VG7gHbf4SoJa?&A1ZE23XuN0T+umz)c`srUYcTP&dVz6u3;|Dx)(iNUBY8^_&)v zMml0)yBClK#G8OL&Z;qynt_pd(f@WsEc2qd0u|KqU|Db`D#R|HLwTGk8peP@OQA+7 zur>(|uzr@5(3GliQqFis<{oxBBabPn-fbu~iKZlbcW2On1dVE0+#Cf#@Y+VlTfkV( z*0ZSX1}h6H85^Yw{RhC}7SJz zHuZM3z>?^Bz!u%rP%i?%yM9Yrpj2nMGSOygFe$H>N2}nU;IDQeUX}J-=668o~JSQls9UDk&<#5oY2Lq+@}u2dhaI#T%uHQl^Dgu*@b)ChZu67z8#t!2(L$mz{Ds z2liDM-Y^)t;eI@@!_D(##sn8UH7Bp|0ZQFFuvOja1C_Lz5G*&6Hna%D+pq%FRuqIn zp{*UN+!HEJ(K69EBUXsY+lXJN9E9WW=tuE^AJ+I5Rd0epNa|J8bwc%VXf4oE>?a3n z<72vZ8^Yh@F_s!LwYfmRl{a%#`2s(+w(^!w;FE0cc$&;?$NdR50A-TIKDSx*?WeMvmSBODmsY#n^hIg_d7= z6jqZaKpVHs&a6Voq4Ep(e(%vMzlz&ozOkeq zzG2ZUmTx5D)N_R1(Y3yoFB`UT7{7MyGl&-RgeAnx;`t%O{f$+Zvb^dI81LdqQH`dE z@w#3k_Pt9>``9Ia1{bwYCtd=zVxo$!iYannj>rhxQ_{NEqAzQzPQ8p-!9x?PcK^T>!98*qbcsN ztJjEqbBASN?r?LQ?B~xQmOCU%e}@bavD7Th%OGuY3FK6#NA-ctCv!Tt0>mXxfe*l{ zF>IbRFB`%L=6hI+61Dk4i62H#7!Hiny*98vl#tOBN|fw~NoVMZJMridWhWcmk-5Kq z78Z4@t3z2VPD?8k=^LDfP%ce63*||P+-{K{!E=C?OVVcm>JT@Jx+~obcqW(G*IG|Q z0hC}kv&q?M&MqphKMvM-x==q`qlo}7p}$Il#`!kdf=W?o=~b$3+zlrLwB+o)xxqm_ z;Vo#5IWAEFXl*PR47$N_9_AX=y^N{^SbMpy%wFXqP~_+WIGCTn-|~@s0slD*2eT*; zwERQ2puLf*9oJ$Opj$7Z-J702J5|d%1vF@egW8(a@+)9q6O*F>kk>T=E2(U@b?Yvnk{WNk^ifvSRWYA}l-!=Uw z#g5b{PKoUm$Eoa)wqM{m!5D6`UiT7tQ`7q~+>-hg5Q4-$3^ZODME0=_cr;4l``qZI-bz)L%~9@{rF7tkA| z0WY3VXUFDv8~`@JmRbyKAZ!ptuM?mR`Y6}iO?UzawXnUwN)}kj0xKc^Two>oga@DR zla)A|&>JYjtlMv-ny8^>xbijHAeJgQp{F&d@=ZL|%M7FjUt4*t6_>)smdXHb#8^SD zz-?z$u~UUe=LE2ewW}--%jDO^%H#%Em_e*eo+K3p=d{I@QR;)pNJd}w<`{nrPtWo{ z8|X{G0is+Aypp4_wP|kSE@M*Ayi3}p>}7io3M$$Mf$r4pMlEwUM1vw8)jxd;;S)Cj zE9QR?yE`8S+Wqf&y@>fg(+kV`6Z2&>CFZ}s*NA;Yu$b`dUw89 z`C&ZO%R(N{6EzV2-cI?Vc%qpmIFbXx#qz|#Ft#p^#a3?y4qLt8x}`8q?xXN60b4pQ z1wC+}&xK5r6IE!5P%Y46o1#6!LZDoUVX{76fk-U+r-Y4}2si2~;gB(O)qzG)g>I*M z3E`NeDMOSm1lHwEq?nF>(P1(f+fYX7Y$zDPuo*_;X(gatgEO*#j!CK^D|K%bZ>K`a z7`g}J3FQ){uX6!@xSB+e7|;BP1&HX*nK>_x|EeX*s-L&As#P?^lmiB zdTV{q;#w?}1Vz2qQlaQikBl6V;QY+q+7z6|us(v(?G`sHx>O3X?q(D}FN0??rym#x z0|eSGLpp;y0C+pqhJi|PS1SuCArB?D*siWqDk7$ejkS1A7^t>OGq@k}R}IQ-|)U*O}gQ)TF3BgsOnWhfj@e&W(<4+rDY*t)pA-*t|Wr_15j1Z`*$BDW$)m zR$z%HTnIu{^eUD~+L_Bd{mH@mMyHKF({Ow$r=3;rB-{g1S^*{XIDLBSkdA_&QBl#h zkKzzio*441N%)<>KVTHYfmtWO6suD18~BU3GJ5u~A`M9$??2vv@eTY9@F-5z8{&mz z(61y^Xt@~-DR}*pV<$Yd>T?mKD_z27uxK8NzQX5_$>@ueH}2pL?&!ILicdlsRb5lP zS1VuTXH??evw9$aH>s~jCKcwN!@**iS+JPX30s~ioPLdOudVzY{^JX4tT5Oulb=mF zQLQkclq0G#@-ehzMcZNZ;b0jqso=y*XHcjTzlgPE%nD6hd6NyA@lU?0+OWaV4Sw&+z$euL=M!*NH-Z`?NV%ymlYhAA#(kF!Uz@pzUJUG z6q!z#N+NoRkupB(jtjFK;+C&pn(I28{@JKK=$(~4G$n6b?-)w2hM%|&=hVo^(ITQ* zxJAbiQjUyToK4Di0Uq2bqftY$d&wLNJkIj~`z$d8I1nVWlmp_Ll1b~CqR=SR?`!H<|a3K_K5af+~h zWT_!MfkzueTQk*Z9(E9w1shv3m}hV3D$?E=+5ZSS_6JIfj(xu7(DClbbW)+?=N&ql z zJVt$$jBXP7S zln3mG-wTI{IgQggvNeO8zY}md*xtZ){>rbJU|3}P>%On zD$4oJ$jIJWiG>Nkv&q+A(nee`a1W={vDq4~AmBH%2WInTu@xp6ICeo$WcIYNlX8H^ z#+!^9Am(Lb4$th`haeo~U_(`N&uT)ufF=NWSlQa66u{Zxo7FbW4xC@Rb~X<}M+h{^ zD1%1yp{In#T5$@5Bz9Cp2cagJ{WghLJj`8>r(cR-ZJ3yD=>u4Xiu!uTq0C1j6G=rr zf8)r`928Cd(9D6Z%wcAF{sv+kJG9G*DKAco*e1v zd`|5i85!A<%N#6%;6RG^?GwokhZPeRU>1C^4fRW~yt}&n`3Sm%@%H)YhBhdh_Hnll zUygh}6}EoKVXK)wvDH_v&Go+2Yj0c+)aljh;9Dajy9zk&g(=p#8OLCy%p8D7ue>IP z6J`y+V`w{rW0-J)|7e3J7~&)n7{JevMPl587|k*)5l)&MoB1XU#KeHN!32wd9>n11 ztKh8Qb<=3Y0a2eGaELBeoY0jPe5t}n3wAPyP@suMkV&&xXbUvvp!N&$gJ(rPQZ`$x zvnxwnx-8C;b7KOe3{E9J=a6Y-B|n8%!GyY{fV%?r{6|7aGB+%=Ybxq7HL?g zQH8zNF0rrmR)vEndmSl8T*^PMY>sT;qzV;{RMm?aBTKid8$jz6ODPW6(gNkf} zrbwj$gQn042Z}P1L^!7L$1ueO_9GA={;zCEAPqAEWEinT38%+QB?$Oc+OKqp1|@^z zHAmx2w(UwHxd_IFx$oK-C>ZjHea7we_Q;1)k;YdXX_$!$Y5d|-bORhX%yQDBz6Xn2 zEDpy)Q8ZHTwN$A8uOlPk?sutTM^KJS%rLu4$lsfQ?Ngm6a+K^YHUvY#k>w%AO0^N4 z0?qO`&ImpX%zs(EeH`ZH3|avog$(&&s67Jb8e-1$fKrPG33fGe8o|C(tW6=&idb)m z0>=tY1W|o)E=jn6ItHi!V7$mtWGEOz$N{Ilcr)#BG|(wQ{KibFQBR`X&TLoecxeP_ z!_+aH7Ep#%(!byk=$iI%w-0ZO zd_EPje$^qXnSNB5HrM+SroC}JQ1>BB{{gMxtuobdoUJbg_o34Yzrd0x18{Fl^-*%A z>`eVEENwI=prs3q3SfB+7~z=oEZf&=AnpO|#yjgdG)>t`ijcPuyMSC|*a^TSn`ORh z6n_c&Q=);ISP{vz{n?P_uq5bi>_8JH2P@ISN^BV$)Wo}H9U5yC z&P$T`1j-NCm-vG`u_ypv@+Mbpf|8q)Ecy?zg98=V zd=YLTwc@VC^2rDuhlyo%SI`+k>2cTL#it^Jry`Pna71DzCq(jfLnP0f{c?~rkVsEq z9vFYul1l6bh;;3}<|wQmdB7u4?~rox!2dzH0|s$Ru|61$h1{lRN-$r;_F}48px~}j z`a~?&0<(9la0tehS456Lq4J4R4N-knMN9}XmqRUsHmwMpn?%?-I(I_ztSUmG$5do? z(h3-ZB`O=qKvEQ%a%8M%Qw||XHbJ(DlD2uU`Aou(FjO>$2)bw5vK{LFYd=gtQe*zn zaR7%x9u9uZg}q8cLuKOYNPpVzLQK=dyLxR1b;O@{#VzNmJ?EQtUjw8JZQ!Y{gAE}Q9RLMwT1@L z#75|src;|fZ6r|#NNUTx2anh19OTxeh8#i09H}pM1=$LdpP{;+`n_!Z){7=)`IrT# z7pb`^^<1!vBi=6lt(($Dw~Ogz@DtlaBsn%wLIiW>9^@79{H8Dh2Ll8OvLkLNC1^28 z=V4Am0%@kH-hl0493_3EgcY}%&qe~m?C$HbG9eaPhHp+=(TtP;R*X;6<894x3>F55 z)kv2|CvV^;ik8#6C^HnCl=9+7X0ZZ#Ch-~M`*LK?1V)TgfLbQjKUHk~D=4aID17APQL307LG_`|yCb?^;f6WE72%yTj39d1Az~vkTr5TzKJXRC2h4PY4?HA%AcQIsNVb419vgTJ(Zy}6 z*_QPD#oN=8WfZa4pnMb#71HpR;OiqJl0dt+2EW9F1Q#g#ggb0iPNKRWN}e^|340L3 zPj*BK&%?Cf!g;J_Mae=loIE}2;1{575}!^{)VaCzkmOr1URY5;>~wh6xVHTyT@@$< z_UGgm%L88Ys?;dcC;ks)KZ&Jgn7yWKNW5(~s%(*p5S z-Vu-9y6%aCn^|{yO7Vd9Lw!(+_nM;=PuGj2ZFC0nct^Pt$lU;y&EUSCzK8=^D_5QR zq9@yX8d{9H(Y^DzRy?}jbRhnCYSe@ZasaC^isV1;vx?+zTS%8;rrFuFTu-s{hMV4> z_cOiI-t;be&`$49-1MBDJFyQTgSy)}t*FRu0ZnbpP*yNTRX7ZA4SoVs$)>xeqga%n zvcwcf1`WouR+q=+TMlMlN)0ok;V$k5tZucQx^zzP+a#R04z2zaFdyIg=7TR_DWkEw z4<9|a>-Y-?A3{~O%#bRxJBqU7@*7ubu)nb|`7Wd|6?NhA%#h7h=B?v$0;wXt*x1ZV zM&Sx#IJd;MD(!R2=I238WnW)q0;%TVMx2FuoEzeYAC`*f`tw`5eEzQbc(0F3HQFhb zT!%U7Z1X0__KbKjRabFQZ2k-)Lv3A@61Y=+a`5577i;10Jg z{5rXW;e1z_*GKw%4{K3kXkeaDV(2#nC2quc^U&=?MpGzpy&bX3hJ^b@ee)T4P8o&i z8M=BWr+p7GW!-**JJHAkRU-HzN?~dgzuh8agzNQJ9@tD1eAJ=1({L`V?b50+*UQ9m zJ#PjV$@Q-5S-90ygAd{!vD|1Jpq-ZkYRlgWHyZ1;RsEH2mC+P8dbu638#n4A&Ud-w zOZY)-BeYlZYwPx#@Atsye^_*(#a%U+UWLy@$My?0_?^!x|BkQGO(HGI)>a;hpJHej zzolVi2`b9kaoid~4(BY4FN(kn)G(skwTmUNtHT6#Q!IgbGjIgvW>9%BWW=~CqCPh} zO&OjNp3X*)J?5SU~Cp5f;GB_)dD2R+~wrw2@DzFmHjp}d1#oSa5`XlP@7B;w%Smn2n*+gFs z(j8PmD5?A8?52!UabcI31G18o;)}(Y{m`M6D#lA(LsC`I*g&KT!c!a~zTNWTVB#?F zjX*!0GoV8^ROfDV=b^7pRS`Q| zXTdU5>4Ntk{dJi3uDpb*8y-*vpRo09AA0;}AX_7IaG?E@zCn9;SJ0-9st6`VMx>_Dqt0F|men1qD~`TeLFtO-a``xrtoRRe92a7}y!Tp6lPxA=X# zMj(78vedB4V!+PHFih`?gV)z1gY;&GJO*{t!HXTp%p}A~@zTd=@ou{2bB1@jbE;e6 z7RK>-bN!NDYn&88f@8fG@3k-5*Lr*DgI7uI2^0CGPBDpVKZat*4jV264?6fiicpl1 z%tKbI<8`~@$JK-3Xt6MUT-|Z#+LN{0Ew=^Fi42W}L*8o+hk9ddr+>*qLML#z0V;0|iDuajL{WGG7S3q#M%Hj0u=R2mxy=)A z(#dTeL(vu>?}~%>J*g1}^414EdFx(>G$-R-B4!6oE*h!iwn22IlqJdIyQopC zT4Z{=Zla(Ef+gi?WG#8Of}3{N5nVjfLM0)|t3OjNo@Laq0%C&gGQ?*a-mxr;xju<1?w4_CZy|NYoZ>>!XF?NJ#(dLe6ClVH7soS+;iz3^O`_CGZH+7Um9?Ac=7bg?axUd+z}!=T+VdyGXLM zmMmA|8wg5&O2{et&9NiOUBxn_nh~fr=90K zbrB0t7n>~nT{+3A6$~(~K|Ub^kk~MagI|P1mY70yAG8=%=Z}9qWcN~@%qVkRpT^mN z$WflC=Ip@f#Qe8HvC408z@f~IJ~`0lLmGwTbO&XOk*5(UjuaTCo7HP;<;rB@G&lk$ zEyC4jVD6YU15w0wQUW|wn5@)}g1W%yG+lYvF2_WHoAaI3et z)3Cy#a-i;GC5T2eJJl5_OlTVnFk-D~c2rV+xdyhNmVoeeSbW+5kh*4bK)ZefHW|s{ zhjM`yuPk4o%eGLJP#eKwJ~Ub@gWrOb;e6qhTjAbl*4C+r~iGl=21fii&! zw|j~1#|;HK2d?)H#ID2zg2}&}0^Q~=eug0&%VOajlneW&N4abzJJO$f?YoKg=U)4R z84&M8(ygI?oAs&$Co$n~aBXf7;*I4s5I>~0e&Wzt`{psNLEn{oJU7VOKSP&z(2c3^ z^ugST0nABW!;K=||G<=eMWw8PJ7MhYvf8N*OyHl>^WR=*iDhoM{^ z^cSs<^%r?7FbYCvJc7T!^}=Z62Jr~)>8OGMKNfTz@e-iS-Cp-I=JJpRPkyx=sYBUNK`V2VYra0VJEo$M?5N#(*QY1+h2SrBc0;AkLcY zFt2u_yUNq|#zZHiBtju=73nB}k+p>0O;`_-#Iaz0~ zwCm$o(9L)Bz)baW!Ht%`W377niE@*6DY4aPB~NeLU%Nnb^LVRX?GTenwd|S8Uk^(M z(u8G781pov7Fj6bMu8$~+BRfB4wsPz9PU=Ap;#@yM)Y{uC;9|HOV&0mz@&}1+7l)+ z<1D!v<@_wU8j*EIlB?64mtQD%X(OG(=l&@Ndg()CDPIExJv@KLKJaFl(0tq>;#>`L z3-r1os8`$^t5_X7!(h9!ZbN89zHJW` zh@lFpCV054ijR@{$)xB?(`D!)EPo>

Wiplc_Rt)F?GDEz`7S-er%Fsh7ABi9>RKypkQIk3>`RIqCHzGnu zg@iccwst_eH1zJZYA%6G#B84b<(be%E91B;SZ~ild98^Q(SJE8{YYqVER-tZqPh0I zH#k6O|i^u5uc&nzP=`pmfW=<{CsX^V&0 zUs8Ag{aH#lZWm-iib%*!=_@ z^vc=O6NChR!42O^z=Hj}7hJTa&j-L9i+(u^i^@6lj^Bwohb+l%JAX6E!)9+`uzw?%6@FSQw!}tEH-J)3@MUdYa!hEm2w-1Q-wm;{a zL)@D=ir>3m>e(-{fq6a~HWQXq4C6-&iDbxECD_(_3XSK04>H6^DqoO(l(!P)df-ne zD95;}8--vX`PG#6K`b_(M=#wb`a#*eVC9vpqaB4Eo%sc@`RM}WYKkuolP&Xh>C=Hfg5@NI1 z2I;~Rt9sVsd{WLV+LbMT*qAS$!(STOUQjSy9<>f5mZE=jklPZPI#$szLg`rtJhL>> zi|#qqy}NapdDH7n-lFc%n~J+cQw&n=^@iPQhsCJ9!2326G=X5jP78g%iS+$aHCT5! zS5nFRER8#A2ui>eF&Mr`Bk@F=<-8;DJ`qAr5bu}ttivEZ;ui%Xjpi4Zq4eP@@5Q+J>gpd@%e9vMm=6io};C)AE(pWedUjLB8yjhfBeuv}r zQ`@~;pP4^B`n|^u0|(EeYJXd>7*^12w9 zvH8F+1Q!=*MR}s&sH0ZHU}4@l^d*I{O!(GnPjCdf>x#OUz*)y&FeqfUh#)RS`SNrQ z>Xoh)NY|4$P;N3(EKnlE@{*0Wf7@1c=0aajlmLR)3O6tvzr86pR365CsEx{?bX39( zH&n(q@OPodiRaYQ&NS8cvrwPV!QjS>hOH^>@US`KbPUH~z6^C~;3kuMl%B@}0q<&h zwtx{$EOM&CBlrw=yB!Z47};1?@g|IF_fv}wGyG&@eT1&K5xQ4L*55vI^BsunHovGZ z?-*Hs8@}W|;U&bH7-Altf49+EIYW6kmq1sI{#^Su)Z zzZ9AWV`$Z&Nj2A%%wQz~N0Qw$21qj2RKV3E{G>_9GDZ zheA&%k?sFJfSS+dlo;bm#$2f1ko)HtV_-M&3_;yo(R<{N;oQjG!R4tnF+`AYe|p() zo48ZU9X@gcr;*SdJyM2uRK}V)RD2<#9@Tj;G%UZmNJIRhLlDP{?R;+>qL>m@7$TP> z3b_hJ)MtSXM3f&9?gA?!f)V8<{EGj3Jn$F4v7w48yxN*+BD=^@m1vB<839tf1NWECI9D z@>v2#{HUciQr$NJ0W0|rxAnQp<|%mLv)iCftgL)pA6{XjLdNJ-nN9gl|FhqWnWI-% z2HoHbV%^~03fw8@xxp`17LL5?OtvZ7Rz3*m`a$u*3+hsuCd>pzH3)v`>RMRPj2V z&cFY?s@3t#QmEtkRx|T`M!UE-vj?6Gmcd_Gv*up3iO=mfr(X*&L`)~cE|G$vx-`Hd zS}WpisJl1F`GhM;K!oEuf?FVBPa)`W%F7MWJ5sfS3L%cX&x!nQ>g$rSKjFxh9$Dg` zDj|VVUE}N&5{tlVr#VO>O%dBe=m}!_;_y}twtIhY7~dV5G8M-Ez+v1hNwoSK(}C90 zZOw3_7zS@C%K|ts+X;Q^_A-`fFZzbkZ!eF%@ECVH34^7-LBzO_ylrgNUDreAK3pvdSj72jG-WGLQq;ISJ1K&Sb(~a|z>+5Oa>{dc;JaNu%Lrnj7h15ECT#q3t5DnFQrdB-_6>MAsp<4`ajd z$;CZCI0Ac9Xv$P<|A&t4&60%e7YdX-t~S3$bM=*d$i%F>@9%E;- zTesjZ%;$nPhkC-!LEN~Ng_$<_%<&lNgx*$~GsheDGCQpQnbSS7X3bvRZ>U*kQ*T(v z&5@(-)1KFsC{*`n8~~8da%cq92t>ot>Z8sIQ3LTz4F?Tx=IXG}6VOl+DUiPsLSj%L zU)sA`Bif>Vav1p6(6p(9@*g>&Y?dWLS*f|H;N#J{nIc+php0M<)|XrqyqLuAM@#8` z`x(uMHV4-5o{|aMTf>(vg~qO4T$$c5N7((}CcZ4G0AZY2o;K$0J99C5-U2mESqaDV zVaw?0yO5!Vg#A2n>tXpry#WOL(nn=)A-dm<8#0>X00|>PRmUkLqOr_?_dJy(r8MD^ zW&Ky;y3w^pbWfjyl%L+Bi&uSfZ70Aq@iO#JW z8`Xb=HBrx?YRstKIGe3}7JSOuofUkF=U||@1)M)G*(%RHB?h1MT9Sm1my8A-5U?!kyie<*7#`>u zuYD77qtzqBCJ(avja`H#w^z*@{hr`#T4D$DhqnouC1#N4Y(OJPBH%Bd<%A`sW$7> z+&j8eX4#5F7+gzhadDnq;U)D;vr& zmI*|d9IYSvn3Z3R`0A#7x0(bw~yvj*}=U@u*>W{VEajkfT=H}uNjePgj1YyjrIaI5}MXo}cXn}D-R zmn<~V8)gY%%f9(Oqh;Tl*#k)i%l?NW@(IkPkReow=$zNe#~imI)o zx&~Sele2N8FaRRSl(~N`a%+w-unV~}({(7-$Z;tPXHb(xwo4hIOJEWx;=Hv+-XwoL zgq9#?drRNi@a(9c9JW6nnl=@-FL&5B%aWVqDlzXR0M)xgn!$!af;RmgV@|S>=Pxtu zM&Bd*?WXKS9;Lvx1enbc-wq#PkOXCYl+5s!|0{a?;X^Gvj3LzCuwS;rVr(mjm)5<( zH%lG}Y9x}2oWrbOa=oWHM=br{)@!fu zsLhk&F6rwjNv5`96#gAu!QXV1P;yquO+>!7kxm5Bi9r5w^%vx>WF=u7+9j&$EC@2S zJ{A|n&Feh-fJ+3wNf@;1ha+68Rh*G)b3|}c7TT38psO6=Mj_+iHLwX~NN&e52mcYR zq+svy;*>&_IOAYT+LU`a!ljw`iBM;x=Zl(1(`&O1)o@zJOS7gVBhrtd;5Yu6Kbl7x zK2=ASXVzk&*}6x?PZyD?17i|yu2Q~EGE2qs1VfdyfM9_3;a&OK)YekITsthJau~K& zL`)Z3u?)u@E&f)%(WL(uIP%)Jt4!kZe}yzHkfN zKc5TSG7r?mr9FMlIp8|{k5z?NRtyl*OLh-}j;Wo9u6z{JhbrremfG6~$tz#)>gjtk z?F-Cwxor)k^=9%<@1$M>=5&3cJ=)TGpZASJ<`b!ri6Z@fj+N7bz8w0`;Cg#wnbC8A z;@pY!$Clc40xcDPWCGSvSEVv42l8}*s|2^Df+|S>l#up)ZXMh^G;*&*vkLer-@Hg0tI zGRu==vL? zva=~tGzK-Lxrq}F0tWffq&2A7ka!c#vQ(89@0=2LEfATMd1PLIi;Pn4a$N_=_{#Ij zA~I4fA1UVcb!s&#cZf+i&Pw}AmN5#en8$<+jbuR*sSN-&0-@urkc&FvpH>w01il`x zfY8w|jOp3z*C8?zf|*Oy-amDh6w`!e56yaJ+qi8IHV3fb!o9c{AV~qa9J&#LzEI-* zOdivbpYnhdXm^9~gcOw51L!*y-o{EG>cNt#pcJynjhEEA+;LIidL3K{bksl(zmX@A zKc`)f0z=QlT2Y;6PW`31aO#lb)KBX1#E7qa=i$NcGTCl+ zcVlXICb127=eANdRoa_-4#KuLs?-UbBPvIZPd^|U#(^R-mXM4am##KuC-dSgUeLrf z$Wba#yNr<_n8;SGP9rqLL10Mi`N34Q;Q`6A@$@`33ZJ9V$M8@fx=fE(aKzpf)bwkE zpd6KKKXd-M1i4`9+t8rNaHGWpy56wMI%6Kt&|s;9y9K=VgI<#Wf%=I-?^%_JsF#P` zj0x>yVd14d;VGzNcu?RWAKGbW2alqB51NC7k!{0h&JyEUVq`gkZ!9rdS^d@Yvbyr4 z6w>`9^_K4xN&S^R2UNzOB$-V`iF~==jG2Q0t`7zS)MA4HycL|<>BHW5h%2I$^1|vM zW4=A&4&C{OE$h&Ta0s1y#uJ-Sv4}<;k%oh3feJlsUVv()!HX_Vt+~ZZgMA+mX>cXx zi>!Q}EoMw+Q_|q_elup42CIV7pdKp?ycNVsgX9p!xAlY=ni!$p5JkrqrxvUjIgbuo zG-j(aZe5lrH_sPQj(<*w^6q{ll#M85Hbs;#wKFCLGQPrvAzHi#0~wgDR;*>)PHEJHVfDB%5GlmkHWn$qDHO{Rww@wK+1m#5| zR$h23aPq>lVCJ9{oB`2`$WePa*dR8x$TI zDz)2<)~0pq8Z#)5UK_R7U$$Xehx%Ksb;wyLqRyarwAbOr)n0eKuGv}`fuf|U)DLTm z9?bX8ev?4T^B_E~3E3EVf_BNP`-0RkbIcQtDPJFYNswnkkx<6{-25tppb}eVk>W?V zD2U9My_8NE!+duEQEt|({&35CI`#6T6R@<4-7!zpBc<@3fW+#z-E&7{b{G^DAwWu8 zi8rm|Z#S&M_N$%?+A=|}x7c&ert=m%KfiVsyDuEt@D=|T7HfRPuY1uVLmnT~ zbNIgEgZ~%Ln#hCP;}htldg3rV6cTR2YFmeu3%ObzZ{}hD*M0|9%45{agqZZDg_dy{ zN^K=mN{|Uz5}!l|;b`tbG^1r{^P}w7D$7S&tgM$WFjR#W1wIAgF>a!y z3J__Mz|J`#+W31gR5e$vPqFmxi2T;fAA?H~=02V8&gaqg9Ij^VuU1pkiXFP2YsI!W z$i+2H|3{7C+1#Yg(t^84rDidFN4mvgKU-K{7iBonLYGUPz(9&$3~J^lS!P#Olp8Oj z3KyI*cDr=qOmz@1Q}MYQ^WGX~CjSs6frC;4uv zc`Uvsi2Hgj&&gEf4}>Hl+ZPa1Rj5@Tco(SKU1FEzanNss=q=c&{PImClubcG5wTJE zir3J*^1GZxH7H-|6P5R(-w(YgDD!lW@&$ZdZ(s7~@h+$YU%(W;0>f6!x42f!rPXM3 zJ$wjVmjPa!SF^qC$p_eM`~v(;$Kh;cDgV5X$k2s%XHUwn$MVhE>`B#{Jh&fPx&MKy zp&&+U3o_lxiUFc{i~a`~?TqIoFA(@FH)Y}`C#ntBjjG^I5z`#pP^1an5OPsRc%+QJ z1Eg~R;w#^Q2G&GX4jqaJH?g$Mt}0jc5Hi#kP5F78Uo4g3rdJTy9)eJ zC?2N>vvIQ`gu#9g!R(+239hBIB;vXSYexvAI>f^W`_i*ZAYjE z5cGuAzlDTVP%7T6rDA$mM~KYxF0mqWIQ2x{5*KiM-{#S&A}migo^E-XVY4A& z``t>|8r+ET`-N{cDt6+<>@&T15difUFWr}dGiG#|Fi}V(L|L>CkC|1V30m(I>g;0C zlq4XVsdGwmxXlg6Qg4*v{$!+nyQDjScok`*vro<13(mu>vB%pt-FzbVD8e6e zk5ZsKz7=v~s@_ECef7l9qxov1lpoeVK^Eddl*8llHH@=r2!z^+q5Wg+wfMV)dZ5M| z*gb9YD;PnkxDz0Xb;d73<^N{B0i9)$Y9u?mC+Ot4oj|_!zBflg&P9PdqsCB?Owdo)=Xd)5Zu)gyJ@omB0g?`0z2h3hHoRc z;Jww1iY9{#^j^(^?cZ+MpP$cVUlsw=)Qep};G31IKio3^az2-Np^strjxa2fY1%{I z&sp>()3i4%6-_^|N-F^rV~_Go86SUq--%a)hV@wl69?mol^JTCGhVTug``LDz;d)C zP!5sxm3`h}Fw*yT2fziF#@zry2Z0fa-|JZ596er+uG{CjH@6-$pJ9$P8h%6o#z znhOccIufW`D1!uE?rWB(vUTqiH!mwbo$I1RZWBnib+nMTcB61Gt$Ekf*$ z7a?ehEqf_Gl_?xDK9B_&;;wwBqcpd*${jc??Um|A$hLB|P<&jG!U<^G(==JYv{5gh zkFxsOMw_I4T&)^*h>u{=^J0g1CV4M+n!U76B$;mldv-P4PGJVS<6oJt9ltwj$1a$p zYfLTLb!Pr_1oQiu3Fb#4Uzx%3a>uIaO}Ph#9s>C^%Tpy36>p+a!Q<=K-fT4Bd~O{1 z(?!_!$w{`{bks?_GG;C#vtpldp!iZ2P#A6Zy$%|Gr^k!7yOOF^zkRrOnlVQ9_7_UV z!{fd1f7%x&i$HJKU)y0Z7Mjsj!rOtP7A?t{)je{ojDk_{r?ktq%19Jy7Rn3;3HmR$ z^@}f?!{y?A4%|!icmeln|6Gh)r+dE{pC0ty%a_=fCxhM_mJ0OSp!)dY)?O;e3{Y2x z=t|Q!3p6$C6W9=ik&A*88`Olqb}+hiE;xF>!_mzaOwe6!HMfmy`*5o* zvH$|E?9DLM2HYadB@fcT(I+O5TtFRg!tdpNW z$dRAOt(?a=kD;Tx3TU_TNqpb$be)GSUFkFQhBqnpEY z-q&+*sOyzWX8m{v@{YAY#DR}PztJF+yr(cm0ms{ff)kU5dDOyJkNO|2+}@#^u`N~t znPS%>_Ko8PRKp---yvK|xpja~6-SEv>$AxIc0jfhQ{S0IR?0Q$Stlr?#6@@i&RVY3 znVyDkLYM*k#@IiE0+P_tp%Jt#UPc=tH)%`h=)jtz<)etDVWgz6%wcskWRa4Wp2Fnb zMZX)`bui}SN*!|&UWOb!!C<_1av~Lsw> z6Z$GoqdpI*jN}SxRCQf8jZ0VPiW(3wA|3RV)=49C=jy((&srpL;DuX_qlIfO&tQ<0OTkY& z?vDib)MkoEls2G`5=TX~*j|m8d)76C$V4UJV|n(*t-A}e5#kK~zyW~4aAg}YJXtpt z54FEuC*W8gQn~ki0?pI#MhCW=GK1|Mo1+rRGI$UczH;46QQ6IKJJNr-72T70MNhdE zeTN>LM&s~?-D!vQ*EqTh_N=Sb%|WF8aI1bO^Qvdvs`uO1CyOF)SgKWDfK{`!s#&=G z+pT>%^V*+wYp-NjyEiP=+81wLm#-en&sbt{U%1u3A@l0r=~n+;8CLHNbF1%v2=p2) zJ%WoAIR7ZNFkRTOz&72`3n!XIBveDuT zBd?q}RBS!*$e!Avx_pxUo_J(){*WMZc<`{*2fM%g&Aw;Pa_~bTN(|FmB zcdYQEp#{WB6O%XoeU2N<29#06Poy@#q}Q~(X(Nffb^wH=h*YO)A*ceEs~i&4koili zNekJ*$DF-GFq(%ovd9VNN(CdRp*M_?DTkXPZcL1LwYB{}0 zw9-jtW#!i~UEJvzlRf(f80xZTCF=yJneCfF`=rXC?YG5{;qC`Wrz8r2&CXy7Cd5W_*2>eSd zMTAUTq6)v;$$+ow!ErReXa?GBykTFl!(ue3ExX|Z--Pac2n)g0q9cu~2r73b@rW_$ z>Ka4=Az`HBd`#saw(N?mmxmv85F5~g(?HA{mI`9GZD*x|P4JQhO)|=k`C(|wduq^) z(c;G$m?;L8@ny2yL#L%>d37=q32%vZo$!Wul>PqIF>wps}$mjfa=y=Y|v>$ zu=~O>RwFb;P-XMw3<+Gf`1>&@SIrVc2m1QA6WxF&gmNrR_?Hv|mh_sR2U8FUX#sd+jr?gcbC3?c4F>lUaCDl;)ps3>is0V`AEfjQh$raqyw( z6cqtjXV7;TW_lHp3u@^!XvsHUyY$$DO|FpMuv9y~ZkzOp z;)YELIzts`-&1VX?1oc3>Gu04nfLo)x8Fa^uwQRjs{L+-X#sUJxnD?<;s_!!CF@ZO z2AxhUY~dm!o$pTMyJ3WRnajcK`OGl;h=bWbWq_GC%)!iED|+r`&ih)qnkFgdd9AF( z-<22RgNl`QyLwC)DaU_8FRB!EnWj*Cr#886y*YUkt+0R?;X0#s!K@wsmzNOU!ynW3%hJb zRu`_oeXeies*rLl2l0DLr|6M<^_n&N80S2Ko;850yQ6y`X6W4xTdJ`aPPzse93m`n z0UZwReq72B!DFvCe(=jnLc0tGzg(BN9K+Koo^+tSG4#?{@m$fdZ|`@|HH(&e$DMPB zhg*@EF}=#}E$790J84c0gF}{uF4OOX?VI3OZ$`?w*QE)^g*VjWR2x9u8 z;0y-4;jbP1j)ta-1%%<}A9WZt%Mpy;oPCFGC1$4dnDmxW&45X7SSn23wPuai(J&1f zy~iVQ_^uGpgE+j<8*UI7_|C!Xhe8vj!rrqEduAbmz0qXsc`Ng+CT5!SsPon^n*nv+ zFo(MSYMhFn_)Qekg{~%f{GJStRMh^==u{G;Y8uc^=PR(OK$}5-4pitv^(k^Mo6zQl zilbAbx*IV~-zfBzAZfDNB(fyGgrvu{?5lSKU$9(SaD~=&KY4p~S z^`p0LK^JEvWmFL=g#Hjn;XhX7XO68CQQX&2s0uybjFRv9@qBJ;wcaV@j-aR{O1Xoh z$Pys+I&P*g^%G!uRtLrvsljX$`I(i|rOum`q}`V!tkko#|5bF+~R#mic4asTYc?7hM)MPw~(buT>p++NID(hF>FBaV8aI@%;O-0bexoiZ)s3G#V>-YX#xbS?;HxCW4 zWHuFga!$V)GdI9m8*FGZ5ZlnkTR|*sBsRc0cmqAGdmjKX+`N9h?%{?%CI<&yLp<0e zVXc%p6xBT9y~MCh=OuzXnA*}PP9TSdNheGhWAH}lSO2~#=k*MIWE0kU=)?e4H!z^D^BCq)vi`C- zIwAKz)jxG@?vcR<^lR9KbdP?`;Gy9G)c<^w{*rLlU6To$#2x|G2%o1%RDA6vAm1y1yoJ8|!lam~{Ziul~ z`Dc}IQxh}7L}Dp)FJgTef%Jn@Spw*AiO3(VEB`>gHiPmcFg(Jq2>FS3K>ZR$mWe;D z23B5l#>nnXDZxPRtEZGrX)-a|M^GtSq#$P0G4rP*=6Yy&kk&%hT@(87&o_Zt6?>W2 ziz4<1^Me?8whd|+R{+4_8^fFU<^@KO1D4sWfpw6LLco$6kO!$K+CTU*oY8wtvn5jx z#g9bLM;FVbXa@kU1VZbY$`ROPFQ~#1>Kw*hLhK7IWR6eg3B#ZJN}h{9Jj~K4nhXBBIf7y#-oO`OIh$ zG0Vg`>(CHX-LhLmHUuTZve;A1TY-}d&LVPf2QD%X!)iJ%p~$!qL6_sTNU8P55OXf^ z<30D)L%F`7)%vdh_Z{3hs3oJVcX>sm%ROvXPWpi>tq z!@FBW244i0R>BpQEq5hZIG>wD4JWfIdbb*gpGTSY8ZNUk5OboYLgB+48)-5jxU$%vV`>p5M=Vu{nj1lBP5L7<@1QVe>jyEhb$%??rpjX>~eplq>V6 z+ss(%&7hU{byz2tvK&jp|hdpXVl*i7)v`fg#RT=X}y&*A)ZIoqKq^&JKGq{t1 zv6>x*A2d;M)%cK)$X+)7lf^>1duh9nlT);mn_J;I8n0${20vj9Ko8eyQ4<`46k@B{^y;372YRbB4 zXh_D1jeJ$b`jQE!P1YDX!Da|enAuqBi=Dny4vCUfI-QSo(jcPBE!ISBGqbm?Q;wi< zNRdP%kL|&&Lx^kz2q?~F?-nW(NJ>W90alU0QPLY;N1jGA-d;6pe~&yp%VoY0;PVzud3k*Y)$&Vg7x zA^bBTAsnosbCs6-J!Bmr_kY33{fooTdoTRO&zk^;1Ma#__ORMt(eKlNsv3j%Ph)pOV!c$^BMZ6XYB6bm1WsXcrT!?G_+N!&2 z>>0jDhn~NVW#_1i;X$X&Mxy5nyQJJF4yh`-5+k6Mj%sKON6Yn&1itDrF6LNqM-UEb zsTis_PGNZzv1}-Ku@)g2IB+G8gqJTA@F?aq9kBlg4H7tj=_{kCMXDj=;N*LyQt%Ik zP2$jO$UE_9~%>1IFq;LN$TfAs4bl^ znd99B1c15Zs6QM@{A*}jP{R8pQF-6R$P!(Z29B&aQ+fgl?)Y8y4sI4GcOg{tbxSb6 zq!$|Aw2mr+5$u~$rnj0KnQZOfm5W%i#`owuuz0S4_qNOKx)^xF|g={Vk=hc?UAPw`G!i{ zV04L;(+Ov9vEBrtND8QwF%vwOozi@m24~_K5T!gOjjAwQR}w;p2zZiw|Q0_H}{TS*AlFeU?(i5~W@@x5lTnE7!_m zb;axfH6O*|B<_y%Buf|?+@}zszZe}vzaz1z!7z=N;rvI^k6zw1D2!#PaNt|{eel&# z<_=)$)GQ#v-V&R&ft_W7eoWv=@EpXNpNt+fv++vKXtloFV$P=I2i>7D6nbU9rG&%G~K3XZr{H1Aj9B7co^(I^uV^=4{Y1FnbTq5`hfxH z1c_o{2#WkB9+0>=aQE`>;oQjG&`c)UYOhRS;hwiCS!5lcqA_SaL12nQ-yO)hT!lVp z2>4N%MLsq+r&?-qPAqHSiQ|oya6Na@%P2mpSIMW%8D>I5sgr>f&7N_Cv7_W43Y6Y^ zIY~2r%$=dKi#Crw>KgJY8EGJ358J!si6J{bq6S;^DBbml{fdiyJn$F4S&hmn#nqc~ ztFhST>b1SU!}iFoKzM{{O@TnJo`)Y#M@A=l2KId6g@^$eC(M4iV*by~aL6rLz;l;; zuFd7Hw|B~X74h7}MIDetiU83=EfUw#)ze^sX1=HuBMx>3YAn>7Kw;Emk;;zS6ds-c!*cU_|yPV+i_oGxM=uIhr(^SZVTA;FZ z$O?z$v#Hc9LlfrGb5``66+LG~k3PYi;821jm$NKxzBns-=0WsWE6Kt1R+9KQ>vw!u zY$OkA)zx=C(b+9X+o;ivNE~DzGKpZU}4os0$OX4K)9wd%+TGmMggPV!jh9zxg`XiukExOro8ZS7 zH^+0g{{xnZ-jtq+l1z;sK4%G?W!`EdZY~jD1p;O#p_4(ScQ!JWT5d}t4Eh^Ivbj-7 zFeb@c5<{w8a@`$E0W!uto)!#iGReRj1#`}_Nem}~*}GMf@w@9H;WW})@cpwPM` zHmufL!KqQuh5DB3=fefQv$*)x`NGBT?GapjrXS?8;X-CpxcGFx88hSJJA$}a5{nCO z1*e7!wC`3XTe-@BM~RftYCT_Q4Vj;i>L3?N_}b(;XnAvPgDrNyG+)?#t|Qp}`+m5{ zhFzIWVfSzP&6pXxcLlL~X)JcV6~tmUIkn}<*whw-V8Q(;PW++Oy{4qq!=|3cptiX{ z*U(lZlmv;LLp{bBjD~RLEXb1Kr7ueD%ZnHI|NL$t!{wN79@1H4HbsU@?Tk^@$H3{F zcQ`WoAX8NyWJ~mdsw>lCVhfBJ5ANG}VCS~|xy^g-&22ll_2rxQ?AVsux_9^Po%{Fi z+`A__>E)2c1;#8B3wNjsMv-Pu zfw?;RmoN-Zk9AnztWchu#9yd7q|K6S3Txs+5MAgd z>a=(>Fiv8*jL?4!BWAgV&`5@c>XIFJ5EaxU#I%6m$XbDw##)S3lnfS>CxL^oS)Jj0 z>KdXd2qGj^ElN^a#C3^E2rivR>f=i^D(*ZIbAm#HtVyjRJL}`(WRxl)bfq%LNSrUq z&c`L%Tpe_IVeYng!=+jwoTF0Zt!HUNEH&r6AuSz(f^f96u!iKpF>zX9?L@^c&BMme z6Xaw+5XMArpZBYf+e*?pW^wFVSsh54G06r!DKlQ4ic6XCrnv+>mp2jQ-6gGhwIhK| zy~#Jv4W6eLR9dP|lG24H3dr=2xY&Hr9k{pLn&?RJZF9={UpdGeNevlf;OzA>a4!9l z1yIRK$hak4wiO}dd1;Qc-)>WUV*L*jOQXtLBO-f} z!4GV+DUKR1WPo-L9ZhHiQ>lpNQ%W+KV0=F^n|csrQd1Re6QM_^!vy?z2-R@$GZIbD zFcmbp!UF{{vAA`#>xKM`k~Sz-DLG072%suzRW=#0INiZHK7(R1m>aP_OdT?XDMRsj zCOXorzgMDilPa1Lljz4$9aecLRVtAL6XjVg6Qc20zFANPANV2~)%pxoMcJuT#E>d? zDr%1*N)rfBD!+!38~Fqfz4T@e2(3l!VsH-V{8L z9w}v^>O6vUV2PI1BA6#TO>yq1@8ng0RS}ypRRDk%7_<=P5QE&P`T} z$IIg=u>G$~jD(R+vvMa^Sc1Z$zBEfUN?WZd+q>)UE4F%9t$aipoRg?Jp( zb%8NB)6=Zpi=B{@a4X|%Gz9ubu^H;(WoFKjc|dVEOXk8OFASM`Q7Uf^$?;%{!;Q90 za4bW}c@_vls?2g;mFV{3xUt?+-Wgg-P$S6PGWZ>sE_?y;)ry$Bw;#dKIkXIp-)JZ! z;!2)_D=P;65*PK-Q;{t0Y<m)ygS1My)Zqe@3;E#VFOvJCv7n7fK7a*{5cW7SpTN ztlsYeSs}=oU%%ao%A8g(AQp|zllpnLpU=b+hL2P3XSr_od9?!Yr-ckkOS+5NQ)tQ6 zh}g`M?gbO*qlxQI&yS_PtyULf2#%0;Y4-lBiP}HlB3D*^S6)~7L;NQQvu~l90L+Cr z;qrxEa4qSc->e_&`F@B)pocVPdVX@Z-R=e3Rmz_s75ld%g=H(1(Z-N=P)3AFVIvSS zfDv(GfVf-CSyxsT%A=Jf_)iFTRz2-5u}Y#@rT2|n=PJ&apq87xPzxd9y%eTvtt5&WW3fZw|31Q+d5U$7a-m3`(il+yQi zhn6>lUJy^Vx@FTf?&ik@^29TX288)l%WKOVeN?Tiyhet`zfkk@F?lo|v=2SpWITNn z*}Zibi+B$}Ts}&-uwb`ST+BUF8gwYr8TB>vgAO&$)+HScED!chFHyv&{sM=L_hXwr zwqs!fm-x!cd*&C0yEhjq9p-z0Cef5ZUC#=P+AAZ=kD1iC5{YFHpw+juYJG~m7;xQG z{bpUFngQM3)Uygiljn61`($Q_{rvnw?Dhwlr6PBDS4qSa2_aByHo1Y9x-=Wu%z3CPBRWI}L_uM@zzg4(&2136}+CFu)Cc>p=GJp~+$y z%`~>U)=51sCM5OvRT`=HybO(hp_Y38B#*{Ry^Xud=z8!@+WWW>}8QFDys4qm2bEq>%C^+$;i^Is(l= zC*vr$-yNCvdvDhLo>r-K^_n&2lFS+{?Od$%nhNbUD7~(ToXLQ=&#w-Ywb118!bR(F zFLBb0iwj9Jew9X=6=Z1q3$--M%cJqqZ2d^?z)Yi9xEI+c-!b02dqnvO_e;@t^@Yv6 zlsp}Q5vyxm=#BI&QE$adeT@pr{Q1cF@b0eN1)SHwTK(Zb`%Gwj|DASC;uo^U+tbzA z%CqOA74Qe~!F%aDISVG#8k8_u*sOUSKfso=C%>P?4QWK?8>tklX}q? zkGK?Ag$M_;FwA4wP_)>$2rT-;*1OrKp`u4ea<-?b>K9>3JVAq1R213&Hbh{e=c@0- zTdkYyRz4AG(DA&BSi}6H&`42!LVo{ z4MQl&RaFrW&S<8d+^-s+_T0Zr+=!L9AdPe@@JQpmA^c__jUNjQ?GMRpq`@T#Y1}x% zu8fILnxEZ#>U8gB5R99INk`6Myd;zJ4-44(BOxO>9~?oJ{{*^bO4unxmR$C|=p#*> zO8T{s0o@RDNr&0*>bEV%@+A5gl9rlB5tC%eHJ9`T53zq4!cGP<{kzc6{t(JWrd*Pc z=~Y%DhoCS&>;I1zVEuhC<;XD%|73FfGXYP3VE2$??3DAM=fF6h+sfEIv28``IX7Gz zIw<$~MWHVWPGR+&(AN%XYeUn;LqqF1*Ev0h%L(Z@{3?x}GblsjU#Rt*m&l{>dd|o; z_D4XtAm9hjnv^NT1==VqjE*cerF$+z?hIryj&gw8g(dk4OYA=6FyA@9``rmwtlOjt zFJ(NXDdViqc6)9&wdU4yNLyIU z_496zugSc}V_EljT1C(0Yt}GciZQN;Z{5X+;%MRX{h^HpFIg9dCov%H{lUTRJ)tRM z`N;UT2Au%nl0pKAU!@U1?~-~jp=EH#^8`t9SBR+JbIMxd(&`k%M4pHvF|C-{F^}Wi2Gg zyxq$^8N77BWDwn`=YY&=81IM)ZtVoW@FEny2nk&+=9@WX)z95qL@{KkTD@k?CiNFH zL(r0-z!uu{yEB^thvc#R4Ab2vsvQwns&Ew?&~13R z@E;tS)}JL8CY3S4kTB?7s5q-<_uCE7M05moN?gka>3pEVO4yLcr2E+v1rwXayw1Bq z5Dy+WSN4I4!DQdx9ZK&Fy&(QH(E9HU4xMI!a?Se9Zy8iL0GSP%z*onl(SdT;-seGQ zlO^_8xR%-w3Er^V?XXgRmU!2iHTM=<6U{PARtTBflV`bhas%%=)5Sas&>*2xcgdwi zQ-6QfZz zl8lQXDhrbFrM>$w6dd)F!%a0bZ7h(D?zGwwuUVE5?{|IUA?J2xR+gUXylstJ@`(kA zP@Oj{71e!`REPXv6sE_?fn$li*-3RfI!x;#%~0ZrdHonnQzJ-pn`FQfWF#IYRU!C7 ziC7lDmeTmD9JEMi{G_b0)C)&*xy?wj#w_YPlzui7u|_D8!8Dm7c^awGQui8F8l+u( z?_m&0ncov4p&rT%@71Hso}V24W<%4)BEnGSu%k?~ETPN~d~-n8?cS_DJ@tB9e{%-v z^@gRP-h+#fVvLY(=LaI??wq6ulrBRs7SxKkli;#K`cXzvNH@01!})JYjNzYbXpU&K z_QWXl2PHyhkh3`rWdUs_?TpfCgH4MjAZ1~8mB_yiO*EoZM78%ADvnN#h82xr3R$IB zxTU$MUail7C74W#w@lQVXlKP*0jM8ds2?L&74y?M)x^rx5BHUgkA{dg$O{*GU^7e* z_|D<~7ef=JqW+s4^_ztV_5b@fGlu*K>FhXi5H%1<&ru#YKb(Q1ykU-``s+NE-+=YC z@|*a;&8k!nsxeO0cN0|J8MxV8G|nqX!(KspiUxQ$hjf>kmHW^XEZ>|ciJr5!HdQA# z-&-7qdTz)z_8ABCe@sorxbA$|yY6hb(_VM}&cfc^W)A*5o;?8hLOB4VhV)f_(k@I8qC0kS3~Mo98?i5r@hrSOhZrj`95kfiGiGkClp8 z0MqVsQd_uDXN6?dwGP)<9MU-dxx@*2VzGM|A>}f}S|`Xq=W);fVnaw?l)Xt}1A23e zBKk?=7AuvyDBL&Nn$$a0cIH4`#v`U0NuFK!@EGBnueNilmz^(khoqz) zTZf8LqluLL9k2{fp3n(236;R3bq9J<^u$2hk!G^*4s@yBp zCEn`J{M9Hcod(VmtOc@~uSSuB>vDT=H^m?5MF4P~DOae#8vQhsdb~ z?TO_G@NP-*I98Gg6|QQi0RvZUtNfbc2+=))_Cj8=KTj-hq=X$t3aCD{jX_Ou+!~HR$!*7v$fznnGJI5qP4>~K#S0N1pnPvJkI8vM$ zK}*gKgeZKClu7EfFp8Gys6nDz{uFX}P%eZ)(YRKu5|E-him2kTHn&?yR@@MG zJaAwwyayAw;Yk$~flYp*Sx2Q5vs!7p&R3ZxoxCps@~ovK8UTx-po6OGcaJQqwc4+w)vogl@w4b!5)bB(plo+|+h%rQRn6UiB{`7PZ}OI$s;a`4Z6ejR z5to%p#*6J^MZ85qHo1XUZbmO_eKwnOT&+#j;@1F@%?ix$Vu}2~`PH`J(x4WZ(cxE) z>KSv!0th&dZ~~!*4zQ%VSn=J0Jy4y$4t*-pfvQ5Fq=s3o$cA@iHem$`;+BrRVF?9B z*1`B{EJlxY@+=mk4N8C}?bmRwv9kbP&zlm!3Y&ne7#A7VO3NdXMc5<<*AVQxR4nA4 z73f#Ure3<$F5BYjcIKSCfC58u=fUzon_?1Bgy$(42D~5#ECYsKKt+SvY3RtN#44#e zfpuwh0B-CN&8pK%ozUZ=j&cAdk198fasd-f=36CzYAp{~NCns~kT{n|c_5G>Y9i%P zVo9Kgj=LaUDqtizrl}~Q0E0E42iYMl8qt{dDC`}4N+bvgNUnzb2HOH2o5gBbX&TN+ zPCA6TR2>2Cp)R%1$N@O1ySrew1nzl3m;xtrXzU%_4;@%uOYhrx7_F=r zAo9X|@D3b6XAgnQhXAhXXO97%pWnD+K&&NmI|$U!dZUA?aA%JK)dqboM}gCfjZ8^z zauQ*riWx_PI$j3 z#8|Lhor?Q#-DTT$Ith4Rf55XLKog5Joebt4pFryMiNo#uv?$BPHm>;jBa`w@(U%V+ zUV934@T{8x=d^zqL#6~?tMqqXxOt>=i3;SNwy~BL6`b6pODF>B2v&v-Bz(i_(4zB> zCI;w}+jXHndtuNk&Ql5Dn%U%$1<1XH+B*bn0&EzKAYkb3C;%(^7gQLS3CdC!Zw5Sq z(;cs(GHhFb(oh2}iXATiI#^R|WeufFV$;&I63UC1hxBGP$tlcqhu4O2iiUJA7*^5h zF6SNcw}%e-pf)k6wTT!Ch|n!Ib55mOyr}<3ZxLHVib&ZqGjXYoqTtf4j~D+D z-bdG}&Pc^6ybb;VoH^=fLc|jgg9~${WnH48a5W8_R_Yw0yI$K`W$boh zoD*v@u-+V z7`3 zCz=JWE|!yeXxkJ}p9b@gfn-wecBoCf z2pD79Bo;9>n%l{n4;{cZZ(#x!UB*rt1F$l5gO?oFDV`MHuphFfTo`=JL?Tz|rKhMs zhg!tV$zh70&9y3$8UH%OBSB`oDFbi~b7mUjsO;}U3yCEcb4=djnAL1VnDuMl-gtIU zHBd>rNNvHe#Ugg_T-J|KVBww)iO(4>OQ4kCX z#TlhN8RgcrvQdw=kK=4*Xqw?kdgs6(5>X7cNw(UkiJC>!yllfmg1DKE%mMewnl+w; za9R8CY%<(I!vAfg99Vav4YLW9gf-BaCAxHtuf?xfW0|!(e)>1=-6fY^7w06In^|K8 z=geZ(xGJ=Wpe#t`K)D=K_;lOlh4$vteWA@@*VwG=8V24XwpPZ_R~(K4iODz!iPdX-$>4 zdEa%{?|1gqqpjS7I^11C+xO`vPzVFFVo`~l{zdH1M{wJ0cU{I=XS)kq@Fo{$@88fp zAKrr5?u{s^3^iwBouew9%eKx)*3m|7YPRyj*v*MqiTSLwfyNdu$Zy4$@Iy`zt*UO` z{otg|c;&tGu=f>n0GgwjqnQZvJ=}=ff!7%k%Q34(bh=E!=RI7{!?Q|TVtW8 zRv(%z4WlvlC-A!NBDzG1%~=BSB;SASeS{v~Z3v4i0%O=}_y@muu8JVFWWxA~7N$X@ z0L(9lp`_w#{Rqa4gmYDb18}&R+D2NbZRFv!fN{w6D#At7#*<=@zX2+*(ya_WhAG|s zjYoF9S%yZ9BiPJllmJndF^PkmouWZS9d3sLdRLJCqlTa z>x`oy0n~^5Q7HNnegWUqj&l3uopA{vqFsO?ru2X@uxV1F!SIaMaSHV|v>`frxLJg9 z8Cieup3{PFu^qY1oHE8`zB3i)p0NL(kVpu616D=#-U(BOU?$jk=UtptD^!j$dzjxz zrtb?aBY0$H?z{6ert_7nu=y+|EaiO|I)}bHo+RwqX2@l*M+r0oc{$~)FC>elM*o%C z85Cwlh4HT-)xl&bS3c=5zC84}_qtD|LGuFore}*`J?VM84(GrpLZ}tJd4oG`Ok1HC z6we{@sAo?pa2imm47SrNRYE38Av9;7f9`c(>kd4|)V3i)an&>F+mqEi@~r8tz+t4k zBX#sUK)=+<=s<%(Jc)Azk0VbCA#*U*lnK*$JhG1x$Py`g-+ zVa^Nb;~l3XJM&_kEO{=L$U3K&#Vzk>aGv zX$JI1Pg|27%1+<&x+mMA9v0m|GyupSQJNq*RO(|ew7OFR6W1)B&y2-5tSuXaK=(QX z1<(8_K0V;DHlPQm!J0QL71o}K#9ANF2fW0Px1RI4P%e;nX+DF5rf3x(nXb1w36-}@ z^*0beUgzVue?WCs&SMB&4x~u1nEd{ET%hphJTB4UcU5NmKIrg!T?YJm!&2dQOu)xm z9>pY1$~F$p!ASfLDiJ$qu{x;jrN9X;H@J<_o=XI^&|j6p8D11)8=8uG56-;EH}TLD z%D@BmZTK?H`y9+)ni=K~Ihfy(0p{K?2lFiEbWfBup~)91F2XeW%FkQ?b+uIC|FDHiA7U`+Wd11p%}|Ag6t@lc9*@Sc#@Sa)*Wx&%$y(VCk6b!OTo{&@ovgvA>GM zj@nDAk+brr>OA5WirTX)9MAV&La^CD%29-L56SWN{70ao@jQy%n;aR0Q8ZK_2CoYu zap0XcnJ^ytK<9LA%8dc6X9bM>IK}j7SdnaIw29CH)1`|X)}#+HfhrPpn8?W01`G;> zmJQBAS?8ah9w<8onaIo_uS#H$JHQ}3O`%88t*JXtniM)MGD!m_h6sd;V;%QhIV*6? zOZJ-Ll0Z7UVK!AO%|<9#LU&ON&Xh@!>$8yyR}Y*Fx+sAhItbuEo*Pz3mBF462&O6{ zI1zV88!8Fo@3Hax1Z=1j=bah~Su-OJUgQq$ckVfmxjK_@kf}!UNOd!vAMp16+l}l>r(GiZYnFw7Y~i(gAo!y!slhD2O-rgMqmR zkbR0)X|&(;PIaj*#8_I&dl{@v7aIGXDNA^<`Jy|p)tZ8gzUzPG;Pv*@@IvX3zru34 zwdL5_mc!O6^F4YF-vD;-LD2KI(SxLlxxNpL(&ph+r9Z)oR(?tUTO zlj1bg14#mjItJkh*y5{h_MWZ7rf`UoQQ<7E)@S&m2q#qokq0)VkW|3HL%Md7mJ7_u zW(<}#3JH^|WL4F@RQSJTf+iKek2ILl0_9K_FJfjmC4^p8;3&nGSeO&8BxMzlKxAgu z$bz-`pqOLsx+ut|V1_*}&jNTFIsT^uz>Yh9C^dJGEm(Bn-YB;4IR0K-` z#cm|#AH7k)gyWMDQTDR`_C@y5{Ce+Vk4fXS|k`g>% zof#WPb&jP`HAgV~5h?lQB9iUF#gjO`c|t2bVfe|Feb(Z6K7KU>htdfvNtcIKY{1&{ zy@TrKLbLTZomJjZPXwB)4iaXL=uqw;)FZ9<471 z!8lsK7)S{cXwPx!s45M`59}*~f~0tYL5lyC+u8G}@c}AdIm&Z|cWVD8imey={DgLaM>!>l&DD`%Bx6v`;7rQ0GFLptpK2ZY`%vKgJ z5_YS6oo`-QF$>T!AN#R1KiH$PCIIXKgasSe^nlrI%YfM-t<)8a4RtTVrZ!aa$Hx#j zQEwJ!yBFc8DtTXs3$TmIE66pKAP!|YbwNYQ8qy=zc3-+$d2>qVD?O$^dvq76hP$%} zDghIm+r0>mE?~SproZ3QU249;5{k2Xx{J{_g>e@^#U%hGnu}Lkqfj-N!CIK@E_#Ty zV7#EQ<$JnI^kG|XV*C;o&p?3DbOV1}s9rOMxsTw_0sUvES;b$=+VzPsN*ey!0=`h; zyL;(mz22r3%=_j3bGyr0h!3xIrpJy$cumjZn~R`)lpAA^c}iIC>8@1Yn1Z)s1m~Ez zp0HlLP7kQ&Q8tlZENvE9oMTKbMYH#x*ByY)WB**(y@X8yBvz`^G7l~6F2t?7Glk(7 z9m_Wvbj}9#2x`SQOQ@`&Jle#O*(bXfm20dH4(^f^uG#LAPJ43X4ix2@LK*Skk7Gp` zL7HPy2nf+Zz?vk0%yyS667XhOD6`CVuL=DUnxb;o^#JBYYF@VnGy28BA3}q>7t0L| zfGPn*RqScDy9_oKDNhH87x4Fa#oBE5GWzYBg)tNB0)syRy9k^;iERQR<-!R-Sxv#qCl|fO<3Z3c3n58-ZR=!}$bQ2LqoN&2(1L&$w(eA58tJo>j$Bv_| z>z?k#FjXQRdCVUvR5H;XJ6dj)+d`kq$8brYLWqs%RbF7Yp)}fEip{XVn&bgs(q;Ow zu}OF*TeBzuzk>h5OVB}yS?RzHXDa~Z7vgSf{{)F%LY4yM)TTg)l3Fyo`{LEziyFno zm?vI9iTq|9ITT~$jP6zDIK$Vi(Z&p-scWP4=G3~`?iGAe7Jw(mP+AA*K{P>kF}@$U zVf{wH^P=YDL}+?`9yE zK$FvBmObqT#!&DF6mqhAacc&N7{|w~(QdZ8fE8LG(_1Kf(;j=Q1HNtnP?yQy>d!H0 zWu-uS4Gep{?-ZMg-vDI+Ah!}K=^8Zd(4Qi_UJXFT*= zc^b79@v=Nkja(T;5@=?6yjTDW&j7onVzG^vTrq*Cj*OvLPq{j#>-5O7FX7BYd8=5R zR5I;k_k6SroZZtI?=Dv21pEt9qyrnw(H?8Fwj*>&5Y8o76iBNLk%~DA#mUy}iP@p< za)iGZP&2mHX1SgM)XpW{E5ncK68L_s?t+as-+re#x78o&#Ku|oIJmzx-g_?ezRW+{ zDl-_S0uZ~GxK*L9SciD4yaqp8weGwPH=CF9pZ3*n>G$f08T-7v)4epXe;((3U{yJe z*F`S&&G?~1q)eLO5;9W;fKSYJFW{Hz-$RwF@Mx)9*?T?;oZiomLB`_zc;)l_&*v)x zi}9c5D@F8ks9b_edF8YCqOzX#RJ*f7SWxNBOUh@w<=6 z2lUknV>&CZyb2!+&%;OI3Vh`G@oK(fHNSf^l$Hvu8J?|4tD`~&|*EwZv4dlVI?(_O;7OP>SMpX~mmZ2qKd{G{yr zq-^`7?E0ka_@wOir0n#h?DC}S@TBbS$;wBtvy-x`ld_{HWj7~fCnseWCuIju%IZ(b z%1_FwpOh7!l+~V;m7eUBuEW|&-O^IQNa+yJu@CzII&L6Vp0E54{!=**DqiJF{FfkR znMKT6{!0+^Yy6iW=8yOHZ z@G;8|LEGKLouKVeBJ~IO@g{zJjvqhI4?!hOSPGSF1)@;N<|GQ0ETXGWNheBW5ZOPK zi}fE1V ziUjIBlwyhm>YPe3MFMp`mSTzo>U=!K6baP%#uQT|Q0LoHOp!pH-io+TQzTI5KctuioeJ zQzTI5vni%Xpw6F7F+~D(elo=r3Do&(DW*uE&MzcSaeD%F{%MLS5~%ZwDW*uE&M&8! zB7r*pHN_MO)OqfWiAT}x3DkLEiYXGP^NJKxBv9u|QcRIRox>@nNTAMJlBc*MfjaL> zF+~D(?np630(HJ3#S{tD`ACW>5~#D7Vu}Rntf!bFfjVbWOp!pHuTL>W0(E{*iYXGP z^IgeP+?ha~?@2L50(Jg)iYXGP^P?%INTAMNN-;$Ob^cb0DH5pj_ft%fK%IY{Vu}Rn z{JRuWBv9x7PBBFSb^d3<6bo7LHi0}Bu8u#>WR3*-T%Kl*1OmM}%^V37dVQKX5=e9; z%^V3ddV88V5{PtjnmH1v^!_w+B#`NYY34|v)3FqDpfq!=pQD^+js!YwrI{mvPEVwn zBY{relxB_uI{n@>b0pB|52TqRflfb=W{w0p{pmDwB+%(6(#(-Sr@xY7jwA=t=hMuQ zK&OA4W{w0p{p&PyB+%)X(#(-Sr~fz290_##Uuot@pwlHo$>-dL1UkJeevZ=G(s!0V zPALIP^9)7%mA3x2HALYlN^WzWr z@n8J-7k*sF0EDafv6mm)`BCFXksoj8$D8=UcB+*R@q^hBl|SYOBc&_<&VMnQw6YQ( zo$fL}_DG^QmKm=#5^3a#|=_P>~mzcN8 zpi2YuBk-}=W_aQi;kooL=X3`U04L!-jP$#3qK@jc5>a z|5WRZv-=R#g*<$OhanE8g)k=dVjB+^`1(TowL~Ias2i{&@@a}eNCT`XuhMyE_b`04 zJ1~uI)?=+|2O*y)W;^4fPb02D{)hNOTk>ihd$zS^w>srl;b%>=!$Ql!U^gr4B(f?-%Nu%Y)Ol^F& zw9*78BfjIpai-Cz2s{sZ4zNoAkh}z4dp~#Ih7@&EqXp5+Ak7?m@{Jck^kwD^NIP_7 z7u1{RK7eeJ?-+01J%AGG5rZV=&vZ*4RZs4mWS>0qFy4=fZ4w3TN|mvb9;($HLjksXuHmeCcKW;NB2B6ByH7#DK&+ zDmE@)I3=Pf5v96G#Y!SvlUZ=hqeaP0xLbv!@4kFBaCV!dB%C|YceyLNs}0P;n-77w z?-ci#_?&L+PG6OAr=`862THGCpn2SmxW^W{*L62~*q5F3#Xo+v6yOjMz@is`e?2NL z-hlu2QVEe*MCeKlq|(iRFgU{SG=edG+%Ml(W)x~6x4k%1o6gq^8T5Sb7BZ6#P6W&` zjp{3jYAhtUY!qc}lob=^!&_Kq_*u_z*=pIwLdgpEH^4MSCPKFc24w9+C70E>*!*U8 z<-Ty+nN7c)Y^PF$c|3#KOA?&6YlwW=p@7^w6`| z_pf8$*|&KE8lI2bTf}LCgALSxss=mIW`kM@sfgllL5^CO4>7V{iURb<_?(4wjsBVoeFXfNR^~E^C>J*S1yBE9S4cq zVjyvuv?#{ZBdR2fOs)4_xfl~C?Fw73EKBj++;@KoHjPY*X>~w%KLCHP(lki#ky^Nu_7}kP6LZqt7M1vG_P9b?wU030tswdw_RHDLeivZwG>6@}DV`%s zd|kn14syY49p`-{riT-t5U2TFp)t)9U;mS2WPosEip>$}*Qa>S0U@5>DHjwG#Xr}F zV^YY4m0OVNT4J`KDgv^rh_Z9d@j9+^J_kLV0M|H;awYn$=~s-PTEa-xe}#eWffP_9 zbYGF;xjxWHBR>`%sMle$b8Iz}u<oTzy(7hQWQ(_{-Dj5#OLigMdOzxCmAuXVLc(U_w816J-)_l- z28AC_u?eE^=Tba(YMX`PKiz0=uh+fJ{#n9i+!oq$YXyM5H)b@j0U&=nPMB7YSzW#z^c&z-_v_Zh>NFTwXD>@`;Tv!*mB#+mM% zX0I<#@todkJn}&#w3fv`#F^fov@Fi_b|3FRafZceXNOEiW_tR2Ot^3`ds zrpH?6mvW0T(PC8+0 z*tDe5HOz0UWQ-thNTCS=MNwvW|BKUXdNqUY zDzLs5@`ynIr;O%aj$(|ks=))x3RYwu>COSJt4*O+tzsEec&sN| z{wxNC!jPKxCeit;$ZnsSe<#@`mvtN`Bp^bHS5i*UUMqzm#W#RjJnRc*gxj$)3dO=f za1<2_#=)$-fpHR=Ii<%4Bp9j*NeLrW!w$t^&q8iDt6^t>oFn7+XC~w8V#)Y?o?3Nj z>H^hOjs~=mwZa?}3kNsr6QaGHb_xN%sMN#qT5^z3<3+ts&@<|jI>Km|Ai6<3ESZYa z0^X$pC_xK)TSZwPb);v|S*O*8j2EjIh!~XsEs1s-BU1NlE$9+FA`BqYQ)&ke%n7u} z(oPoZ%Tw=&Mp?U%F#s8K{Q%U%(<=H5JQxP$+(ysrFxyGRVcq# zxl@8Ym43Lef-K;!p*1S z@Ed`6!8t2oO{$X_)k@3-3xzUMs?G2{T2vV|m#`d1!)-`478zt6IVD5_hn=tGS_H~- zYQdhKY-J9^G|v*k=_dq4E}gNY;6%-zq!u+sPaTRCGmnG19%kEhga_tOk{iTGmD6!2 zcmt{(j@xORoMjy4!a6wkF<>>66y7(X+M#k@6tkHFU0TQGamAVflS!0d@Om~`w3;LD zW#DV58R8v+E(9%9X{>{+qDVahC-|UT51~F&>qQ41@H7wfCM@5wcvPS))Ta@gB3g%% zF<3QP)78)P#RUoIgLstD zr@#@4CHfuJRJ8+KG+jhVR(zFj+jf~}&Vn4!|4(M1uZ;kD`T)P~-3N>w;?8#9g5}(2 z%0+xS6(SFF+Dr=vJp_&EJ!+yePjwmxfyE2@*~r7jMI}d2Pz&LUeklFwhYy!pSL8*}a)2Nv(^I@rA= zGwenU>|Sia&_7U|04MD1pj5ECZC`P!Q)O(3?xa`->(fB0AZheKay=Qo11XBAU?du- zw$*bT?x1p8W~i()P`M=oRP3NsP}%q(Bp)b*mwM{;IEVA-l7NcBh1@tY6i|#CVN$rv z!$xF}U;~r64R#ROof#tQ4MgtC01-RLLBzZ2hJxR_i&QxFZ1>y|@rAzE=hCPmR$rjOOm`DElFAUFKd` zuPM`{s7?0#_(r|n;jx?R}0RYY1Z+RIKE1j_5qM4i?eoJT^8%-6ax-Euq|;7^92S~`bi@}*Ja*l~EW zy>yW7@Fs3!Q;KaU?pV@Yq$C)S?T%V z1rk&~$~4uydpzXgwM;sF!swz*j8v4e8%Nt||Uv zH&^s!W|@2b$QBm(Cx@y+^|Rd+dxyqS`6$=Te5z}A-?kbXFzAB0aYgsGIZ}(`DKlN_ zUOHTbYH|N#8XrD5qm*3gTy~J-shG3$|7Y)An(Vr=J3mL*meq9l@d>(bP%Rf|0a*Y@ zu*jmz5hxI>LW=|-0IZU_SRv;VxMU&|&Idu1S`j_)P~qrk_rL>>Jn>8)LLWt+!bAW5 z|FzcM`<#1kA^}$E;V4C@h`i^V{aAawU;7Wm&;y=-fIhXeUvKdTr{`Gd-vR6` ziQ2DUY9asfi^kms;m{-aO0c{qpCcB)DFF}6__6kpSTdKRH~+~ob&#MDww~;{!~I^- zz*qaKqb2N-*Q`ot>-sfaLo%3#Tpq!vTzHC9-*FA1?YD4JYFw|OS>1X4RCkg1PB(6G zq_k1-aYf7F5GUdMXaRbu2QRl@g>C3tAtx@32s-u=bR!E|!fpH;!%Ww=u3znHnnxM* zH)LSHFOp@DpSU<#K3(p4oE!Q!9W<#Ghe@G(g{2MhH9|zf6^mon4itZQb2_P9$7qp+ z&i0sNG~2j`?*K*8N~PId1)5f^=jP81ht4_+#$Ft0O?CMvEE{uvk4tLN0h&wa_vj*o z`#rk64qZAY{eP1k7AKvGr+Mv$au7Z$PC76w>NX+0GlYw~6HF@?zy7cO%axY@|AHHX z;8ds&f9cZmLDK&DzvXo+Z+p5H_FKhyxrb??yIH8k*H7={PsbFo{?X!d9xV8ENe#Gt zRia^eJW~hU(jdAN=bd4QEAPGYjwd-rYuH}aBoFxO_PrYa1=`9sK^WM;Uc3!^7Zv9G zpQCNRL(7DNGFtZO36Y-LEAK4$KN~N9sT%$tD@JqGKSpq8_+j8`r$1h3)L$L2*0W#7 z`>L#0H0Z~W{Mq6si}&AoZ*lE^W=&h45)}GO4$vQa;CJ7B*Z=)lluP2xF8_I3)`E~$ zXH&z(O#}7_C~tfF&#@t3MhKM6JZoz*@$TVLw)0OG0Y`u=ATT-WIOXSG{n|hHf2e;q zJC`gN)^QqJ(RX?y_pXiVy@5=emD0GTZ2uc0F3W>Q%#ur(Ey;BHS;- zV*T>ofv71lXGHcZ`E!8g^>~E0;^^$k!Mk4_JsH%8pDg}LGye6v9m4VAyVu@b{Ev$d zuJ_;dUZ-qOtS{|X!#^kB{`KM~KQY7u<+XdQ^e<6a2sS0o_d&PB4S8~UWro%abS{!&NsgJ0K<48)Ut0#`@Fg3|%;doKHXE-Re;J(o2QI<4!^3GYf~ z^LsA)8fjgO>i1k0T_+ttcs~AnwApoc?Uk43Z~joFS4xzk?ts=zy3O(Z|CF6_zW#6d zI{hf`-eAM-|I5$s-v8N?pChyB9((;d8VH^ZU$&`GHF8+) zkGO+Vk+AJ=kCzG~qKT1Rb&6;79cO0AO1Scat*swwu|GuNI^5TV*+00t_`%5!-jjtO z10z&Y8kFe{PT2`R@y}c2dhA_!uUzl{)Rq;-AjtJU0lZ71>ev5DC=%_QMkKv?&Nv@$ zK%cMwhzFaI^Xn@-9lUU@AVzS9w+P+m9fWoi+ssFn21vTCa5*Xk6>gezP&;Q7X z_rJXT`Qp*thYub-Sv>sm(c>>~-+!`r@?gQVPZ)b~gC)@rdfk!7jT>SQW9BjaOmuVX$>QcmS6Ssv-abCj zTK>c0$)nr%AG1*={T;0blbtBG^XEuhTORL4D9n0J{ST~e{J*WQj_z<%HXKh`cb~z^ z7WdD!fgdlfU%zqf{SSZi!TW~n(+@wq@xd+rclp8lTVKC;`qj~G@xsNuqg}?ha`!uO z>lbo&$h}Ms0!p?r3&bE#U+nKvfB|?gewMfcFwjphdN?Bvka*@2`{-!7{ngo5XCHrX z?dAv9Ke%z@I)gq|TONfBNOc9IUlV{jl~0zX0#;fC61G3VMHE$5dhg`v_R;b;{+rRS z+}nDz^>}M>7gxaXD@M4thr#Yz5CiG{@fL3>-8J^|P{{Mk?N?d|3&T9+Cg-E$tBYZc zM<3t1euGoJa(j)fxHE+I3zPx8FFp#&9+Uy3{1^GUw+W-wP>=ELy#!--)|cx`X- z;{4?FT)^kBdBc0Xar4T~dpa8-?(N;PAET}5!essANU>X1es%UlL?UFLIBj{$JxO+I*dSLwe`upWpfF$lw3*;=ZnjUhMHX6m{#Xv%mlM|LL_Ke)OYTZ}Z`e ztq*U`Km71AGZG%SetkCMk1q4!jji`rmiqB!K74=c`mOnlm-_Jf)~)$c-@kFW89$tV z_`%J~d@u*rlacb{x2d;0JiPYJ z(eX=)+4i?j83Ya_)s7rq*b?4byw+w)kIo^453b)T`WO}qslea<0{mM@py>bZ!$M)` zZ?+s&5}XjU;r4H5t4V9*2RXQLGOr`p_r>`d`C34A^6hK-55t=N<5w`o4M3t$!dz7J zKS1irjrSJMQj6VF!g5>GxLP7zTCkI)+LFA$kes=&0d9ATPXIuHRgx1Dj%**6KzMD} zDSe9@H*uC9ojs#agbmA8c6v^J_31M}1Gh*?=8}xr+F!Enag~OtKTg2D7xfueZpI#W z_EGM+LHuiYqIjcUh8{jQivjiG$DEACb zze^UmD~btVsjBi7B31E`C{>f6Kg9C5QI4aJF(S{1$Q-irge2D=Uwg8+@^}Bw&G&C^ zH7r+V=`(81ki)<0bBVP!a3d9eOTaXlAG+v>Qc-~Eq$;DTX#7Y8q$|HVrm^+`ZE`6z zK1m7?Rw#TXto2Q+QwlqeSJ#mb zHm^l5D4B+@H>^i*plTTzZrt3tcC+}}NR%AG=j$OSl?7g>|JK z^6@5E);mXc*8{UX7r%F=!iHT+ExM#Q5Yd^`AUQE&XkXbAB5`tK#fH9J$}||sw6oAF+fCF>4(CDv za{+4!F0IxH4xK{#LKTH~s0A@EVDHkwN$SG$Bz6}y84jI0h?=~7-}$jB1y3zkUlC5( zKT)3t#d-*cxmI@oK};(MP&^1F)kab22leyu_Q}pR!(Myv-QoT#X`_oPH*PJyL|4bQ z`_au0rK`RtA+Hna`Xw;jAxo*s!Zppo^5i*h5!*zdpk@MS&c;$6$qaC=Z%;*9!$pzLEexyPv~2+eH5xa%T{2B-8OM_AkpBTFme!0S~vhK8Jx?Y^0B06%*>t@xqH)|`kW}&u^{us)L8T!P)(O??3VxTvnB#hftt4$^P zW#Iy&u{&8@^wf>qOOX?y&cH-z06el%(Ppp15O9o{bCZf5AA=e}r6)z&m^y9x)E7o_ zL-Kuaee1^cPp{nou`UM=oyDLgS<;+7L!&IFzqkTZnd^`fZVO%yf^Md#Jz@Oqr!=;I zDt%UJEJjb*NJ)USXc2~seien!KTl;^Em(-brUxXlqrxysL$AJWE4qw_QH4r%^W*SI zM0)k1lpD(2)l-?B5Sq=2`{zCY7X$08j?Ta{Geqj(_Ry(e0^)ymf{>0Rb&cvcz=E6f z#W7`HE&lb*s~_SHxpnLPtJp~Te*`AMbRJ3DgJy_niW+~3`neDF)) z6Q)D-!9efYqZJ0PKz#hsL9hBKEj?RG2ZA%tYZoYJ^#f!G$)_Wr&4nH(OF$%ZKMH_Y z=X88Q&x8ZAb~qx~Z``_iga7~NrXjuwh%Z$+oqR)3BP$O2b|!5?=>b5LGwVh=vl#l* z2Y0^w;_m$?j~Dmu-+Ax|zZ!15PZvM^i^Ze6pWS_Q_x_!`UmZP!**Xt>Jw}z5#D;_? zR1*}3gp8%Kg7ztv(}@ z=WKEB-o3yFpnN-qeAL9`XS5))A2BP+OSd3vP^3Dei3@h%W*W_2veqD8BH<=+Sne7D zyh;2!-36x)5Cu1GhSdRbKvfn4s40ccqvMg?g&)SLq9N!4jMP`yYL-zrI_vDfjLmjm z=4V01e<5Gy-HpD?C%1q4`CU0e?>xBwL|CA)AEHR;e+6QsE3$5JgPDJttOazeUvKmC zqa}5}pJCoWo?ji^sz*QN(U(Vf)Q%4&5+0vH75L1a+aP0zAJvO@c=66Furg)%tKs2I zo;_?G(s}Sve)T>NK8MvFs)2gek}-RG{sGUwfDtYpZy)TFtWL5@vY>n`5h#bdrPqUH ziw0-Np;g1F?qckpVLCh#N_$IiuE1INF&ddrmovR*m&D>B1vTiY!3X2p0bf`v{%*te zLni;#qqrty@7G_Eo1YJU}HTio7(tCUYqN6$!glpirrUj-*#T9TIW_+0K~ zoxaMAWCrtP9p}eEHeC*>VS~Vv0r$fftX}dkdGM5as>)P-NSM%;WRt=zQ?5TOT$aZ4KfA z!E^GcJ0+<81PtFw1scTC=P&{^ zQaOzt?F*l6opHuDKK}TY^hPYLY?wq+{b}}7J_p7|0YxIVAosE*uxE}>HmuAh1-DO` zIf6X_=&OqmAWc%Y9j8gDg+C*#u6+QIk}~BLNeanfestMkI+9xF6~X>C_~w?D#SS)s z0QE=Sfdy&-+KPJ3h~5oTlLM+RN(QFja8|=5l6R8;~o{UNd z8^P=yY&rrJa&SqU^?8nh^*U6E^MO_%IB;wPprwOrv5TuZQ~r_!RMZc{tA5&{?+|Cz z{#F^gjG+F5&$s<4cM7e@>T~jAkNO``f71SzURf``RL6k&!|emwAKORuPwJfgPeG09 zoh6<~61h&);PL{D+{Px53DPRVM?3`JKpEE&rN0_>eo`E+6!khIRa!^NISXh__+<9c z#ULgvMQF>J- zD;Wo})|w{<#68@8iLjwNt37ud(#cC)l|i}cIf@fw*_9P}ktpeuimGxY4gmY8v6}f2 zr|Ci71DLyQFT02`tu6Eyyi!;KYDxpXDK!ESl+FSEm60Ac3@(wOpoR0TKHD&phsg8_ z*48sD3ISn)$LJhd|H?dirzV2y#BmSS6SQzw4Z8dchp@=Q3xU2H3u^9m8&MWCr}7^+ zczFwI)Dc&9(mhI5XPH!Rj|2%5i@cF9(f@f!NRqD!i*Pl|QgvrQ=6wBeNn5#1?n<|; z6z?mkCl%FQ0rlb<7(ssf=v?ev3ar-?J|`F)|2T8L0dD~;5DOaK zW!!VwC=iKCYR>q_OHMP&YXn!^-QX88L#x*hr+CL08ZQ>VVMGDckTH4`eP_a$Zjj~n zzTq&0cS3?&H?N5zZoPl)<^KLRlK`N&r3<)u&Hk&$YR{CutA-kaS@xy->S*~;sTB3! zzx&&oWn2UiKqo>Bpy(7}zxRX3bThTMk#^wk zf1*p(uO9?<#5<4g{@vfQeC|5)|6IJ>)x(;u8X^1OF+;3hIdjaGeMmU)7!8{zKShyT z++LpWwT`xaVLN~Kw{|KjxGuf}etqMQmb{~98kPo|%lh}@Gd%EoRpSUG-sAG&Hn^() zy?B>V$`nq*!o}%6HO2)S)#KSt{Znqn|MpgOCcLT*`ya6lj^mew_*dzDONx`;z;Y<` zA71D|dmRlE3BsQ}hvyVgh}dD-Jb0`j zR*2%OBcE+wwKxCd7h3jQHsJzZQWH(@Mc=_|U_Fh0(nXfUuj#yJ-)=Y@A(CbVCb|Fo ztC7$%^qXs34vc0AOKo5_b}6%tPH-pk^9|@YJMwF^$F)OGlcBF;CQ3r%S?(CD0a`lW z;@>%QQCecUME~6ae}}C9;NrYYUwMSQip?kD#`?ON&ga9%_-jp*1rW<47$ie(`-C+{ zI5OyB4sa#$jN_szbB%|T*t9ULDn=`4J(IM}aPRLUfu-6`HC z-fCDk*qVlmM(2PG$)He=&eB_imv3o6?@kwnYu5mJ&-k1M2HIZHMxP$i*7`6Jog0+N zd|CcR3PQk}aKM?`5?cFHl#^yUI!pd}NaJG%ZS&QX#OO(gdxA9>j6h(oH2`;rPOVvi z9Y=yKhbnIkpB35qVI8!w*DJii;YLC?NaXoZSRr#memHNHB^{|cSur!{Ax(b)fy)TIq})1|x6+~z zxjV>a4&yog_1&ur`47-B;66HPzI$=J$GLNTz;qL~ag!!yL$h==$EW06p^@&MEbURq zh;5zDxYK~`?UP;F5NM;@o_+Flo$4ov)t@cT6lVOB$6x66Is#+)K|Gp&@rAah(IdK% zD@W}%P2-@j#;^WK`}S!?cMN&^!u#tBUZDc$1ZNS+Ug=h;72V%|dHN@@`f=Mz?+7?T z1lzxnT9+XB#L$hsKlz0}oh;4a!&5cdfPA^E6>KW3)hZ74gc5P`{WzJ2+pkQwkJk}L zv91^S(&jUOFCjPt(%s|6=P7qq&ciOxc*4}NW~R(n$)>k1G8>;|J>Gw62l^CsfFcY5 zwH6DeIb&dV7!Hb1!VAEF{bOHHjW-9?WQk!lr}hXDL?uusdW(aRF^_%^PCuc2<@%Nw=ZnRST9~9T$uJ2MyJ$9fO@jj`}MVF7Qec0EL8O z4zqcOhFoHf_(`%mwiaYZvE0&$D&wX)cNJh@udNfBeG!UOB*^HRbF`%G6;nImV(%3t z3tSkgQN6MOjqznNA4Ktm-;E(Y9R{Bei8Y^LA%LY*NIJEI?dtpnD_3@$*Yte3ckR@C zuqX?!4w|n80sllCoiGsY8}03><2U9Uv4bg{0ZEzQqSMl!{h1s*dN68#?FA_d>h}%^ z^x^aEuaW#YI>1zLDGsLZuH=Q@r_Nlrb!c_R+y^9nDFGPZ(hD&J?ZMzV(mSe|Y@T2^ zU#YXFM1zk;?}1|Qntpnusy{f|KZHq?KpeNF;zGNgN@;=(V$#TuA?M4!mZ3jl*@YPa zApU9{301qZs`oQ!Ze#>Ou2LYlc*&KyhHfVX?ER1a*l_#s<{xW85$luphSYqCY!9Wm0gWyEU4wBhpJEWq_;HW7x11P<)Bb zQ6hruTn!mE?K81`zGB@td|@38Qa zrj=E>cF7#GGQsO1a`b>jyrN$n!|4*HZ#6e?7k6~nBQh_qO1Q8tIi!g@z`H_I2HkTW z{;LgX6DTCW5PqZ$HW28R8KKJd3ra(`_u@JmAC21Q9UmS)b-V<-L?2pkx-uaFi;p@0 z8}r~}RdE*A(^zEcykv)IykZPNG{p$!p|tUI>lEY%=XRcNq*umoBi|_`ogJb8rd^|h z;w+YWD*6X}++QO1V62+MCu$(AiPta0E}Y5A>(_gnxM*I14Ld^xeZUQT&t8GSp^4m+ zOLUEqNz8ner~1AhKsIa;x|i?e;9S1cut`o86Z|%{5dhr_4H64#&$^0%ujc5tJmUHX zwhEe$mgUPlPw}A;lS9Q)ewRN?boSK7PAG zg7@g253(PXXA|&dd2x~okJv>cC2N!r9Yo@J-3PKD99i&;LoJ+{XcXL#*QTufYAxNi z=Z}_*#ujm-TbP6XPdLT~MhQbiDr^>_!Fpj3O(+zI={aYa3ur7^;D^tHw>gf%PyKye z_G|p|LILnwR*{lt6u)fI~ta8~6I^dq#A7w0JwA>E6; za%O`%Weh6)H2MpR6LsxdDeOeg$igM^lDa1ZniwBUt4^f5XPkjYEDDcCDKK`X)?R>Qlqd0wRHV~}WYATN)Z zYtet0kh1o{0|gR*wA8>eFEgk6yQW_vyzH& zMoVcY!R$v(O&D*cEABc04k!#~SkMFa5TjNRWIxl^Q~Bll+@y6SNggJJ*xQ~E65tEU5SI|@${@=z zz|6FIKT3!@SfQ*K@17hg=%KSF~nK4QW1wwNBgdzs{unxde4l)+{d;~YUdBg#^Y)2&b zDXYnAn8~cq`V>u`WGV!J7gZ%dUzASRjLn>~nYL-&hiTh!SM5yFoMkn`<_zvPHO0=6 z2G(bX4{e*lMuaD6oojz-meKr_;z}9B>FGc=bz#@k0)NqLaJCM#wb;-s*Vtl32Yxe+ zF&lb)>oLmy5t0xmfay~NRgs2i;Am3)G;;;^<0-56 z(f{x%X+;=BJtC@s))~>E8SGM9keyz5aa3MPwz8cGlw^J18wY%tR{7K_>4IOC3XDO_ zQ_-o)ZQ?*Tu8gS1Gxi=v9iRg~C9${d+p?Qg;OW}?V1IR0egbRBLVU$(bz&Z))WAi{ z-s2y;$1h&R+@LJMo_(Q#&{zM)fQKV8r=Sr69P%g2>vh{m$?m!xeOs|V31xYvTZCZd zIWKNdxu8Z4C49AXdAlvwA8vw>{i2U`3p{Lc5qM=cB3-%bL)-PEh;=82}{HrxLuTIY~~xL7f(i%dAV1b^J}>3Q`mW1@UV@ zft-~^^bZ&AjAi3+m**C#uPWv`={o4)oMWSP(i7cWNC(NXEV&rV6971Ip<6kTt*S*7 zJ!<&IT5B#(&~^~i&Y5)LaCNE1Q^@3${d#kwk-&^f#`EbDygx)BKTyn9jBW~TNh-+T z9DUdNdYX&Vw1uHePjLxdI~;;-)y<}6_oBnq1<<%8b>a)KPk|Xs206)qkyR|&5CJ!+q5rB^&G4OF6WwmJlcJQK zw5QEp+LDkONOWA3stqz?DSbIUamsD(P5o9(9H?9z`l`A$9oCues>5w|-xNkn8;R1x zOu#D?TCm|_Z#0!Vy@-)47B9KE9v`OL^WG50z#x7y=z}8cURJ@jy9)&e7DNg=XyF|l zulQ1=v1KB&nJS8#F)4&sr8xKZdk;Ew$YL0?c;iPb8D;ixsT^5J#v@&W(Gr3bY8tGl z@!%P$M`+-E2&BQE$8NHiqwPQpI>Lw%>Jt)mPqp^03z35-zy-xcpsGZ_HM7|+&q)U4 zGrMV%n#2Ix>*8*5e%Rp2;GyXhF(YT3ZF@mMw_ai@5ELO@3{6x^>=(NqZd2y;EQCSE zAcrs53J`Kda@$iFo|r~<5y}^&eZ)B0`?g>Y5)=%OAG)KSg>EhGw@Bkyph8h>7+-X4 z5KToqIS97-Qsocq#VNxM#uEkoe|`=+(A(~X(u}64JMe0#C4}~|+WnzhtHZ;fo2V^5 zaPUj1a|DbOg%?W(6RCDpRI$lg%)ugn{#0ft?ad=Z3xCgC#qj8h6zh7Z z^u5cKI$j4MnWZ>8pwT zT=UlGaW2&DGaR}g-1zVVwLYK}imqhR0v759M#l#>O=BTz8~Axd@gnzNNW`~A=*V1QuX7d3rkphCn%ptAC=*!5|ovHnT=0Mp9SF>g>Yag&5ar0*&xZX10 zw39q?FIC|{%kMlXsOSJehQC4PEH8(~$sc)!_oV+u#;1>WDNVNT6NJgsQTx7zdWIcW zxQb1KS{+_mLwDNHf?^w7gv5FOEP6@l=ZTg7WLQw#$165Bg%f>1 zUW^bg(^iAQNK}lLFd+?MA6E197`8e+yWA{5!(r_5mq-Q->G=)8G-?8Pw`An;1klR4X4q@43f`mM~DGrHlFf8TriNfjDyx>H)Jl zsl@FmK`#Nm3?2@xnI9Uu9rHw`A6CQiX*4RqGl{GT-4h+a0&vcq19vEeddm6y5*}oi z0!izN*C;lo*&ZTQcQI?GWGP*haGs)+!z{@D>Om?+D4M@9t+hiZwrj+=1YDrjUp(ea z2&se^5;KZrII02O%9(R|>H`2MuzylF5vvt!ycdj;Q`2al)-kRuce)^OJF?_8f7~dp z&riv&AbAa8;@Cm1Ta?VQI1^kZ!A+%qWv5kWp`*EOxA}Nb+44R-d z_4=VErwc$0D_yIiKIW&K!bJ4JV4*idMy_m0Hi6eSghHX}UuU#1H@CNVScsJ)NEv?2 zHjRlKA17?t7(QqouuiK^x<=AH3V=R*c!x?fIX#&V_m7f(jLic#wRKJ0S&# zPi_QJ-&}hLzy^#J(R4n>9G#s`uVP|68LbeyQ*l(!vp1@YSvs&S=1rBpvZt)~z$#QO zisD6})Q0%8?cWglp7HQxUv#-EMIw$SjWlaY%8{s^DFy=ULidXY@C<3RG$I!Y%nN#$ zrQ|Lc0CL|c!&V$Aqy!63Zp2YXwR?^)TzEn!&W9koM|q&z!e=3&g#~+==Lrh+T^vCo+p=Gno@f2vh9v)Py=}wS&+}1NHa5%7c@ro$N~USl-Q>TraM@`vW`!5wF~z-K=wZj z4eR*iTDVWJtbPb`PVc4bK(a}1J;>fr3E(SI2FI-cn87~VMqIme z`_PCPxy_Eg5cEWdr{tjL841Se*9vJQ=%&_S2$K*jeQQI5umJqH4v9iI9fRdjB}6m{ zn!mJI2@g&YSbWA-qB9tOC^!vps-cdVWc!9E7LmLcctfv(b1DxqjyPFz`^XfW^Dn-9 z^f^EVnHVXkjsdab(CQ*nNOvx4tHbAtSHrrZZOZK}m4`o?^w@ebgH~6cp|ea*bN(?1 zZsRt+HqZbPovCSV&y$Z$p0J-rw}S2A#!Sm^FX;eep%6Y!mZM4_|p1lD47JbL#nFh1~)-E-tV*r+gm!D zx%b`Z^Sc5_EdvS{$XvfjB0hhm8;4`7SZ?fKa6C1r4facrUOvfDBys2T0MV|VrPr|L zIC1={h^0Rn$X9tEawQ1u?M@&XfVL7;s3R9^@RggOsGIR}B0BQuTQiK53@I57A%;FM zITVARl(3zv{5h?`iPd(5vJuZA&pwMfNhIr%9h9wmScveU5KtH_vbPbrp&bk-Vg?BB zH>!763L2<+0)u>wBhXJRbRH^+``*3kICNDq@{88<$_VypUy~5w_S?2$bMFZT(0Q{C z!Zi4Gm5b32Pi1bIif){v>6x<=geIIKJRHDHmrQdG^vBa79xFA)Lslm?EyMUa zaz`LX>HpBwN7LV{w0v=-sikbdbWUUJ9Pp(=mQ$ZI%qKNBjUE*`u%>m5guHuIB7M}w#Y30a?csotlgh8x*0D;jdoagGr>4X|i+PW018XAyI z#6e<(t4haC8M`MZqGetqeoIu^|O*0UdTeQa0Y^ zPveTbR3K4l1CCj`2!zZw%n9rexs8FO>;)-?ZOVA>z^}j_wZ@G)>VtZsguMZWBuV{^oYb19m& zKCY4{S4EY{A|-tcJn<=h?zIJYKBNF=h0heJRANlvb^1T}dkg2PvV5d=0t1~+vq^?y zRo-BxmVE+bhAgv;LI*MFcmfw_%TfKVJHv>&ZpKpQ*`rNm5=Vmf_IJ)cfo(zA z5Z)ohvN)j6UIma^C=;R)_OQ;p*vWRo9HBY^YF#JrAsiOA#-QWA{9si9*$eoJ*03nKSL^_I$z=xjAxI#iR5Tgfjzb>yJCXlT zj~Z?99<|5)W6)o50e)uf2QV}VJ-6jwo<1jNue4z1;A@n3lTcoc5b-8NxbCo&h;d=0 zC<*_zeUc;Uw4GScoSa89NuZ+W#y|IMm{yYo7Gjl%T*UnrGrBN(*uPRURX}hlxybT@XnDMnO##FSG-fc1wUWhxnriQ3|9Y%6h*9P17!WZX;jJ zn=@dwsLg|$Oy*DY;iRLY6 zD9eL`kpwMkk8yD6Q?lRX$z>-b%)~zr2-;%aiu|+cn7tA2qa}7IeTCWr-es+r;DdwC zZ?;^@L9#VV8aHyZirzYS=7no8akR47I^wB?E#y?qdR+<}+)qr*FRV4Zj}A=@=NmFk z5^bWWX!~$L2|-b$TVg9X$XGvQ|H`f!jKiSKGGMxNAC6~Sqjp$=+k&NXmxgs2?qxbj2^Po)!}81OcnS}$p~tX1%2DTSpyIN;sV^a6=Sqsh9iPn8dQcMqy=eS_H0=PO2k1;4CoHF7LOPxJc$FJGYP&@lDtx+Wv_IE47~>&E~E>{ z@wtTh^`TTnqIrXwzsgrtACwNaNL-|p#0SG}AgmS=6sJsrPr}8sC4OsOQ{?Dwzknm# zHUyR$YV(B)p>O zrXmy+lS&Ue3J*FJh3Hg*9cZG(Wiw__CKxXqf7puNVi937wmi{+UkH$}bnqJ&QD~!W z(O`wC)~?UD;jTz)Jb#_$gC zI~u)jdft!2V4(!Q${~evb|y<4Nr6vYS(*kpyAb&c6@a%wNr>s_oF*kSL5>GR%SrTG zr-QFk(YvzGH)m(0RE#PEg}V4Lz|vjW7rF!C_<8HZlqU9gMM@1pfsrbO8>zAAxKV9l zH26qjlrUl76|XRWN6}?go|?;y!>n;AhHVE|ZmnlvoboWpcP+TDHGRzalMl%FB@PkD zCCnN~xp8w)8p?A7ITtRL`&=nyWND~$Ms2BGfi6WW6DpKZrqdmSa#uEk6R7(pY(iub z9OB!()PzfX3NqJO^Dv9ym(ouF=raoIk#}MfKDK9dzTVux zu*6~PGFd}U<_ha5z;XJKT)j}E9B4lP%>JU48ifvERn?lBTZ?qyrcP{5Xmbv6Wv&dt z>4Y>^h8^{W6KA+$OebQRW915Gh^jz8omrNIjjRiUZt8j<;hY@_JYnVi*qx3(Nx~$doN{gn&YxmNZqea?88jo_TagSs|EHlIMeYu*UDp`fD ztthsPg22h-d8|D*swI$0Ox7YF4do?4Q$yxnJ+JZL-kCO+0(0?z%nMe>@3-~!J?M`4*L|{Vx9KKpBjFQLj-y%alE}$3}q` zrwD7&y&STLyvlSh(X&<%*!_!K;Jiy4?6xP6Z-AIWscYM&>zc|}hR6&+CEJn4rh$v? zo7}755avlB#H1XVO}DMeh^GlRMIDTJw=?9`pk}NufzWh?)sV z?8?xI0pJa2ta@1mo%`U+#ok*kS0ceaRMiLqIru+vA+yg$p(d(k@*=mI#?lMY{Z7{m z*VWL6!5ZW-B1LZVJZs;2&$iLP3nl=j<%-$mlg>3?vtH9HD8?XbmY!_2K*2J9-|eqJ z;JB8w>3_6tf2-#_glI(jG;$CHDWv@S=6Bz(`Q4^$0=3l^hrwnT8GU3*M#e3qMZ*R= zOkoh|4x(07w{Zn8gybRL@f-IBsfrv)8@EuQ1nzuohWr{AP-TaU`(!+OMYNV2ogm4S zeUy~PmaYyD<34-VUhA`92exJm@!h*ESSynowpXMF$CCqi8Lpvv#Di9Jif*akF4AD* z&^F~m*H=Zbr69V*z)H;qgC-)^`=3o0%*EYu=7Aw=+GI+Lvf_&BfImf^K^O3Zf{!k<=YgO^t&Yw>5s4;GA7CS=@>B zD7;itIjK5y2O3X@>|3kYvv`|NaV-=kmV#d!cwy-uC_y!ernlSGbz{xrcY!TJ)yst8 zW>5_uab#8{kxdFA%eTR^xH1V33g)GAFtifgm}IhWk)`;ES{+8ryX-YNnb5LECADor zM{WbCOaFf&?G?iWn_fx49!%*T7uPe1z(CN_*8WP)w8JTQFC6d4PzQ`c4H{aiTe)Un{L*hU&=IfKD2 z&By48Plmu)G=j~A3|owFoJ)Nw9$5`vpLFy|^aA7kemNEJ+u+W~$Vk9gAzz)84N`K| zK}Xr`s=|$+`5kYFQ&d)1U`h?E1{1%Xo}&{{RM^=BGz1I&9c041l8~4>J2f|P9rAIr zF5M*Oyu)6u%LH79wP8&n=RBJ+nhI+Fv{C{qM_t!)Y6JN`4n^q}0vSFeH)(2t?sQ5{ zl$Ed`CT1G?D-L_1%xd%d(5lgdVFeM%MA2Ql3D){)^O%-(pE<3uz}R3c*pW8-ki;~L z`D+{H#Rf^&DvX7~Yj!n31XNBP|D`*oBkC^MU2pV;Yy`TgQ0l1mbp8USr7Fd>kPEY9 z-H`}39ri+9enI)V+_*viIc_;Ka|MAh;Yt##4^okiloV*+;MzJV5>pPjG?74%oR-j> zk+0ePd_Qz7i<4DgQN246(34}EQ*vUWwykI;$k%UAH6zrw)ss*~e`HjQDOV;XU^{qlP~d!k+K1;TYs&nM^jBT&l#);gc;n7mm{`eaG6&8P&&h zoG`)~fuVIQp?yqDEu%m=CgmQmBvhLTSAi68sZ+(ZU^&k}Tl7)=g!=s&^Q@lAE7Ngn zXo5+HlIR>62ZX@er;lQD{&!_UYts7x50!2x0zM{cDsX03gep&&uy zPRQ2pBk*41sHrK?1F&@0@rVp-O=(zr?~KE;x1q&&R?>knk~Sw8|7ezAJaPwdVykxM z06D&JepW|QY5B<4rkL@z+Oaz)d0i@G_o{@;KtbAh?M=E|ln11^`akD1%^CAV-=t$Qp%N zp1VnBwm6W6AZBSp+Xzv|KK5`J!Zq;0$-SELR0fHrmZ(gF$N_-VQh$xie@Ve24AWj- zaU}Uq!!H|nC29pbVf+|@%)Gfh^`i+ry}r~oSIx`fBtS_sC&fkNSvft}lk6tge(9o%ZG+kEAqv%j%G!7wiP| z7BlROO|(>GaZW)+nx>cJe1D6=+yksY+}u(`c}~QdpYPD!!SZe*=7-el&|RH}rR+EN z3<=*Kdz^Lq}0nS}JKDgF?E2}Ec!`U~%OZnr5%5u=n_D%rqG8lTL#JD1wVz3-{6bB= zDG(xS^F&4wPdqZN6in2CN8V;pLp{`th}casWd~w{WAwQ8G^u2qDe}Fo;3!+&NK-o( zw_pRoxSV`Hb7^*{iTruHbK-zK#M;=ro~NcD1u!6k35-P@KGO;zWl}PPBM44z!c&eF zNId#dDw8r;=h3z2m_OpdRSq=vyJ!kMmA1aSz97no9C$Wn)z?{yRE2L>TarPh4$6l6 zc1gCVbZa&6n5G%A?q0&wOa%Ag);hxgkc+9;Kle%3CIOmBL(eXOnh}L$Nd(z|8GxT2 z3n-*Ose2y2&~njuQl5s!gJ`F>772)W2J#Xd&_Jwa9mWSaXi7txYV5o|)d>@`0gB74 z+E<5k{kq2fm8Fed2qiqlkz`9{V1eMzM1Hu>AI?G*1xi5Xw^OVYgr{f=zS#H6aO<{Y zshBQ&;6zk1T)c=%1TJE@)fECusuR^Uy%`!SSxfkNI^RQ&CgDBYMjTGAH)Ew8(M1}- zLX=P$W!hdQ?Nr2vZNBDcwXX3*DkwWoYjn)#PL>bzO$881X>D^vJ@+3$I8rnRa2zKr0T&ttOq39+oK9*>YZ~H|%s2E% zCOky(S+v{eY8~rw1CaFf`631ZcI1EsU3gNJ%QoIGY8oZUL;CoXOAK5qANhH_B7(q0Vfh8X98|;w4^^j zo&G(>>NTxiMdXxLJi;KrWFhHWdo{f^ClsY|k%HmoYjeW>|2|sBn{=p9ha;%J3PeDY z3UewyG*l_xsI56p8e$HejAV(3u4CYagcEkabxYx z!Ij7v9Bry?vH7=ffq$<{W)}BkTm`4GCXn6+uhMzbGExL{{5qzD7sp^imkYv<@LJcY z3Tdk{zQjRk8&fE#Q3!*Hp++AY8Im%T05n~kZD|}EPg9$Gf={?wgqk&!~Vk!}zQoc|$63FP&>&Sna3tJqYDPA7~n(9#& zb`xjg?{Cb48O^=E&?kBn%p`~ep6+s<3vSFxEu@u7SglvuZEKCTMz2R>>*V)O;99M? z{%p>fJ0BYW5@w4q$pS^4LJ+>mip?HZPnk`r^+)4 z?>_jh6&#WpIdFZL@37*D=J0)7$*cjjF7CUS`2d74(!WC!%ar(WhnN*1P1d@+14qV1 zf1h9$be#83%?+!19 zkDhPbox=GLK=SnifG4z84^vXwwi9Y#Z5R97Kbra54W6bh=nR{qP{I#Tboy0st#>N? z(vEQhS1_9or$$PJVw_3x_DAm%3+^th{1OE~Q_qpZHIZMUE?&*U;+?|iT{pOX|FLqw zJObeoTSk#OexaLBR39!v50eF6klu$D6x1SyXd&j14M&XZNU-tZ8G%VB^c(`p)EHg{ z9?Ohpt#sJR^jfSFyBgHdGqOB1hJJEC+a@NZnl`XNvTb#1p|VAn{)n+@Hj|4(V>+CH z7iwqi`(f=ZMp-^kmDGo}qXyDk#Rbrp|}#Y~rs8 zJ6Su&@w>PETv-WTX(chbO6`^T2f{A27Lh^eCQ4P>xC|LZfH$%N=*X<^WXnzluGr3BZ>2}xKu z9+B{{wCFdtI^Kr$Wd@zHc7ZYyQPCoRHimq)Kmk=R`KF7Orxd6gZoy#U1<$H#lXTVh zA@shR#OgcsNO@ND7axJ}{qS%}bsH*X-Mt=-L)xLT7kQi*Hav7$DCgr}@lc5CM;a8M z6+5C7K`)VkK>9mja9|k2jO9g6pwbNe93lYr7B&wZffW|fXa`Fg6DmX5=?MO*_%8IQ zGb+jkIK}PsVPo>@-!A)x)qIw1x7Zigz$lpu4C|~{mw}w(Wm4O(`Mnc5XqQ3NLL$c- zP|fkAF@eWjT zb~O#bVq`)4#GPn|1EZ2B7mjg4=RUqSi{f8VH7~qDx3JD9`~s=fUPQOnxMd%6dXqyo zX^Um)LExiMPj^s_D6KA6s(rQ%NIkU28C-7Iy5h@!mWdXuEF7U`{xcoWXWjAJ=5A05 z+q)DV#5Ow0iM-6gI82EK99TZKUha!uK8uOP5$ZngmRbh{WwEbG5~>z&Ls@MeTfm?Q zM3*+{(kIAiun_~?YqOgKZ`MRjEO#5tD#KOK0DuaW1e20efeguogLHjWj8TJgY3Sjp z<3Q`|SzEa=1g$k`K*D2nCXAEToKqWExJ&05ww_q2h4=sqm$fZ{IPx)SHHu|g^+?Nr zH(-D}cr;Y2C28`V?CUoL!Oh;NtsFX;%Y$c6eKNS@Iqb3#Vk zL#>~&;p}!h*~@)B8UpzEs>sNcF8JKL?S!t39P%z6K>2T z513OGZn*b!Xh^ZRCScKBTR4GU|LQa|kRr$(0f;(BIQ}rR!adQ9Ll_Xus)Zqjly2Rqv-bBod6PZ7tXIb_1TI`3QdTx5{@L z;JQLM{$UNVKn0S@aS4Te{88Ks=d&q&S&=RM1|8!Z95<&oadW!+X2I=zgWm*2t0Gn2 z;-}zQFoCSc1X<3H*bE2l+8R`5WvI1O*(ADC5_;@P^I2Rr({;uRl1@57n0f^A3BmYw zq~RFYD{Lq_KMf13Mo}RJh4syQp}AXgiJ~$S#Co80Shbvpl75lHDM!H(%@4g zG);2P&Dp(rq0W>Xsn`J`R(;dSofYohxOE+i;1$HbCVt~7TMjYjUunmobTqM}&Go3v ztTH;{SK;e)?u^iYeK8zjAuX0+pOKMQ8x|N&ili$P8c1^vs=Xn;`9|<)Er_YGQ{7O8D?vGH#qo2Mj~!u!RKvI6ZO#bUp=V z;{!0p6*xGLq9iqFt&Cz#9Vi@T4Js;DhP8ZFY-I>@Ckk14HIM58pi5_ri!P7__D*C` zWXrA1%Gg-`y4ujZ+nM>zFJ-jMol>T$S`Fq89W&JD4FuO^R0^`;DRDM#wp{QcB%LZG zJFFtO@>&!|bMrmZI=!hA(?UCjyDpg`!JTlxo^IEcx&-<(w1Sd#fvl)w)w7_?9+O84e={W+ArOpq&iY7dvUr6VqDx6|_Nw zw8|GI?yBGjswJM_S!5G>gyKxzlCkb34L-uZqw5aP(%i#1Os-kCppo<{==g?ZQLptI zf4t6boXjOXJ!TEz8kbsNub#+28nCMzOsYc<&E}EFiVk@pCLFxegd#zaAc|&L{vyko zrZh-FDQ`y#MSjT?kYPDG;ML$(7g%joqi5D4w+_j+$VM%&kJPsnvYc42>d5Sr%V!?9 zm5aT8YHKb7icZ*VYWIBsml$tXH(N<&L-Vy>EF5c6kdtFm7fvd1LPv2pOjJ+oK0B7+ zlR}|U&nK?y>2f!m_4hxZRfTm8T56iw@yRJGlSZg2qRQx|w&w7at_U=XmmMYh*%2^$ z+X>xxkRw3XswfDEiO2=PsLIk`=1%=Iq$gH7wp7tg2WpXxF=EG4h;Mg$@M2jE-^%e+ zL4(^zdndq6hkX$h`Mmr~)QMy4S-r%Dr^WlTceRO!ct3O{4p6zexGxUN z_uk&0?;L;UVV-Wgvnnw)ShSVjNU`BxCC zqnz?Cqx$cnn}U6k?$FY)mz)zcZ)vf<)(yhTXOc)+9M~Pe7owbYlE`UcT4iQFu-^1G$)-KPAIY!7*$m7eFBd@&xj;iVL&J z;UTn!gNYzvR77c>c2=(kRD@CEV*!UIz!!j(<8IS&c{_!}o!UUC(SjF7#ZdhQM&e)y4l5>+ z?CB!0#@Mt_+|eBupl_GW69~*tm^b6HR!wsI#f!yb7$)Ak&j7f7`c{dD<0V+*XmVM* zLRKQ#2ci%Wc&9Hro22Ba_+z2)Fcb90N$0TT`KtXgO57yp1~f!me22Hq-e}1qH}+ex7kf*MK4HNLQ09S0Tt&DT%r?D|$mP14q!foSUMf z?~w#Z8HCG@HSO}jWAAwRaC?t`HbfE#C~7fqhh&vh+V%5uTp#qqI3;&_WNY4l(+f82 zf*CnMPZzwt&nf6W-aep5;@|zP$Xg4H@*h~jmq*g?uIMJ;FLmdxqSLqo)IZB-p##P_ zkqm5~o8#$V!FhfWy^I#O3BA^}y`O$@TSJVPB)>>ILHX8$jf|N(3QWKge1ic@!L&aG zp8yV@8UXg3t3&0igs>Vz(LOHqaaL-`D3XUxP}g@pR^90)r(H)KGqV*L5^S@=Ou*yp zSeJGP)QnRKk*3fE+13Z8E1pE38-e@w!+U7i096e zqgejXb&<%V1dmfE@`hINc(6`PL|?6;8b$SRWyKUbCbH9TA*FKZH>672Ko-!;x2AuK z5|fwOOEnxy>BO!;LA_aZ z%dmxN?mcUNEVd3EXzH2wp5 zM4oh_V0JQluv@ZW4mqs*NN5obBHgYI$3m-*5Fkg(DM_b~wOwG)fRaX1dY*#}Ml(cdDs zV9Vk36YFR=Jz+$XdM!~nD^&0%HZFAw3sAq86%EShUREh`GF^Lgkbx!w z8Z1{mrAh`QN{9^sGe%nN6cj8~pz$p@@(GJE6rmuL-k@iHI%V7GnBLn7mFbq}v9)*r zOtru`9*&z`I`Jeo%&ywU+OIZMEhb%l;6oW%Y>WN`Q_5uiJUg`2R!EN+WzC$QD#~$kzM7$7l_QP| zkz^+iv@j#&vDyQ)ma71C=HT+fMYeXgw?w!JRzrm1X~KrY3!}101zxWD%(fq1PmGRBD4vt11My}|jN1kkphArDL-z-Mb#D@zHt4^1e; zsx^_bJ95-}Q)Gs^maF!@%+%RUY6U{#!e{AIEjm^(7Lsb~fOeP-eA?)gZBPP<;E)_z z)aZ7tK}>jb7$ZhkXy4XN7}U-6%Xk@FwSBk(q%EHZjg)JYgWn z;um-X_Q^EF)58SMm97?obaJ{Auy`ri>|hee78@!?x3aF}Y-+j)rz16G?-iE@E_Xp@ z(JJze940Z(ebo$ubs58GXofZbAC^84Tqk&l&~we0tufXidqaM{xuKBwDLbJ$SH!_` zTGl;KIfj-fGlyUc;bxHe5|j|RA7icD9yi`1n>i0*U(&$}SUBS@EJxaFJ9w-84+Kpd z^W>aCgm2;RF*DkP+~5*n0Uat*z%E7MMc+YcJ67VmMe?>rTpi9E8g#SsDt?>Hg);_8 z!LvxMQreoTKt(1bG|Gh2ABKhgIZ(Xv456r%_+`_fQkR(MffZA(ldgzR`TjOuC4J$7 z+EV5nuKHTmtD_O5E(&%Hz?07IBjr-N46SIglQI<&SK_Tv^Js6wgNoY-H|)aXf88b; zv61;rV2)UWolt0v?lUDce7@YfcDnox0;{ZW*}!_D3!5`Wg{b6~XmVUb@9MYWb=wO> z4)?0o5a$_(dE~Bmc5lV;>V<6n6#h$dG0@1$RbfbKQr7K&(B%H_5;IoxIy|TDjnHtj zuvno)Qn=veht{#0`-Wt2ta&wU*`W!8>`e{o6l;cS$y)XjN%)~oA*pP?i7vwin<=4rcU+5EVKryr8>WoiSi;(FKN(Zt;;6OtrUMg&~8wxE{!XL^5 z1o=Usw$_LkxWW&uPe&lh6(uIxn2(B#FqA(@E7EXLhnWKO;*x^^A{KyNLxvcc!m?gd zPM*S;>DyLQmT^VkH~V;=Io>r-fyE0eUk*5EcA-H+WrA@w(t0ZnHL@r_?GWNPbviee zGMKSOKWJ1PayBjj>MMqd!y~3u;0;L0XNH=#=XpVlk0i5G6$oVaCf@%yAt!waGLl+WxAxAh_Y3$;lDmA=t z1;JhPEn$GF2e|MH8-Ko_33^9!kn2x)X%No(XG4GsL*xn$XB?E}RhjmkD8Qq*Rz|H)^wn%|UU)fh z9mzJWyU!3gnf=#PMh%V|bWhprXC!(HN$1p~S6Bv%*@Kyg=aw9jypn%PljzF=Ju7ko zGnN$G`$+h%sl_3%L5K2SadMHFcj{^z_u-yFTWz61ML*4$ROgH81EayI6JH|8bEzd(V`zmLaAchkxy7@v;C|9%Q zoyrD(p;0d41IdgN4c=U>FCdJ1{hOeptceoJqFN9#Lpga#2O-V8=}8)Np2l$P`$ zGUS$c^oHoV@DUUo)>(;~X}1)mRp|AOMjqN+)JLm1~jHQb=&l zE-k0q$0!jZeZI2`Yg?64aL{3i0&`yW_Py~en>uR9e=L%D(ouINzI9u`49()MnN8>w z=+nxnj3bSc^%%?)TY8GlD7)R;C&E`q;4ETqVt5cy0$t334MIV&B0hB=vA>sAm?Ejm zf<|#L@Y{#*iSwt=M!sx+KNxeiPh4FDEd;eUWG!9sDVjJ2f1-_159A2G<0{a3F|3^< zW~$*q996)b{b$>U<&1BbDOJRJ>)}h?;M>LGWf0QZli#qQQ2d+1D1#CknL`UzHmIPQp! zgU2ba(lR!r$Emc6Op^d=>~38sZG-lM#M=FaZ(MCLIGeKh1JKHlvjn#t2)@H9wi2rO zxMH1I&jymbAKVM7I>hfC<r<_oxD1?vhG zwtl>GaDM8{Ba|bGr?3_9S)l!^I3}&m03*t(Be4T$EKmmY303RBNM0uqdP^$d;o)jr zXX3>kpu2hq#z@g)M@Jp&K1&B_u>Zo;N0)OD8%kQ+%vC!UiNPDr(7u{zSmhRsMC4cj zdoz2piLPdDBGXa9S+7@SpCz>LCQZnjBzG7|s%ek| zS9OSK1j9}~1`4ea3*!O5UW1j1BEv2mqkZi*EN@p(9Gg=z!z+w6~ z^^+gH(KQ;V9@U1-;5*mAcp&1uJlzE!L@BUaT0zr971v2_$X~>$9a#n(9OR17VIl7# zeN$}4L}Kz9#L)q)*^%A9lPv+L34FAd5!1`lkCx4m?jODoJ=+HAn=HysDL-W*xXKQX zQ84wA^1=95FZ^v)u>5?uq~()4&qle(Vv5e-2(Bghbi?|p;EBeq1Y*gs z^4s#xIG2LH)4#FERKo&A(~vKCWKO9OHyfPvSV*WtuxmUhQxPvXN6!$ZFS;-2AObAL zcx1l_T7M<4cm6&4k{;G50f~EH^u+FVyF}~4-%hY{jIe~@5cPv>nK2>og$ioEunA^h-u3{pG{w{t4qYuX zy%^?gI(P$j2U?_9a<&6!c4OD8(DDrPLIia1 z^hetfxzv^3X)j-E>tW@&b!mbtL3ZuWY#?K1HTbc5M=0s0Evlr~hBKRbSkoA&7{ZXD zZKNJm2KkY#pSAv!>42G3Dv(@;drCRIwmLJv$wsFX*a!;R;urG4#fFkSx&t{Y7ShSa z$U)jkm+qv*80m60_NJ8R(Pvr*X^~`BNmB?%vL?1nbXwzv1jK$zO?0wAH+3fqEpx0C z+@YOLm2XaFL8#eXC(@A}<7kWEyF5~!jMW1HH7qI7TT_YbIA>Z9QK1^4fHdvVRT&g& z#`cfp*kF?r3p@kh8A#QBo8wt&U76?{EK;c0!-i6>CPlnfm2$l91+%F*jA`?uia^c! z<$FseyfTBie88%6-3{h`=jU(LTU3iHmv=dy;1&2W-Ys_Iq7 zA|eAFhfLPuhpSA)k{uYtAymy)Do178)>tvus*2f7*&iqGWQFd@HsfF8foT&_Od_r; z;I-|3Qlm^<8^How%Z(hXZWn6bte^SdP*p48CxI$Vz|DZmp@iXXWcNudXUA7OX=RWQ zl$G%jzOG`-{IFjcBOb%slZ;Cl%onFt-jqk~^A`7b)Gv+@k3ptLV|gS=zlyVOi8vAw z6eTE~w3VO)Y9ed!qnsZdNUAz*bil|6&e-yFXv{kQMo-d|#AJpKv{XiWH6dIbT9Ds3 zcChC_X(*hU+dNhDRAipyD3O&2kQ9u3to}so?-kA3++n4dE+GwyGDAbrdE<3MZHg3f zt9La;6|~(GEfpaSmj-}Ea9s;d8VOAL2$1$mMHHF0GS8#khWta%k6M34*(Kj*%ZToX zYk=!4P^M8LJAewmphh)rhgmN+9-3Xli|fAFfT{%= z%FR<|riU$Nkot|VN^9pe;fP)r;=onc+V%D^KvcBH;L&8Y?fKG#R}f!*Eu8BmV$us4IR9zxdETt9amr52nfty1VA2rVs7#~N1?`5-FX zRPJtZ1!)Aa5x}JJ@Q_CqGw>hAFl7&jHt^tvJd^S&mOuy0GaP%vmbFZ1Dhx*#`85m7 zhlgI7TU|{-9A?aS#->v8jAY>sh!WRuSs@!{ceBvv3sE ziu0-;ln5gtCQ*&-#-TuFN3o&qJMdwIXCU;>3F@Z7@dmoSCo}e}ETbuNL!hwhb#)H{ z?&P?KC%s|pw!kkOOR>U62Sk&z5~BchD!C0k8kVQ<)Z)Lp3G4yKA_SY--uJ2ze|wMJ8~SABqAmiTIYs~BoUP&@ zgRpN(vJ_)Q&FC=?`*Q~g5$)kN?W2O*`)WQ*G1R2PJr!tHd;*fisF!QE502dEuCl?& zXWcAy&aR7xS~WGZ?UWjZH2oKUohqV!lvzJrK+b&;m){}6G$CVuVEGH=S)!T4>DedH z?eg30UEyX`cN^a7_W z?0+&iGAb(LQ*oUBm@8RdX+@S9&7sOq>-D~<045dFLyVf;Cvd9hfFVyf`1<@*PJ&$m z@`(Ta?Gq=pYHb^CU5F`9;D7Lu)kI@``TUqYN=2zoBtj`>5%Y_W!jx0e#9>t0)uLoy zpt|5|nB}tAB)cZRhDuWNq8EId1mDwtp_vPEpMcdn(4t}NV5D4h@?a1@rSI;!69d_b zd6R1Y%%k)=ZpuBK22p5SxjZqUSmDxT;Xx|&Dt-pLML#EiV8skM!M{Trj(Pt6-~S&H z6R%i`gHhl>A9j8~DS2lk^YolIu|-`KPdUNX~w#9C68--B)V( z1>P0b40rqRL_#qucpANPQMx|p?Cb8GIE z*Th>Q_rK+{%vpuG3lRfaURVK{Kkq)c6h2(V7c>MpMvPH{DI0!T7FPGe5L{8<-J9)b zf`ntJ;>Bsro^tHKk-|j}B&!Bq+oFR*RmObH8wL?zLx6jr>5_DOb(=!5Pi@S>UV&%%(^vZV!bcl$Eccu1@ zHF+tpnEf-6&y;!iC$yrs*I@(2zJ2Hg&cx`EVglh274i^ zJw))n)=o;%x7`ZQfq=Ms94#4}Y7?@HwASW)HK#}(tTqhm&;fZDdD9#0#rZL}ObaKS zI{v6IrVa#`7Ji6k8GgGwX1|JVu+?=_>!bPb8#Zb)X?Ry&*#mqPPS>(;G-o52xkg8EjNaGdPMk=Vhp2RTG(8K_V!LM-LNOaN1 z(Di)90n&<-LIdAmfg34{<1|<{OjXUiSm1LeaEFk7)I`y)QTz>;4f_1_M4-F2hcR53@)n5kz@NdPxt z8R4YKgqqPy=cgV666x-W@p=s58j9BdMRD`XSy>|+!O5W8mO`$)jpg-)BHi8H1g14l zI{yxzCycr0`ti@wZbs%pS?xFba-zG!9#qXR14IX1yA3SBz!-ZQc#h{$#~tY%r5H~Y z-8ddH#f~WA0L)LJP;Lcxzf0Et>>NLp-`OR(?2rhyt^^1e?xEqHke7rxC@)La1v*-# zZkcw}_ORD@evuXj9LPSh1Pdifxu{Q%m6su$$yS+6A{C=ovzO!i==kVbS5yLbSlN(B zC?Zm>wSlR@U+z;@E>l2RQ7TXA3t+;)iK&UUwRq$?UQ4Kz9x=_(I^ZXO-MYIvVBdYFd*CWX27y; z&d=mpABoVcOtvW&;8c^snvt7&>~03zMIA76m0gV^&~D?t+e<-oEl6f)=7R1Cg-MR$ zinOCVQUeB53>V5eoP&u&?pc`XWFP>vyAL{&U=gLmD00)7EqrO*p4W>-pO>0Psx?*_ zr_a$qM0=K0e5FS(&bbq4cR)(1dmv19>O9z2XoC_+V{KB%5LLPyQm$9kIBs84SuJWj zy6B9(4zQHi$BmPmUkJ@Zijj4#S_q@=8V;wr-f2vdlxC^XnGaAQrQt93(Ru!>{gaPBaUb)1qEN}`Q=8rN^+@xG?lCjq z(EpJ3OGj|i@b8A)o0?ogm0rryH8j!;H$~rC@?fg8nzhyFu;I_$N>9wpNC&RQ zh2^yDjiK-0ea`N?)!(`Qq{hYTt+tf(&Bqao5GBFbvQE6R?DO#b$)Lo84EV^{vGb_d zUnDL&gDeF=txSj^k&W>@yw}KCLWCFuPL2ozWAO!CLAlcR0`OyS5DJFQm+58X_O7>LZaK?id7nh`Z+ASMJ@ z^`#7*&^lY517?yVRL7!OmEs_((C{#xT@GM{j1Vj-Cn@^C2YF3h31^3AyLoMJ5ww61 zC?FlP3PQb_Av(`aN?D)6a~o}*W7Z-aRV$G~&V^tQxZ)$$E#=?? zLjSl?|IaETWIRT3bol4m0`oAnnoZ5I%bA{dxJJW<8z?E7Ly$FM0l?55M+Be?xsASu z?v-bP?&MU%Xe^U@%QTL2PU_oi+x)tyS~eVKRzgs|{e}-`Jmssi{I; z{JfLAH!BT4J3fAjxcdC_I|KEx_dG*RBGOhs1(G~Z8J%!LMT*w3%@$Ypco`m1j5s|L zl^+rg5r8;ZlW-y{t6m)0la*h3XHmVWSS{RM*f3qv%u8asrX@A>ocY(fy^QUn zGN41)J$B+ZlV--9V(us>`n#3>3w*A?(@h5Ky>!)>Q znj^9v6>~I`b0_!Fzd98A0Yrs>ZT^8p&XQ?MF_x^GIxDjWBr~52^>FkA!Xni@Ri}z^ z^f*)0r|OfnUsdFTTVA{+GnfIl&8`jQyC-lm{niXQldUB|6q^cBl0`0jQQH!e7hmvv zo~X%rd87H<=39ZVjA2nzTF%~Ns!=$U)U zo-?YO&7UVo2cxar!&ft^yCC$U@Q>Dyvs~R9l-U4Pti{AJ9#b6HAyv1gaTvk;AL4)G z08EV+Vex5Cuoh06c<0x+;l*Vk!SaEyvlaKcVCCmC7Q@f-Y_xKXCSrKtph)LvN%p|3 zyJA;e;mafCAWQpY1U|md1&;LZY7KNGuBE_^zBR9n0*Inbp?sGzydP3jT)O%&CFVFT zry{Cs5kNx_d@>W<*Wr(7wTemidLdiMyYM7*!|=Dliq|3C)cz8ul7nJU2c6`^%?0#a zI&3b9aXAAU2PhGShW+&>B+(%w_0vk{^M0CL}BZN4fUuY$xc$f)#pZFZXvdyP)tc&hp z6zdMAr|>}zG&KO)M)vTPV`TOXS6czdag{2qQkd&ZcOoL>4vztV{4#?dyF-hmnn~J< zJvq9d#1-q{5BV`}(4=J3m!h6H++m5{*ib*?jm4C-J+~d&XH=|*DnxNLh-(<7EQR4D zruXO=m-%i_G!&=9}I=8`TtG;`=5sNsWj)@TwTY}1F~(m%pFnh-87VKWT7JrMv8 zw_hpF&L^}JGVZM*p8@~Iv)JN3K_ZWYjE6D$u?;9-<6BciZUejRf`Iv2#zrDS^zb9= zWeqUj1RBPk%K}4KHO{94j8*s(>k*#c3`c+td^%KJi`2L|XTizxINBQ+}+rhR`Ew6TBb29u{Hc@@W4MVf`5g zIdtYC!^YQ9){IWVSXt9*8C)!Fkk0JCxIpTWt(JL$m)_=dPBFKEUC{{#VFJ^N5xG14 zi00?2KPE{=T43JwH8B*k)q@=EnOO8=$<&Nw73Ey>g=SfzlE9R7+m+s3<7Z$dK;52J z(W}jckz}P_`#L#jh!wW@a^&^pnyIZQT7y%T$*rQ4VWhO!)d%}5EHlu3H=r8)QN+@_>ttnm^OTAi2&FYB zH3m*_tZW?2(4p0MEg-~78c)EPzts)NeawY1BpE7kODCWMvn2(N&f!wST?jE&zz#UG zD8i|B7n%kXqPq<^73^$)Ef9FNJb=15K+XDm`JD}oa_i{pn%#*v`CcbH<<-#uPfhSy zxzHb4(>MbHcEt9ZZc3H@*|bPTclA zWqalqY5c{)s*y{`w6}?rK>(NUPBUf9Xm#qOsct>W>4zA*Jmq>+G7zQZHQo=*bxa4# z6DTExgUJOp=XgtODW4eY;(hftrMU4pp@6dFmBDdb{iVq zj=?grRxZc))I1DBelR`^rO+)JuWqf7v_xf|3I4r|~q`YIpiRnJvhdKub^EClH)G^4(>dN!;Q%#J>K z!Q53ckWAXd6U5)vW2c2(0GXl$qnai9MxOC?j4+zb+-0K}3dsyI`W0tps4C}`oeGi@E z3uuOg1`|xptaQgqU{erQT>CW)=W}sjZao@FD~0Cq$|&k5Urg#KvlVdEPG&2?O44B?hD&kCF5(-P8u_W&i#!sY?&Z7DeIYY!63I+( zW-0&_Y~{|u4O=gfKgTGcn9WkF&vA>5>=$2I&qCC!c@JBpY&0|qOP28N%)0v3;1kA| ziG&J+z>B;N4XNG87^SzeSe-yA(p2(~!^t|lPKfXrOMQ2if%(fZnYtLi2a8L14gSm+ z$-axRp`I=ghys~G)=bx&9n7FfjHkH(%&u-{&Bt0uX0;d>-c4Oi~H71l1X$z+=g_Qu_cx^C;r0#q3 zwD$M}FJ1ip~+$K&b}4q_YyOQm*~EWNTzcbG!Zmo}}Xp=oG&amq2lM&tn@i z;fb~kS@=nTmA;1Y*$K4g%G!c2p zimL*kt}{jS!6z6O1_4qn@hpOLw@;VbTSJA$2u65j_5A=SW!K;Lg+k3~Mih~AnsM&@DL{kdZM^glB>S|Nj`m-A0K;%p+!j_4d%= zc%VBYv&2Uw*jc}(%^~^iT$Q@D_!L(L*wDnZ2JbbWU1$S8L8a1Y^@mt<)Go0`<-W%T zH9~L^X&#eD?7gxUC%d$j0;UXSIOK9V5|inR6t3g0VE2-XZ2cGT5=B5Ts}KKhGNx+xfwH=&7bySQz-ZbO?B9% zDaeK{`wlZc@~0H)3|$?%ie7=HD`SS&wn081TVO|8T&;m|R_C4PZ*8O@3tdKpR^`Ej zUy9v_V}poaG|{Uaw3E~P2|JJMWpmFR^nj=lrxCE+AXj9Ek3$VQ1jB5a3sTc>%Kf>q z%}ywn4Qd$&9TQRBAo?gGk1Gx?tla>se}+}2Zr_ijXhu*&$qZ|K*U?sBDo1;!#Z<0^ zQ1L~cQr-}aI673DKp=duRAR0^h#)1vIzAw@6-gH_)~WBI$myi~R+WBCgP6m?1VD!% zS7mXS_Vr@ysk|)EUl@Q6R^S*|?IbYngh0Hy{pKLC7cH9o;P#yQ6RakOW58@&fav#} zTITx_-&ChxMYzPp#pg$Z_Q;~;u(aq(1+Ih%N@n_qoc8zA2m@ z9=$31*-@i+atY)33kCbEB7NB`!f4y!c@qEO3P|GSH^4K zenKCT^-uY{tdwJO5rn0#v0*D_QTUb5&=k=uYzt|D@K?gFuAo=J0ma4PUMwLpvX`G8D=P}{eTtBbOLMA> z-j7s4U#p#RyN!$8JLU}KLdZ1A|Bt;lS&r*U^E_Y07gQQ#22$`Dh+IJ+si2Y)nFJMK zY0X|Z0gyxpbTBalgJrcyE2}rC-t@NCW%UsCDDfoy`+vhZ=el19K#I!Fw(6v12=0FG z8NYc%=rN~{N9-W1;IS%U%{3{;##118$7NRI|Gb!sxzvpUcdSvJ%f}|#-n@!-TX))H zgpt)%+m$%G4H6*qPPlUF;Xv#hrbF7j>L$bwp=nb=<~$+u95pg(CA1)Yx0SLtxlt7#LU#+( zp!+sN@-_I!-OHeZWOVr}7|y9wMLZ%eDpx46mR@ED63tqb#@p9~GD1UK>?_fhywb*K z{tqE7KNYl~Of~QPMYi=~8jqWj~ zB++W$X6-d?(BKO^Q*mx(l9{(gZTOtnK$BTYBbVqzqpvgT6L9J*8cD{sz8OS8BQ9gK zGo1B^VVhq&B1My#Oi4FwQ1A{k(oGFnwV7TQDS6fCLfo#t(`iP;WVuO}Vt5Xm+EoWc zn(f#Oi3Y+D3e-3hYSq?8tqo5Zj&zaxgH0_t@m0^fK6za&V6!fd&EwE83R8 zv#yxU6EVfkasA@N!+69Q=lNyBauLw1u~0F@&KRKqE4)Z*_fS_sHZG>`g6+_t^fg|G zMd5yMD8uCS|{*VmYzX$cwWAh`3KakVPck3J#I$&wvE; z$$*rp-`yif`jTk0KkwzVW!NKbK94LWOu+#Z% zc@$JulAk52Ll=D3)wLa;oQU98N(?|g2IY~A92mkRs5L6;`e<3rMT7JHkZB4CK;Jr`y5t+2N>S6F4StC z8Z1ql@^G4fQwP`f*7AINa6n`MGu(wg)f%;bAl#kq;BB7O;5_QlQ%91k`VF7%m7MQj2zYaE~^|FN2HXCSW^h zI=9dm_RthLwZ~opN5UUzVMXH>)|K9(D|?Xr)GXqu&Pc(;gkYM1OZfun2=MUSAz+k; zSj}6r8ag?JL?K&x+=`u!YpT-FBS}yorbobGL5)_G^ctYFs~+1`KLsbxFmIH!<5$av z(eC6Y3zxYZ>@&ubPHN(-<+J60pFxSybj77t3$c@{x!K z{kM10=T0BNpKX3&Qeq!6@9 zdjJO67uLL!*8`dgeq@9AGR|e{qADr1p)G*%*&%&?mxCXP)*r~l+i~=+Lxn&RDOm1D zYqN^bAUWN%EkSSRraCuDih#U@CewqHNzXTTW&0T-W(OdY(g>T?~UN2Qr0dgKl;V3P{sXiqE7tC!de=FF2|lC9NMC? zP7w>JnnDLB3P+TJjXtrw6i_w+u#kv6KCVla1#`>jUVJ)KA+K(>rAzGAQ{S1n@uqw0}r2Ji{H^3HQfcY)QP z5ey;GOS}t`CtR$nQg*QuG+&h`4eA}!dYD!L?e4kfjR`sP9$T2RbFQ-)L051(s#}33 zC^lOhc(dkf4A=&E5EmW4y;1A~DWw+f9amNKh`RAaVgy0PLjuT{e&n(2cwUKmnW~ID zz}b(QKKOwEaxg=se|_tS^JTi5_M;;)W+>$0^1Q(^yE|F_1*e=#CRI1^*uZGmq8}Tc zZoi@bMw2ZkS{xy4MS29PjH3KlqzY+kuO9n~p9_x(<*H2T49B8|eotd=Y@e6v5iEGo zOT@6jz@$XnXILs7nH!R){fL|O^D~sf#&uoIYP1^Cy#d z$#)k6Nj_Hw-*DD4g}8dj2&I!22@on<4RsRSh`FBPbrgMWSH_Vi))+J@BgPwqcUgBO}SYDLvO^V?jL@X>k6M}*p z?}1pcDCAoxNYR)(u|3}Sn^_}9KKWln&puZ$c)O%P@Vk0jM$ zOMP*22GSCksxXqMsPt1rxalaKNLjlWJTEaP0HMDNIWhlauXPWir&-(`4@@wBG)NL^ z{=B$6Ui_=iDf^GAk*W-EHOX9ldjIalhh1j+d6^$H_%1tYscjjF1V`0)yNPTbxGbs%k*>_ zA+S8+1bo8m-ob{gi^016k{Tvxc{25=Hq_-{3s^^jCCN?6WD4T>Ky%7#i+tzwJt`v^ zge-R9=wN|{{DiNu?y$B1rT0C;B0}80{R3xUpnLi1>ebcDbIde@pKbJ4ONO_7U6!pL z>!JM!OS0%C)%k+>p*n&iR&y@ljpE*?g>DPwtX7a z!2ja>ZyxOT&?^A^DYCfZ1}>qgpyf|!$o~QqeSgxdeCZ{{bP;Rg%Zm4EX-1}GhT>-X z*Kg%}96NjDsGgyYho!`X6kMZf3jwVqw-6D);37mJ1a?+Eo^H?f<^$Wn)xB3&qtWES za2TIEKe9icF05Sb0zwD=q7_U=+k3;Eb_K%+6()(>@%yR0KvliqP6iDqX|Su zDRzMdZYjPu+Ig^7W|V2$!wXd@D+2wkhSFwnpu1fQqeBq&giL$OOm+7F!ZM97JS?Z^ zEF@R2hqxt$Svf#RjO}D+gyH`ss1=*VLakyMV7QmX41qNK8k}?qHiNi%Xnh3Yau#-i z$Q2b~bJU0rEBRJ+oks0?(a~j=g0|v)m!i%_PpgvTry!YJmN2OdV(TXLzMup(*2dS< z`@@DQJ<5*ccrtG1&3od_35CX9MKj^ZxMz<}+#%*9U(*6FAE<7R;a(O$Er-k@3O5J{ z-w-Wx-zo?lU0by<&jlCZwu1|{ji>7Rg38lJi?buEDTW{;sVQUa@Cdr;S!l4p;z}$n zMhgZO<^xl5SQl!NPHR)w;_X<+=Tv) z!-ek%r#WG_mxFslMieNOB>+fPXp{{$OIX9Que2sHpqR<+-bnkZGQbHn6l5;^9PSaP zt6C^7y#QjUXKXRAPP&%>Jw4K%;AJ6ex)@!UM}Tg4AJ7?%B)T;dGpR^j`^{))?VI7+ zH>0(0#%tfuZlH>h`W0fT+t8o(VYJh-t9eVYcaw4P&UiGc?@Y!vz_J4@eS;5&&3MCU zl7FpX+zdXPPV3+!=U&UtfVtkOC(Uf5Ve_H0j?u80IyNa5V*>lk#OeRz1p(d{^kn=$ z+p`?>h~(TFXm791LlW-=@>X)8j?yPZ!G~!_} z;ZU#i1N%dc8&TN=CliioR1$Tr*p`Y`&zGpP6dsdgTQ#9#6@d;hxiZwv%qAiQ)Pu@S zL0#H3neNFGjFSp}-E|aWJC9RK5iQ`e{TwEDWT#jygPB6BiTGoT4b&nZ_$YFB|LQ!* zULl8aD_wn*tFZGT`EX_bc9#4)`pnVBwqJWuLbWhFcj}JIa1nWTa;O)U*q^$QMRgIs z?Q*fPN|f&&?mX#N5No59NYHY9y|7p_5wmjeg|@%pWO&5*$EpevqVE`zgy8LwI)_c_ z(&71=E2^R3MGZ;a9E_b{4tDAedWGnyV^|C$e6b`3F7q;nDFqD`JdvINse={C!H)ha~*Jb>qpa!DrV=LPC&tB2hAcrsi{%`;Nr^V6t=jXpl=@<+r z_i0b|kL%yh?0a3P{dUSr92d$jNIKX&=04Wf;kf&5&S$?(^_z}TuHp4@WDOngps&b2 zvCQ~{nN-Rzg&q0p5D(4yDYe4GfT~|UF0PK==_#aow`KETWKena*LXXkt0eHRGT>?e z@d|VvA#D3kR)P*h`Ez9t{r$iGcMwDzGTT_x-v&{^&P-NBG^F26t!dGVv70N6@3Gst z`VQe8B8M4&PoKx1=yKPHF3o3dPZXs4%}J=jTLe zO|%Y2mFK1&cc9#mtpzw}nhtF`x-YGDI=&B4`ZaArwp;V`fRTFaOya~Lshk(8^9Zdk zj2=@moS+nZ#D>8z3|?RvI-n7}?qsasUjvfy>0@Y=c&J5OQs7jmV|I6|$?|sHQPLeD z{KC)&R*TCl2IhEOJ2^kHM3^uvQ-`}5oqSafk-5}ymNge7)=5rSq(9zRa;FrxUec)@=GA%%El9Ufb^2U$Mc(b){P!n7*b z2;@_gp$4q1xon6-NHjcp&?|)uC50S%-RMC`4Qw9BPAPU(0f}%iQ$R}mgw$oXc(%c0 z##%&iO`C1_=9X7!6!aDgmh4S>Rs!0AB`)hP!Ohw?BesPvirfzjDH0H8^X;8U3TF}{ zzezD~Hrk#RBLOj3?N57H9d;#5F1@#(q}}26cx2x(w}f3AXm7GT+B1s+-^v~oUr)D( zLm%J=CA47ZI(Ua{_UdXj+uj3kwFq9=%@^h@W}5aDLZ@P!Im5e{z5HtSIa3V@q=F+gWG9rhduN;{tsUk`k9Wu0quu<4P_X7F&M!_?;&QpV@>iWi}($A5q4`5Gp})Lqc%ery&(vfmeN+zTj| zTM}Ie{^qQ15s^PCnQ7riL2)Q``2KYH`V_PknS(O~dpGB6R8f_g30G-b1J2}a1+u%u z9mRuTU!8rn8*_P0_sD5Dfct-%hrZ^u`}W;<+L>-oc8yC&PT`Ba?Y-UP zK857+?YJ_7QQ-!Yo$X<81Bv;(KEutBuW!wgE@QAC7u!xH*9<$_GtRaAGa{n6IYQna zRsBWuWS>@mmzUHhlM7=E*WD=;zpP-qx4m1KaUFRw+#XHLkb}J8gxP&7d$aA~EV-f? zfsCi@PLnIbwe+)nJKx8NGn@jIG_OjFV>d~bS}I;{ z5E6WuJA94t*pp68I`@j|ZYkukbm@mOEEOjJDE`|ZjyWw8PZ1C$o!-bK8BFk_|7nK# znk43I@!{&6Pxmb~-_+UA5y>CNdFT>!lp;nl z?Gp}6QATZM@wWl`Z4dlDTP~|wMLbrV@LB(A*6`JC*kZ-3IPBG_QoUUnfn>`ee{u4^ z{->=B^Y}HEn*ewgcMDA)i>CizIjVT{39H{k;oFkEHdE&dtO!cIQ4x$y)Z8#ex?=jv zZ_zqZ*WkY}9$z9p0G9X%m*nk#(*PE##|~ojIElP;k)7S`-JSM};beR6Iz_#=t2uJ? zG)?QXo$YaLE$pv*#i-HBfb3Xsz|$y@q(D|kA{BzU{#A2&ReMykA<*f8k7&*_BlmkSHO!;b6zbon0 zm&;!by07d%sX(W=_2+D@PlGCh7S`7;;Om@cds<~aPK%jdLfbnQA~%e*^Wua>C&6ox z_7oW(`kO(4{OLh3)07*^!wE6`;{3+-TFbFyR^@eRWHZXl0a|o*dN^328J6D!8#Z-* z1TbqYuQ-@$n|VZ)6SduIzf-{jefQO9;q4X}E$h}^tJH5{&haczxWNHZu<%&9yYhU zLtEN(zCD@gE&XekHk}|{=MQCARyO6xor&DGGCO}eb`3r(mtdcQ#6xvE7yPifU_(-1 zTE&_Gb8=yG?KjG!=G8wYED9aGQXX(O1r{?0D%}^;=<=%MCFi*q9g2(nA(C=*vHRVN zg*)AP`(?d3^)Yb=Frp0TX_VA8+Y`&UMZ&?4Zak|gi}%C}Xued1(AD2qLn*FF7@rjw zGkXj*1XY655KP`yukV<767{tx55GaD{cTbZ%&gf)om2Xsqw{={x*MN~zMs322W06p zT56a!AFXW+Y-%|Ea1tVeU^1nG<>77nW{@H@to>CWuzsnuVJsR+Lx5Kl0@zegSV|kk0ENp;-#RoF?6dhnS!$qQ+ zb1OoPGS3JIBMuHDklssMVUco8wl58g)Y&Csjc*G)sl{ghkNK|>f*Vbv3pmO;!RsPSUGQzki)P*1qrU{NN zqw%6m*2$k1_c@BQ^Psv6a;$AoXeD+WwTd%x6`Gm)@2RPIHXJ-jTXi~MoIx{~B zS4zYJyvbAa7245sKE{*wkj=rU?3(%xQR5tVzz&HY1OPUj1>T(g?d15ru^tcPu}~nQ zFf8toMXK7Etj407P|2D?0$V3A=>w~&A)EL1=BRRcty}6yfIAchhYd@sfQT8jQof+B z0iiP8y~EzGzL>^(!-GvMtpfqiiLp7!Z-0_T7#$$3)IsD zADsPnzBwIMClndl)g83CTL=tb4(dAYDbDhStv;0}ZiN^qxy&l2bUH;CD5N!0aO;J* z1?{yaiIk#DJS2nzu`Fvd_82dKy}K3BqrPon7Q~TyY>Tayq&T z5kZUQOl#uO#v8QbKDTFkmr+$3sIr%-pa%h^V8kxZjDoeR7XDiwWVKOn_N&_xE2>!H z-?Xw}Tv!7ooC{dZ?Qfo|kuCEQI@n9KP$KZKAIM0em@Eji?wiSgCoWRMi`Q`VJ{MM% z+FblXCC%_N-W@k@I7VRR-f*;jn{8Uc4QTn0l2~kmIL8GGG%0X^)`f^`1pPLa7}AYk zN|>esTZ~3zOC3#eRxSXk^*qWc>2VWVHQNEWZHM;b`D?Fd#DD~h&r90;%Yz^HEkj-; z_#XPs8at8|Ho2x$U~5MU)F7jLP+rvip6J~Pf~~o45$EYw1<$jzyFv2 zfg)E|4w<+&oHlYDJIFp4Fmr&4=y*$zE{uA8g*{yBPA6h%CsgesYA<8(t>dO=)Y=U< zJ1|B0-3dvWEbN3rLnJbAIow>I040=Yq+cU{X>KBZ5$Uc<)k?R>gf(KmYaE|WO;og% z%%nz#ZvTxQ*RS+hZhwoOj<`Cw)LU^Ff!tKtCQ zg+NOy|-Y(j8b|6a6;5^*ofoWaVaa%!h3XOzp+P|imvf3h!yT1q8E44l42sD6zdzm(zGEyI4-XJ$sJm~CDfNR*C9 zRSXP=P4W%#2e?>ZWTOWkq_47#uniGUW_SMsB^!)tYnD~m(QHlf8_828`OOZfB*3wb zrYdO#HqPBr;d&s)fD^Tn$PsN*3|SBfEjca~P?d{nedL^1N^!Qc3!E@dhAld3B}i6) z5U9$Y%uEB4X~4!qb^5^a!}+#3O3kG_C$COT0XPUfrDI4l6{6YKu-v12=p#q8>?TJYO22^we!F_vrM3q-da9#%mW!5=c0CH-`zN zZM!B`8sh;p#1aZ{(Crh$jXk8cvt|*ss6SH_LSGk1H+|G#7{4&9_YyT_E1L>*O+;k# zG=glE3v^iSi!wCR=v4VQp);=8VT_^naKaOKdZ zTCQ|tdt4uaq-r{bUmL&|;+6WL2yxl1`TQY%srq4dWlUG2EyFfI&DLXCUrZ zp$ShNq#e*hA|TT{qENg!k}*rIQ_ye5J(KDjsYxF%$8Cml6Hb;SjsmSUaLBX-8)&6a zOaJN~$X`>}xj6m{6-l7ELPn%TQyx^D%_`Sog$3VqQ7eexb;g}Kh?@%9Sv93-xs|39 zoXtjSEW7Xx+Y+yoWs0t3+>ot<6+vT-N7R$ILv{_`?oA4?iX(ZIEJpAwsNxjt%TCJ_ zXlA*I1Au#8_DfrLOW%R{f?!snyfKbO!<=;4q5eghz1J zUk&SJ1x+APrHQ!3LR?fBmS_r9bVLHbIDc(K&jmLZWn`|mLLuCTT2+Cl9E2fMbhlIR zf6z2nHz^MC)` z>Qg#UzM!@lz)T)ZE0pgWw;;|{m8(=He+}M112ZAQx=N}d(DbW&wvEnlDbb5nQ^BN+ z;#2R*vgG`yu6$|2ZGx|AdXe`ahn>kf;=_UfAXXERvWwIzr-a?P`Zv)liNY{viGPBY zmOKivZ!8D^(mlzP$rsGszw>G^Z_c1irxZdN$Ll!-)_cuk~} zs{JgGjq~>d`@~oQ6ZPALOs=0zGgBG6d%df|gvV33ltzVbc9$OFdO{`_qV#$dZWj+7 z4++co#KI`DZt`ilOCS{I3X&E~u5%+$X`5@^bZpD4UuR{7!KR$pCoLw)^pF?yq+BP3 z@7mSn8yN3|dEXY?%F=#W_zdnu^lNUBD${B~LWLIyZI~6T_i#MyWY(3o>~}V@IR% zN^J<5oSefnISGm=-DlS)_ZNiXN+6Me@lX3N%xGg3Ika-OS9S79)jpx{oT^yzux>Mo z!LL$z=^U%Pzl#7a;jjQt^>XvXV(^pP(o|r+I3rq%M(m&`I%0h|>TkSXP#uyk?IIiI zNex3^L$tigS$4bS*s_tQ(HzbKI9jiOvUX9un^%aa4&WFuiz|O${0|^BHzP3l9;=8I zViPrS-ecIIk9OQ$Fm_3uH^Yj)H~mJMU#uBw0f_mQ6^p8BBI`TWq2HU1ce4hA;r_iD z$(T`A^mCb*!dTOAe)g$D%^DhM^wumhUP*852n(#UH+Q(GR|w#s5I7`YYwXOiI6O(9 zDWU!tA49Tn>DWk;=B~`CoN7yG*49w3Q8LRd3PSB?wQKr8b$6LF+e9ws`|2)ec1IZo zA10RXl8xg#jgA09z=`3)aO_@~b#a>oxI%UaDIU+FD zn&+ZOBa+|h*HOWPthf=?3U8QPM|yDrJF>=|@Nc=ceurg@sh-wZ#`hkUNf&t&GZ2Wudj6=R*AqNY3RzJ4#zrV-iV=FD~nqp@az2LYU zlj`7ZDMKnjGU|-_1Y?_0HEHlx)sP8_J8GQ~)Y*FfYB`~_AyV2t0*b6=UeXQ=t@|Hn z^#n_#z9wC&Xm{>bjC1QoNd+D3R8b4R_z62+8?U?=MoBd(0~KHeVziQEv_c7$W&@Gg zwGH}Brvb*;?D`X;NiNA`g4ZWUr5}4ccU_Q(PtYtT6BRmY@wR8vZlV+S?$*+~odj8h z?@FcsqGvxJK70D);r`1<4+n=Y`Oi;}etvm4c=mYk?D?Y?`!ApH0QGU7)Dk?uLlJ4E z!u*TXnlkbu{UvD)^rtEy^=n9weLWVnt6xKc>}$~D=PXInNnph+^E?EwNKGMAYSz?p z9PRC*f+&|t|Iif1WUCDKyqExQXC@-m2HJ`QojL?Jl^^KV#_86>88;_-xDGRV51RLk!|ylcxFkhxeR5| zkc3=n4vk1!9*#53Y(yBx)N5pRa*0XQ>7*i4#-YhWZj+FMDWMrj08^%7XX7ux$o^cy zahpikNgizS1@DmY#Rl7CKaQp*_%%6wn{)EI33+W2UXyrNw+Z6I`Zyqtu2vKsa;z#k z?;yxcZBP7=BM8;s`fe)@iFkPQGA%u?bZa`BQo%$2w#H+Xvy%K^TsFFUpoDBp*wSJq z1p_F!x;-B!f@m>A&s$f%^~N!{gPQTxN%v}Uy@a880wCI6JCQz99&4{b#62p8#MF-> zE2xHtbpQn+Srx4qV^(XW`={K9e{x8Fc#6Z~@F_Ejq(7``@M8WF#*jao!xfNm`b9;d7zr}X4?Hu3qa_>>RELVCU0!FGS>J+o7TC&I9^QD{llm* z-B>l~^lwZ}wfGD8^uiJQ=1?>fxDj!QEhzX{#ewvX z5A$L3fkORu98Py#Wz#`__MtHJNM(fTJh0sOzz^uSOn{>G69XZ%rwr#*Yih>~OsK z=nt}Psk@2HH{G-QUq-ByeAF_f>%EYP=ovC8y-S#2>fC+#C-e+atMlc3>m}5@$>PSN z?cE|%GtVSSrOETLRP+%M0atUtFX0!a8*malqjMg>x?nZsWIoKC?k9Y%K0T%5O7l2k zwQDFebXwkbTkqOgZ#Xh4aZctb7viHqRB*=!(wk-NPz#GxU54YDN=jaw-h|#W1;r$> zcukHFLv?uF#c(KyyyGMzGfEmo=~Sm5eQ%6F{k^>egAqa5N`Mg=_IDhlToYr!y|Nx4 z22CXE<1L>)+5i5@(7p2@SJSEOzD{c;X=P5SkG=302O^lbBNNDeBQZRC>Pb9Tzy$m)8jYyHvc( z8-gIsTwyy{$) zAT6XduauK&rbPpt7ap|-ih7ra9w=!Bf_%f;c2m}#s2ZSi-*r&wyhfXc?U^&`SaP@0 zU*}|r{;uqV+tl0MQBI347R3^WGvm-pom{xp&I z3UsF;duHuzE1hG9{~O9P=j8Sev_(Oj-=RF>jwh3_l#;OXj{{`;p;RZRj0Wf9lotda zmdk_Lh#)fnNk4XycU$ZFtEDRL&XZ8h$I=%Jy&#(2{)HhZO^A<*J#R_Bo2E##g@SK_ zSNp8{CA(6wgi&6eQ&ci#MX~hBv}MD#>c%?ir-_K8GRS#HAlEQ#2o4C%ecDbpjUsYz z6MgudH6dAsZ(!hE%UVBe>gqzp$_ABQX}R`$Xi0w9{fE1aRW);uvao|w#&TJJ4i^A; z&gMygL@Dv+2aEm;TuJ;g6#Twt<_g3-!kzCH@`?Fn93n(#LdO)zoRgx$s1Q=31tnO+ z>eYEo0g0CC*QCZuX|ZD>Mf-|m0@Hj@vmBZS3;J6e3m3-XYAKS!!AGXi3B_RUb64*U zoV}U)bogtMoeY(MmAu2=a4YOUoGet39}Cy%6D5Wb_XTs zspshJa)pBweAW83K%b{ebBLmD396;SLVB&|2~j1&q&8f2^4 zf*#WLC{GxnYHv?vYxQr7Pjf$gyd({g{w)^@+Zh((#`UgLKys63r%J1q5~RLX@fHF``TxDHq1JJ40bL^T~1a;_w%vf>b3*v4)xW zlv1F7a^(HJ*%1zqJF}yM{lh;F9zT8d=M~Koeei2LWuy_Rr5t*p2xh2*9<_wnVlCvM zP4<9@!1|LttVm&G_=D!f6TxSh?p+qbV8^gjV?pNcC{cs?%tUrKe6uxHzouzQu=7u^$U*(l{=Rf1xW8GxzfJfId!c@3ha9=gl zCk-PI{QH5+*=<=A-)#|iZhr}ujRF4_>4P=Qi@yk~SFs8T_h{v0Ohh~REt8=5uL!Uf zCeIxf8hfL>vplTPgG3>Vq`x5&tf{)tVY+tkR+d53$TbByClxY^_+r8nK@r29WF1Tn z`JWY|vOWVv-skmq_mdEM)|G4T?#=d~wZV|2>;FcV;k#yCzgjAsz#`Y4drVlB#`q%h z<2_^L_Q)+xxRhvIq`(8dRwug2NQ#*Lh_OtOsvo7U6J|!f=Ba9?5eEE{C^00%oZS4p zmaBF90wkqq;%?}ep~p(P{twE|Em?dDOjD{5Yppq&H8-0u-pE}h-W^CnvOPU#rih&b z`+iGgTNB)eJWT(?OPZE(Dw3*w)%w$B2wBMIw;*B;N}+rn^4&?Tv!B~0fe{D(zhxiB zZZAjOv+{i$*07?`a_-aWd42VEjI?YgloMp*Dla}NUDhH!3FWl1#_A7hDi(lGj+Ldi zSlIG*)>DFNVUxdl=ltD)K$1n&L>7c>+zWIUkOESx4^+sacL2Cd1dGB={S%4tzEiqJ z15}C(e-X}}<;%JNR^^$x;R!NrQ3IGT6ctcekjb+Yy0{`#jNDky+qIN)4|5gdza>@R zVkxPTjJR+jNUvpTH!^zOfVNItonb-;5o|4Qm&BJ4=DNWunfjt)PAsQrp^AR@EwAgf zkx1hp5U$KR5DazfqP}=bHlpx`Rm*_DNycQM#)%$Ps{nMKm|qn-=9x1qMa<=7?pgF2 z?aKLA6fII7gaH6V$Y6<7Jzb$XQ)@vfvsv0ciBWtFnNqumu2F&&H9l1u^oBl>gg(ME z%lEV;R#7;5Nt{S>GaIW{3exOR=jmu53+I(OE;<(}#e!Pja;u2iGT)PXO_tGdRCm#U z*1;7I6Zt4=M|@xPCdy#Qa)AETr)|31rgK*(YxP!@jR#3gs{*%qqtc-*2~rI@EcK-K z@;R=DHKC_w9bR_fENHP#sbv4Si+9yDpq|cbln^D)Giy^bf}0$)anjw`ewKp}sJw!g zLZ|K`67e#Ps&wW8^&*C0Z8Z`fd&&@I6+FGkN#=-Pf~Q|+prWMEF#72BRJ4L6_La_M z(XRm>CtyWF5Nbt1U03q`0}p4dRX~`FL02P;edR~Xt+4M*jOnkcYdelIy0scFi)F@3kafNp2S0y0?)oOI#1;bp$mQ%N?EFi0e4_Y#YSi) z14S|&$CJ5q0$7W<3r9OcOPVSa6iFop;X$`{NX%+qv8i-VBADH zW+)q^SuIdXV&Az{iI~=ABQp}2QA_%u5=9z(bR=^bI^Kyjx zDVAb&mvW8Rp+O>Yub|Gv5CQuy8yHBc!Scyv#UN`CTGn398EQ$aCjiTZz469G0jB(- zBAYI? zDSg;&P+oLJ+?bRzohFn9`JUC)qNgl4OL`;`S_-VbWQ-)U`MSZLQGs9-&fIp{`S@`e#l-&?C|ip%4bnS?$3hw z#a|bvR&2SuEYuqa{0k~hpz}FHDP1AY(7cU{{c&qvI?s0#KxQow3Y0u5K zy+W&0&?hBLQKB25q=JGU6_1O&R%F&5RqadL(?Fv8f=cf}x=qctDAz@IPlp?mNI56u zU{&bohtD;dB9LHo>>S{-mG)412@%JDa|ndhOT-w$60Ewy5rLj!_q@m*9>ZO^V3>@5Ti9a{EnX?5UL@+SQ8{%b-CWyW&?FCb+$h@Ol?5R4Q#s&~P+ot8!@T8S>YS#nV9 zi#7GziNCEbye_(A&FDk_tn%kxh@+jMhU>A!qCAD> zN&^u*4x(&T2u)-q$KpoR)%IWf(mSyC^Cw9Nag-RgtPl}8NPc)x+0%TmMX;(K%cEn8|VdFdwZ%Z z^EgmQ>4o8h4h+>2!RL~SE0l=y-t$=Mytq470P>+1@l$ukM4!5y5O7>WF=-F8*!lI_ zceZM@d2h_z16(U8klB^)65f?5Lp<>E8ct^SKh1yq>)=6eHZ<`k*5OO z*2$bY7=$ktw?BasyCn!|LP&+Tb|mpMu0*X-mtU4G&-S|s^ZG(@t|dR&o*-X3dS??? z$8=@t3Joc4L23{x|C5vVK&8TI3t2DMoYGr}`HkQysWcg8f{3K>ZXepvKTZbs<}|Jp zfm@M%5{`j8<`8rMvoIxfd}#&pvc?pe_?;D0S49?OA=O~F_GZvC`NrB*<1d_w;5w~z z83W_kkf^FK|h}?j~)#AY?0Qx=4IuzrcZM@jUrJY0yOX9eV&sS zW49ZqqMorHuTv|r##BxmumF>p3bN)qcPNkafUJ2d?j5D$pER}NMMi!&kwxbNWs9u5 zk1Bg>R9(OAwGxz)2f)Zbm=XDc@^2JENqyEyM{~(xq5+_&?sSfw9X$+67#$-woQBSJ z1)#F>kI}Y1I1_EHLXE^_d7st*6$n(Xrlx5l2cU0;i4Uslfw>N`?cZH?XUpRakt1bkhkX5kK|OEo!6_ z^ADNsg#GJtt>^HNGLd*v)<*m@PLy|;QtwmR=RyT(efzQ2Ch3V7l+P`y@W|`)137k* zW<+c}pP9%(e#y8b)y-g-C1IGTc#^X{QWbsd(vKBo65^vq1(go}kl6!GZjX0+wu&1p0hQylj+MWW3!47kS3IGxcZ{}8) zhSp26tpIf%*7|M}l*b@(siTCk!t1n#g|ilZlHDk8GZAlMh*v99bzGD3Id4-J5Z70X^8uajPJ;yydDT)OS0S2}sQbfEO6R!g9H7auT!|Ic(pZng#BTLKK!LX%k%+vX| zq?jb;lrRHZ<2cfN=b7_Shpm6rU+Z7>*Z6Ds6V4(SsE@duda^Zh4~wY1mBEiQ4^HOC zI?UR4L;}7xuE-GEqmpCYGaRA8r4mV9;rf7nI->z1HmZzOczp@qLrq0xYA%(u)nQ5L zEV{wgbeLh>Q0p2&7^Otm%!H`qR9%Qu9Y>~{O$7O0Qcbm;1~sTevDb6h8kHneGH9on zT0Ja9uI64v$mWYWOO{!0)6__s&Q!y>LaifIyc{L5=@}->1JhZ;fI@7`-{e!25(I2J z8r>gYYx6J=_wnEWQFjd^59T|KFTliIkFD%ncHM6MbzIJFQlQaRVR>n72VnukPN{lU z$Ets|zn2(xzATy7@hC%IAOu675d7$r-Coa(-Fgl>OCQafREE820b~M&OI_wsvN7Oi zXOw_2nUnh9Z1yKujCYQ1=b04#T-U#qLGqJ=JoU$+C#7mtQPJQhGbbr02@+^dS>?JxQL0W5(i|XG75**C zMT|52dQaF2w*PC9IBH|7w31BPoYka@^wC9&R-&bg_3 z(k(+T4xkB|Vnl8z#$3M1@BzND+T)-h?&|Rc5DZ1T(EKiBB!ti#Amos(2h#H7lC# zYHs_J3kzyT8nlosnd=5bjncMCwcl}bV2hFq7ZV6l3BHVfy~eJjcm-=46tPMe5v>gT z{bRywiF7L4(q`lcNi zU*j0|hu8*d!6nw1weO7{%+dx(XM=7}ZF71T3xlmKj!kJO=3>GD+87}=PiS#Zv^YF{ zi;0Pia-&Ui?=WH7?bVn!Mn21jb;pOQI6c^>eJv?v-lBA?q!pNjk6x{qKCn%fsAG#b zziU|?V44$zvP4)|3Wb}G)LaQzWc!tZx4oH62EDqUvUeV$Zy)ge7@P1pcCR8F|uR4BKD840xuw# z9}8hN-%zFcwy&m&^+WJR((~dQI{~od{%q9X{nO@M>DhZ?`3 zo^E(LX#uoZgA^*PmC3#601;RoRgHHASnGD+16(@Cn_bR&z|dHkvUU|UQ`pdkTW2mU z?s9=w2eqt?m^>h&r1ao34(7{4ZaENp_7)L9wg&Kq@ZOoq&V{Ty7gr>9RFS2ii=|C9 z6+TJ{6CnF>?EX>qAABM9`2v8Fi(D6Ked@X`r0ft^`}?e&qd*f`NK4M6OT6G&OR%8x zLNsRP&^@fa!4r2|>zyJKXf*Juc}VzPt|8#Wps7q+Pb8oypv9=N&`v972uU2d38xj9 zF%v?WreqeH+?P&h$Ht5y%A_^z`_l(?mjlBYlxS(;9;&h@y>arlxX7&uO>+ayF&d#- zT`8eBWURS&PNGv5B@p#%sAaVWI4XRdTRftL`DGLtmF@QNc?Mk~hQ?Atjd;MOM zjtd1WH=ZG@SYIxCe8 ze6y$8!ePz2fZ>xE4TTXnAGJV{dBPN zjHAuXB=Psa9~WJK9d3-XiXc`)l$E1s9Qm6>8vudJs+v;KMnos;*BJ!$d0}|19M-ac zTVOt&goW9aR&*9XLuA)fB`k6)tP>av*7gDpgM!=^jw(cx^jR8GsQ zI$5WytP1j?R5RzmFBZqhPvx6#Mza%?Cdm5;;%U_pi1_(b&%M*w-~YbZJXdPo#z{hn?$^$~CB^B8bZOM9#aAKV0>^l1!Jt zaPfsRlCy}+4kMYA6#^5;%Hn+)%5Ofi$VTWX0Nxr|vPop%%f z(fEwHKdPzO&g79p@--^EGz0R^HOk{9&GpV;CE9*`a+QM&s!ZmU$k#BE?$H(@F{IgM z1;=DB99>Cf)M4tJndxFBy1vAKW7j(4ahoZ(!>nwe84_$R%PK*Yv~^$bq&Epqb|+Bs z@&P~+xfbHmGGO|U9#RX0EqE?6YennJ;Hl^NgC*A{6(cES%?U|Yv7q;0_`z~-vX(Rl zYBn1M|K&}g2r8(}%7zh~!3h%d$*m(jKv!hD;YLhlWXT?a=&u?nS;M5FQ8|t?gl=?# zxkh|!H2!9NoypR=oL;u2fB$s`wa_|mRWz*C+|LSqoLU6d^P6i@yaaVt;;JmH%5~GY zMWb`BGXfq2JgUS+PyYf*d+!&22}FWKsA7;EG32k5$|b@A$jsuJpGV^QBdcK4?#+Ix z>(u|hzCJxu5|B#*#1G7h8wtv1tFG)S~83_v6 z*^cHcOsZxB?xpmS5~{MU#^|JXxj_Q2hx$uZ*D5tW&1Dju+HO2eURGK7;=WRUvT1b0 z+uv}WSiSM$P^K~q&B=r2!7>q&aO0G<_84sfY7YvItZ74m9P+TeLX;{sjT33Pad3<5 zZiD14WWL6*>)!aehU?S8UYbsCbT+g=y@GMJ(8@MqeP;&n9pg)lKP+Y#90{ZfodqXf zf&EP}g{?uSnxn`|iguV}Kxxd+<=AWB{7h8bxadJxJNHe7T1jBx0f?}n(e z+U}?KMQsR_F8xFJ+_VrW8baxN#>SjRb>I^r?GXim z+3Oe8d6}6yy+8E1w*O#r#x&-JL#;QB*wSkeef%%5gUsk!_senJ%fbHjTPkJ^oOu%S zkWy2=wpcF7l|F(2OSq$~yu0*_-9M3N0SzES!??U**MNo|k~v#p0WKpFOUN9)jd6LPMU;9`+0ddZVRCjNpMM*xug_Ub6!F+xoXi zCCG`T2w*-LtZ}fV*Kk0tABY#ec*)P}zahS0R^}LT(`*szqDrg5xpfK>-c-<~X>Q`^ zVWMPv94VZ_mz8w<<2AK7*!-9cdHx}uQ*R(mj@#rx?D0%3fSJv5=&j!!Moy3K)>p22 z{D}0eG7-E;G7vewmMy@tHGh*hn1|B2j94gwoYeqhnKBZ)>>Rrzvf6TNjWv}0+lAvc z`1^nPANW<9bd?Wh*K$vV?#`9ziRy}l4?LEfZE>7}84QC30?=eHo)Qmp;U9U z9l!dYfFyNBHUZJO2VisVGO`>LrlIL(%G!1QsVDgrSzS+Fa*VVv1Fs*szd_pZRW7Wj zAB$T(o!IH9;f=Q(g&pV@xb{Pqj^-A5ttXdQgg>@jg6Ihr-j zoKCefw60EpLrXk3kahb}6Lz76{8as$hb3OS^%@!NB?k>cQbm?0HG(BG)lB7S`dQzu z4_K?vmw;^&EUhQ04p=~jR^W3Fl@b#1>JKMK$l%Js`L)ah8GREUeuUzytWtbmxWzA` z$%Q_4#&FUIzxeSQ)lRepA#caApz|Q4aCvP70<@0x6+Rd+NVP-Kg0&f`VOO1vc4jc$ zrZOVmaM?rIac(ln{iA~)wFx8D3ykqN5@1FGF~d4G{u7Qa6b-Fsys}Kn7VB&7Tf1T? zZ8P|yYrZPlpcrTZ(^bgFp3@Nx{&Ic%Hf`wZS7Vq!VOBc0$EDUYu#G~g!B#*tUnt+^)1 zl-KI9A$({YhZ6pGY@_f8*}n)iR7MsTi~Uz6=5A^4k53Rj7H4UcMw2bQBu(n3WkKoF zVDf71cELwfis&wtS_rmOIvea}SS=rBlT6UC&J|{Lbuks~yNQIQRDTigmA2q1bcW~s zt3$M}=?W~f#Dr!Oj-nc|D4NQr9$ZSoM+*tl1(3bzOqJo3#4CY%cXA#0Jy~)=KsI@TTI#b&O zoclrypL=b9>d=U67^MEkff(3i1mPtY(4xui&F2ru0rd2F)b;u3!CrnefV?*!)(61) zet=z3*7r@oSsqbx!$UsD;LR*NS1pbBJ*i=8Ie1C~Ter?r1-Z+T2gh&Al z1Nvuuvtgazips=k-rBEyGj`(qg$p=Jl9qWai#jH2&L$IoH`k+pTKmRiQ#sNOxf8!s z!lFx{IF|}%*=>t40Es&uxxaKS$%|1-UQ{BF!v%c7eG?IkjVYtT)yu~4Vfn;EZQ^Ry zIq$0_Tx?WYxz$+a_-pwnYp`ni0J2t*0za`kc*ku3lMggwFX&1jwWTsFUtsiITp$UG zw;d}@@Z61b?tci2mAY)~WhAsR32M(UC52g%(2}4Sm3|YL7ea1IisVL;D>CZ7eEZR->Q|c^1YZ94HJqAWEQ)S0co(HEWiw zp|M}MXZc3?cpxeD74*$fY`M{E#iWz+M1!Jy3iLk+KQBWiO3`Z>fr`y zNtTb=c$FKT+c}KE7QlqrI#XNLT;qX9X&4nKIgUK&{3$z!kQP^xZOChg91FLh9ru|Z zNrh{YBFTD)SDu1&e;E9!1p4F7Isd3qryxD{yxP`^qw92>@0lgg9kZaUJD%Qv96ff1 z+J%7T+zS}AhHD+v)LSMAiQw2y`CeFk_47Ao`A=IXr&01L_}klXEM+Zte~rZf&_Lu* zGM7wLqt51)w(fbhOM4Y^$^iqFd`{aQ$1>Sv7RMxnuAUocb}De%ExDH@Z3j75k%*r2 zbdbj&S<+x6Fw8MfI&>i*pc#O&jgGb3DldV?rmozZR%4C$T^@%{rw?)TOiJ}ajCKPg^ znqT_$3Ar0ZpW$s&bb8mW1$QE&9If#OC@&Z5(DA8ims;xt)PrAShg69&qqEPIb1aMH zZO40M`3NEQuuFHsZPrVqfZiL89_*x))|ygKznUZk>Z?`l21V@r+MQQ8+gtU{2z0dz zCI`CBVfsZ2AMVwXM(x5oU-z!tqSEoav3LnhD6TDk=~=#OU#0q(v{Y&{3nKM$WBvz8#7Oba*qSUoCzG8^RU=6Hxz>L92|yst4|QiXQBwXA_>nIlpZslMUJvdCqIaf}+fmaIOP4MlvWzfyes=9whcf{Ainby8 zp?R5u@-nQkj;?3oHO>{38y+I=MM$~0Bz*HV)=?0W@|4K&VHu=(g2J=S{N8Vz!r=fZ zFNUnl5i*xYsVH=B#qo}4nPu{V2rf_lc2z^%3HZ368qvk6#p2*N5}lR4%%w=W*JToS z<2?YB6=^sDkQ|>73n8DzhXr+u9C(10TP@cUYwd1^@m+IDK9yOn8-Qm_+f9LO4O@ec zylyFXHLRny*l67u7%;`PuW%PB#}ZJ{wp4SxjXo2US{chT`pPVhN-|`$_^25I#*NOY zm1{9lj6@HCCBfV<30h_9U^1J`5aF$x*Ev`PunPRFYP+DG`IaXiF}+7(#WtZRigr(V zM`2eDtmK{z@>F?*j7?0F*`Ls|q1L!#&-p1y12O8&>EF0H7?;P%pK&}ogZvczPO#BB zHPm7%kd(Zv8Xw29h&jf>p$!OsoAfMO1tOKHZ4U-d%?7I&G?`Pnxf;H#GA)9)#%dXU z&5nt?acfp17a53{>?o#e+u{$mvfdjuR<7XNqnnphj^w6Qb=K0&7*zu4ie(M0zJ9Y& zdVun@aWF06ey?y+KP&T&m8E3}ALzSwP+UxB`vBwSQ!3J=$ScRkArTwlJ~_qaSdV9Z z%QE&>J^FrVR#vd=*)Q%zv0IOV!GIjYm7s2I-A=Ama@`!jN*h5JS7GrL+lBH)UE$}P zV6~@5l}RfL_~O|w0iHJc+L|0W1d0v7_5}-B>n=I%7z z+yS?`kX#HVL$~qA;-ss)&E5{R1-CnIJtfSJM(%r8)6}q7XzLhr%y@WP%#WQK9kJt8 zj*x(z52(r69zb)WCWVh5n(L!67 zm#je!n4rZ>*R@y5(F{xRGpRoAvEr$@o~qWKQf^31$jxl08q~XbXj~fDma<+lU;C}{ z(4HO|ma1Z3Gyt-hP#Otw_?HCDn6V1%D#dbWt=JrgqDx9EF93`#@0t9 zPu(+(e)qKzF7=JEj`4$?Z~F2+AxRAWXOfMd?lUrSPaSiX~;k&(u?6e*;hLYFrAi zxVJmmOIjkCv?Ey}j+~vob)DNK)ixNX;CUIjG5OIGj)F_vb9aM*TTLw&|{%;wyxb(e<*rqbGQ z37AfOyAno`{D=(QGbQXH)dp3+w6rCEzJN=wS`03Uvg61se+znJE#thi2|ixMf~u%0 zd*>;%1NB}vRU5^t4*Wp_E6`It*z8ymmsN`ag^FY2*V;VYfN9eJChrIEHn+s==-0B( z0jNoIcpuae^~_FjAVz2GrXi&UUxrD_a%5xnniU z0gbTAlf}6Ye!<(|5ERG=nu!8)TbE$l<@^_%GP;QA zT}P*GO)P5jV%8>ay-|%{iu#i-p>)=MS{ z-hzg#+Dg*H1u<=53W}`3yP?Ob-p8_9-Is_l zfXs?M=~*KEru=D4$Cn*L%s^u9cW;i5+eCg){MC{-$Nu8%!E8!61&<7OX1Lw6T4VQ_ z`G{v60P9&}3?s_v!{UrSES=$*Vs)@zmU#KpA_aa)EY|ze>-XPnrD)`FrnyOQ4zrlk z2&$Zo=<}jA+rO=GDW3RhX=&J*dTav0f+Fs!O$TALU~@Cvl{XXI^#zn>I7~{jwl!-k zGb=>}^#b*+DWsd4h!iim{WDJ{inN&FFJUp}MWx*<;W{=oX(^)&r^%_?1fMu#?otuD7W zNu@i3S5rXy}BnY4`cCTNaK8+UXRh*|hK8GBTSto{QEhH=nof%LUGIg567uvMmti zpH0Mc(awXY%h`q1*q*?|;JD}Bi4cAg`NYoyBPC8CD!$3w7u+(uTQLba@hm+fDzpI3 zA!3U~l#awf5weGMU27|A`MNie>RT-$(8VxufLc-Vg70Lz1GLiX+ukA~TCv+}l4f)uN3>Ra?ku5rgjVa-~h zUWXI@%t7DV-F+}A9xzFb_x3vB5*^h(R3a>RVl9X2U!vS!Qu_&)uR_XEVG zP#p#cfl_A3pKUW+8(!V$8B`!7ku#fqcs~626bV2S8ZM4-p0Niy8bzcNh;r=}e0)g{2EPzn<8d-bUfLd+x)Re-*rm?!@ap_Xwb2AbMC!VEqP6;K5FbLG z?%Y}E5uHl_VOG0HnGPY3@hy#gVljT9jRZ+}6KQ%&%U_I`6l~*!aZHug>ZWtCUV?*3 z(4LeCHC3C&GBA(&{hi^P+kndhWJKL1v)!7^Wtc9(1+-S62cApUok1juoInbtgmV^g z-?|4&e-TU)2z7S;>BN#iEXl=M%j{MO&rMc?cm4B z-$*aBoKA{&k(718uOeocQmEPD_BIV-V;nB=EdjKJhG*TQmBY+XJKXxvcT0 zas5s0qf~S-uM5hGhAz3hj<>?4awLr@k+=uINZGDRH*(Vypl|yI8srr}T`H8;_bj2+ zw7P$uf$I=dyhnR!L!N-aBeYKZ}H3645~fDtFn9 z?`ZQf5DH73$9S&Jv0fE__V{o~j)w!*-pyPVq0?cUk`g}uBcZWfTOQ7+>JG!JDS4`KE}8W11<*xMC@16+0#aHGLiiEf;%R9NYgmwC5@CK z70dnB`q!+>1RM|*S;Zm_NaHX_aXGw6l{IkZ=)CW2PI)H9u~o*BN^&G zLd5PYO$i#AaEfZ{Fj9!$g$if>xQgkeoWRq2dk;La6h{1Nxp5;w9b`ns_g7N?w78wU z2X0`r5o|s~9!28lCwrbf~-3gsWO5Tx%9?c)PEB3~n zWIzTls3cHH?b8V3>4VbhWA#pWcv5mj^zeNApfo62-O28pdLL~G`FR~xJXZ=xYX7ez|yAJxLIRN zaFCNkbZCuEzwc2wUUCNg`lnr1$l(BoN^QB7D$8!^PIQE6dcwezsrQlP2+&983YMZr z58858B_7Q1GlFS&U=zQ*qhHMT>NnoEZjbSRLv^B}s8&|0r9p7^GH4yY!P>5J!`$a> zhh&qHmOh?lOg@A2ncTRro$E98Vs|{b;MTM!N2E?3PG^%=Jh53|qslt0I|+p4rPU^N z1-~DUr}ivh)AmZLj_XMaz%gWy?9q$Zr}94_)QC~jz3&?D$TZ#qbcfR`Gx^he)s!lH z#YY*UaH#T>pY(&mpRota_+pt$=jh&UL>@d(Th_B09N~H~qgxQToM5~Uw#eGU8d~99lfnFH^9IU&5iFVkebtqyRyBvWwZ~c-YG#}MS z_jI;6Mc;}z9o56aF@$+C2q^VVP=$zLA=TmnzXfMonteDuw)h_2TUwkFZ@!_7jjEWE zD1ybu*)dcBsuB4;R}pI@E%tP&0KcUw$8z(YI9PPGbFX%$Niou(ehB&>c>()>rQD*4 zOo!Y6@U7Db0>)pstZnUnnV8*G;1(?`vv=O(KxH*0CmsCY47J%1rdlddZIazLrkJ zoAc;|i8xam)6M^xBn0%AR7J~U&v*|PBX z>&X33xnxd_B$tpaDPD|A(NboF7UgL1fR-)*2YgMQP;1aftp zR#~x-jqTz~5VFQ*!%4#(ol=b?q;{D{UB@5aPA|#fo6N>XXkIZK3xawUAMj_3jFbo>A`oQ0nLCH)5aqiWR55`hjwCmtPDu~N z9o^6yn{-MALNgd((w+j84G8?;t{M~c*@!3#Kb%2(!uPbW&=XdK)3&S{CF01cY9X8y z@&f9)bR36;^dq9;ciT>_(*GyKZu*Z|*1|8!!Z)BH?F*)SuLp@c8ABmSDI|67SJmuPgdFko1b2YM8SV_tQkqaqho|7oaI`54^0~_TYzLTy_SrXItNJO>x>pt(5@vgz5NVRb3o4DANnBY0cx@r;ZYKeA){~E>4nSp6s(71pi|piZ#k&OlDX0aq z3_=n*Em4JyzFoSZUFU6>5s0qOEwQ4Dt0&Yw5g#&Z%&wkZ=E=hTSXfdZ6Q9NKn^oi;V4@1+Ls`2U zWpuZ(RFP|;wjFKVw+U^uweVha;%KRQcbXWu)>RKEEGXENh;gts4T~#R$c&zZC>T?_ z6xR9^0&*=4dUg90l|Mn>Dt94L^l(NiWiM{gq#`=Z+Z&89Yc1`w9UKl#1|9>>ymns{xV~vQxD>{vKm^O# zqpZJ|h4SSQV3?J5R)N?SGa(DibE*7!DtYe|F9YL^34sWWxWk-oSksI`?QOT_xvCj8 z{g^4uP8DcVvU`^_;)Hk8!J{SYbhoIk(GmJ(LctA7QSrHUDfrk3_14tBTYle*x+A?y zAu6p~w*&`H$1F%)k*JW~$INb68Jh|qiIo5}o+Da5XLG0il~JIvM7atKN%@HD6&1Xz z^?Iz9t z*jx0VkV#}@0Q6P#H0PR%c)7GmTT#GSzkfGZr#96CNvrgY*ne2h>!c{sn zLea$z-4klLb&^iU1iZB_&*4NJG#tZS+&0+j5Z?~vZOLxHaEQ_1&aMbs62>9#1%(AC z^=TBO#DTV4t1XpY4>&`z7#z?#-UWQy5};$4QZOk&tKgs@`||1P?dO3k%VEHSW}ZyM zax?+sM?!qFb0r1m4v4gO-*qIhm)o(#q*A(;?mLm??;Bf#M4OK06gPC7;naN*P)nD4 zdX=49MIYd)DrAOAhxKMy1_RH`gdq95Ol`qfX3fw(gU0fJ48Jr%I>8Wi zsfyRm;36tG4o$xBjDCXpHR*h!9j?#0H3SWVAX4*ZF_N7ItW&No4-Bh>D)TU%pgQ63 zWn-j6Qr=Q`I|O~!gi?sX@`S`H6W=)#J&r5s4OS5tIL5HLJ9i#E;o1mJ4C}ieOW)Jz zs&GM|NwE=1x?s^V?i71^P(hAKbJiiy2F%N*!_+TvX|iao?{Nc-Znv&l?snJGAnWbe zn`WTQKD{EiCx{NHA{#id~;a+z>3+F9Ic0UOtrw6#r$)<(8oFf~q=0VW!BPI}L< z5DxN*{HL1a0E?(5QNXgk#GIzJJ|@im#2QR`Aa)Z9VUZzbI5@;KDFZ!Ad3N!3u{`}x z?$XU8dWjVb+oC+arLE5vaam*h5iz{yoeAuHTh__t7|R#^%@iUx^irVMhXwR9eq%Sf zUj8fc0H!lOrmu=Sx;Qbr$M*`aH31=rp;-kn2~3ym{UQarc;StEtwPzxa5$wCuCI40~#PZweG$gl##%m<*s9`@J^N%*@)_| zH7EdD_%XtdHFp?9j9l8C=$zcG#>p19Cnl0>9Q8^Ee~n?AsO%E~4;bRrW_z!hX!Th{JUu-Dxwz0M0Iil}b9i_TFRL#PXIvuPO|2t(BN<1JjpTymPP zbpx`}C|P1f(lByW^3l;r!ZMpvh}Mgj2a7j+x#>=fLPTjtb_nz~NRgKBj)&gP&&Z>m z3?c<)9l$AY1)R}g4XIELZa9QHRF3i|#{d9_pCp34$1LrhAC_?b(Zl28XT>vUSLSBb z)r4DGC?(m-#|k>z2X4L{g&TBc0s~e^TIXkg-Qd7BpoH(Z;Tkz!^e9P5;VVgi%hmJ`AVTK|8~m<&JECZw_X42CT>`^G(nXR3Ty` z0k0rB#xr%C%WM363JF4nwcO}VX;@rYMwiz`ahDOzppotD*v4%|S}g$Z-=|Xd6BibO zHcG$BBBDCO5@4jL*joO%Bl$)s1imwQL{+V)^r4DVBvjz!0O&xEsfKLP}6o_2Qn ztGNUfvjpY{l90PD@q#Wa7Dp@BvAjoofImy1ObVajw9J?GymksGA!9OFY*5OI(HlUp z=j0rRSyquOyJzTfSR90%k;h0OvvC|c8d;og&Zx0w(0_#VBbZSMAY^p5XH`9d8a;#2 z*ePQzk_0C{4zeN0N%e>tVMbCM>AEMs5qz9Y>%B6PsY)yN=(3L;GxW_!M+j#vG#a71 z%l%mZQpCg=oS5Vy;YvXncBOW`&0R_t?%tzu7gu6v-EJ(+DlH2-{n`W}X%lG#87_qb zOn0sWQcxmWOtV=7T6H+=PA!6dmwg&Qw5#ZW*P5%XIdaF%<`jpsvb{#!>J$3dJ&{hN zjxx34nxsPNiiI@^7wfnx`TM;Qcvm)vT0Hw?aw6|BB;OXDq(gV?&_Ji;Ytl|!ky;Dj z*L%oU-iR6S)!Dc(Wf-k^CzGEP%i(4bJ+T3LO>XN*3p&AMBq2h9O)zl99zp~CW(`Xi z*21e+rc0{C#cSpkEV>|2=z+w8Uzg_}$+#kvjrV{!4jF=^7m7|N*9bu+lD0!-bfXs! z+0_uqgB3uP=pGCn1I#LK?Tomc7xe*g;_OnbPLEF9O`zCeh=eGz(;f-fmnRAjv>t;_ z>(3&z0uZRIT3d{BvPG4F7RR*7lW8;w?b<;ASm(>-$(aSbX8T)P-e$zAIH=1o%oH1P zF#%o1m!g{rU5ux07bTp=es}rZ;L!y^UxR-b{0j&0cJTD+b3=49O<5ZsxE(}flC4NM~A_iY(5^Hdxc&e^VKLn@$s+c+Sj61c z4k*?$vy%ZyEBi7`4wg2=T4pgHJUe_wcN;ea_8Xh)LG{}76~^cC%T4Cym2x>k z>tM~l$%tuS-)_OV;C~e3EnBQEi*;{FgS5h7sO-9gZ?vj@oeoiFRVfB^<|&3E8?hSS z|D(D_M2y95erGdphwD{AP{O$koo3-B{!ubXg0xuJ7XdCi(l}!FU9n3yUPdJB-LB~F zq^D&e8cI5Fan1cy5;BaS?bE#&EOQDdrFo53nn>J3D}S>Q`|ca+$QwqPP5hB0`u`iY z%^+=z3;bR+Y@6WsAJDE{pqm8-Z@!h#%N~(9=cblkrzNyq`l5kJm8RU}ZqlawKPrSJ zhn&8Epx${AQUx;RQK)6b_}tVd2~M7}GsM)zuZFdjlprsvtO(2`8rJ9_8i4pn#rqm{ zLr6wmZK=sd+%Fhm_-#w#NVFQ){u(Q~Wr%z1PGckIERm+g5ioi645KyEMT(C8*jhGDhUqsLy6eZJ*WG0Pj2Bpxc;J z=l0`g`^e#LZj{#Cew3(N z>1->gdsk1j>h65u>16PV$Ju`%l%k~HHsE6*FH1OpCb2H`7{^aq%1NCtbx@9Q=^YC! zz&zHRt?R*n>k)>1PzNiwu)t#yc<_w^AxvW-Y^{`9vuDtyG8Dm}CXt|O&9V7^G^6^B z7i&A|&R|YYEgZN2Pby{zNUTiNoo@9v+@B+{EzNY@4-yeXJW!;S>1=K}&Q}|ct(yJm z^@%{wJVusv)w6`CxX^go8!1O~c&K@V1~n7>qpe_T%$-L9Knj_2|TWsxf-3cD*1VQ$+oPy=G$m)S}!!qDb^~E#tsV2pPphKi&1H@ zGn(`U^kE}31gYt>S>Ne2^&Ipe+O1%(Jf&>`NPx8h4$jXVP*i@cTb+Bp>pu?F==^~fO$3C z!m^1hwIQEp-zQ3|w2h4+Xo}V;YdCrRvBRRFwhC z+tABydDK;qVh7=-pQg2}x$HSf9~=`g_HvDCXz*2l#{$t3XaW zH%Ofg2n%#-^$pBGcC8;S+lPj!a3)<%#*6#I>DGyd{0yhZ@u?n12>_v#CgKffQBY^I z=6oCHw=J{@CoA6L*bOVi!`U3O7VhFe5GZ_&-i{LV09}!L)PW*PlXljQwz+jGH?wmg zqY)C%RM65}3|Jbc4$Y@vcHKQwY6YUT;U>qkLqM~KI>oPtj}8VktOnUbW!o5O>y#SPoccumZsTeJ*YS6@flQgNl_w2@S;m<1d&t(GsH_0R77TV z)BprQ5+M*^;UbAKszEd>P2kbv|3t!7Hx8Ny(YNl>TK$pSaRQ$0oBqlG{e6s0IB167U_3Jn1 z^rh?eTAe>5AlTld{U%%Il37w(qbJCfRRUT-4oVlbSCUgdu8|PMI^u;R0uHDn*3Z>3 zg|)8BAX@k%5^}TxgpOk_M07Q+2H!xtUGfd2>4kym?lGN#{9v}pyO;&Lq9CI{UeKKb zcU;@m)PZzOd2nz>XEXL8TA--$C3b_J?lWg294^hT2ybKEz0k3mom3I01}o0?F78Hz z4c5;Y!!EEUF5!K&aW-t?mvloqw|`(LeBE*wq~}8BfN)^c(wB2lVNL&CuGt)jn^RyP zt((hbEpv6#vW@xiRZ28#Hj_veMQh|Cni=Kq<@Y*?Tvkev@;;1XPpg35 z?iH8ZPI2&S^%h)RH4kil;0~j)o(I13aF5aZiHO3x1i2fuWd_6BJ+D{&L%(jgQsQnF znA~Jd_Fe(Zf$CgaZbe}D$-IO?atx0hRby`?WBTFoR7mH&s8E&Ys%)aDNB34qfIq@x zUfsLLm>IFKHAQvf>LEb>TD4H?XV{6W*Z#naM&d@~g@m?GR*$JzJz!iEe>hRYQSpXXgsg3x zdeFU&Pb9%<3=LmBeIB6*;7gMaA7I!JPtoj0i~5M|6&mwSl8^Q_>5A|Z{id{4qAE`W ztRX9{Bwcc;O1E&`Ify64DT>&x;HZJibyes#4<2TpR@@o-aPRE6_ik~0C@GOP`M;L0 z)=WlEkzmL<+a*V+u(q+BY$VH7fKxSa=q);pYWD%>OLJc4S3Op{1>L_t}|E zuW^7U`gDA=nJI1|kO_~~uWM?E<=r9C=GHXk42U>5-w?b-96{z_nuh%d-YrO5!Cj9u zLtF2GvIoNZvIy^Q(I%@u>N0BIdo!0g;jcWzH|K5mI?Z4C7f){IuSE@8*SLm;AtRo@ zn_fV_n#h5snsSwoyeoa)dRO{9A(`6n@z*5J;l)sAUXihZIGMFC;^e=7F5(Q4dfOs( z2!20q0X#IVn;QNW<#zgv3l^LavED!&+5txHdOQQ3p69y_Rk@J=qwU8}P~rDdd~=1Z z#CL0T$H17o?BPh=K4#95QWLA+N{c&tIWg&NhF}=uaVcBgWv{ZMZy5QjUzI|x;l4l) z(P-5e*>~cSYgxZ_v;)n{KF(`y)YEX%fUdb(293bfF-Y^+7#WemHP9bP)K z2U^Smc<|IKU6h1~o@Als?@$FYCE!avqyZBenl1L^Nk@0Kp&qmDdC?#)aiDqM>&4dI z`FouSqmlwOc|dKn?D)Gsy`(qzY_;{})h(fP&A1dE`WTVLgoCvei<*@j8FE8zFBl%S zYyIOK3d$b!56FH(|5baaw!n{Ldo69G)IjDDwyx)0!MjZRJX!ETM1C?RCdQ;Tpjt*| zbcXgq@9WJ~$3NeoL<}tA8Z=F$6cd%HP{S*#2-VL%@-cSm7|{VQ8Uid**~!Tyf}wIY z2*^A}LB;2Y2t#gb%Yvax1F=@k!wJTJfABBuGHC5xc6i-8%>L##tA{^oUgpb#*8i0>_H2B%(Nd7NW0d{a$8G+Q$>-|=go^oCDbXYzI>_c?0_=Q;qUb}Ir2 zc$Q$tG%q)EkG3K4(XV}|n?BT|m>fYKwWpR>-|QpOg_)h45C3cL_$}@bcMq3l{X_B3 zt>mAOXgW*}csJHu?d<LZX*!!S2U*j!7(HR1P9hNooi7p~Ty<~df<=jE|r?W?NS$RBnf3)q+reK=AtmQ&n38$FivUzSxkHu7tbt3aM zVFNiWIob-aaXG1GgKv7dgifD8b1&SDQnWwgHf~S}G1*34eYB(d4WPwMF{U8WI#(U{ zPe(WKkS7aHfjSNzl9_pzvK|Iv{1PVv$QNwnwx-8?L)Q2g!S0P4F=5#D*<=@sADntpR>_}U*aeg+##_q=_I+;)Z7>MjympTN6UxuT8#W4xH< zDh*C56jFH&`|Nuf;LhefIS~AWwMYyj!&^7(BVL2jzPR#xt((h#@#*KEUPtWQxOzR_ z#ynMrr@|u1H-G&`=6NUpT|(SmGmn2)Fzs5zG{)EE`d@r{{l=#ZlRLV3b?Z03iFXdL z(mRG(F;+R_8(HyYZB>kUqykG)wt&pGJ3ojh6~iF$inlm-MXy9y!`5}cCw%nv?h%)? zKWDP>k96dne80L++7-Y(IZ;?pqTgw{2UoYRV$7Vz=lilycdmHwB?r+lZhm_G%TKou zH8-#NV`4nv-r2mD)#P?}T%ol?P4|DFB0Qr@n-78(orr6Vf)|I!bRLOuAq8}C@M-z9 zNYMxnJ(idJzz=Dx46q=4b-}mHYrJ;#=BSmC@2f&JBaX7|Q{+zHP8hin)pe>*>JLZ-m$X7L~asqYH;TlM; z6HvUd2JP!N4Z)jhU);R80Kv~b-7*_-hYtVuzSP!RMa{GC1xHcH?AY98EC$=U`q}jv zn67`ec9yNJPq(h+X}JF915WeJ{!?y?p)(@5pP1OsNEFwB(AL#k^YaL9SGVS$a^dOq ztGDJ*iKzKH=5O9w1IqPJ5hq+jbn_}VAbkKxBu*qr;E|sf9HRHlJR)FSyZYsvE`mwc z$;CkYeE#%xponH#`x{$P=&)~iQ$XiI7gd}%IeE=l?_MCWsqypXxlsDEy#`P~# zWPUay6x)QUsZ(Tr{^V~#I_i5fb zcjOi-_1Ch&0R6QOf_0NejE7DY{4)w9CQ4t#f#?{}G-sYIl=l`__s%FzYhAy3eNAF1 z^M(4FJ+0%wm}?)Si*F+JW>4SvEZOz5`44WcD}(DY5VyEh0N|$u?7O&PdX9Xi49b$B zeP07hQ^mvk-&)^*%+uOH8m;g7qO^uFO~U&6nNhz5b<0^Y`Qp zp;POS+qXlJt+CS0b(v|4fSJ=U#?23sN;U~Z64#^wen#jECU1l97i$nRAlKxS0J$W2 z!bV=Q3f3Wp>PKe=$Ue+W7RXX!ybs89!}!cnaW+L3^133`XqTz-zh#*e2l+4y`ESp; z-p#bTfPA^8gL}E|U1Gwlp>G}RpAk|hu(Rj)l%9i~B2rk`?j_t|_<6qJ&~$5}Gw5xd z&4WX^SbfgB3ml47bG;5u6!1L{-d(aV8s3NCwz#c*CTrr{>-aPK-JCydgJu2DDl=Fl zf;40=110e!Dn6*0$oqykP6Gq41pAmRf2Bwc`$KSmKO#+p#@-W)1NnxiMcuu#s9iAB zM5hbbwQ$10m?2#?OPF*5h}$sd)?y`)J|UDjj&58tw_RWV z=GGA5O~27PP;?CTaHZb!$kV{?`<;5-EcNl`hj#jk=;Dl$Z`GmKmicV`&_tQ9Ij+s2 z36j0%p_`?uc;_`4(eH!n`9Z{zTMH~{zib`XHr>~31nvNXuh*WwwUv~yCjCEK=Z5Q_ z0wx$57!g)@PZ%X(SVq4WgtpdEt=jno$>-3^y64)@Jm-^zGk<|-&okpm^+G}1JpaB-Vuc|)i@Va^105s;u5Zm8M@L%LjX7|R+@CXoL@L43xg_F} zz`)X)|9@*KWkZZ!8U%6iC28)V7==MWar@0!owa%tmCid?9Cb}?sL8 zM?ScouXcJEr$>U|Rm`JyyTx`5oVbYdeaTIga~hKC?elB7KB%7-mA})5v=99+?$YO< zUc)HigB$BGVQ|Hj2A5Vzl>nNaKn2< zH#7K`)RbnzS&KJ2*UWoN17Ci6Bm6=>xHZFovfQ*G2%Ygt-K4YHR?onyVUjzd{LMZ6(9_6INTqM^7(si>e6s3 z>n>22TPf7xs2NB~Z^wSV_@(#LeWy(0%PCQ3SF#Ohkl4}}Hs*ntB+~of?Oj16Hxwx@ zi*wwMV=`!NMLx{OTi1pSQQM*Hy+`nTAVnvp7Pb+u#b}sp0~y=ka{KN>3Lt)2HX~Ni z!BbMMiJcA}1n^{EKO=|+;#uE~p#*zL2=?6|bw_>139c_mK#-o63l!%=-5@9~(?x$H zO52g%4b01LTN4?f;G9k1u7`0iRwLtHkgjbnmjUeu@4zX6aR(BlqhfFU9Io}dNA(nq zjugA6l`w;=___gh6o2nd!BtGVO^WO{g;8o^qpI?cm6eKW4eRu3p@D5Pfk~g@O*F9*!svF zPSi3JN2qL${En{bnY z_0^{10Tz0xi#BR9-|i50Kcw%>ilUay;>6Rk)k&~Iu<>KN@zY?1bJD@YUos%Jt+ z-mot_5*udI@P;ox=MBN>vE^%bu56*!-7NNIRaEeHUz(85ujNZ`U2BNEcSI5F{_5|) ze*EpK`VJ@n^@s`6$_JDJ&j$s3qB~hT)`nVmc{9DpK=otP;O^3~bP3V~CtKHU7S6}> zVDse>G{o$ZlwRS1UJP9o#Xt=|bs1c2LM7+8vA(2DBP7RxA#|WKjfd^1VA}0d$DC2E z$og=%x5Tr~Z+`QQ8{yQIr3N#9^c&^?aVxoQ6dgXNI=Z@nXsbIr$*z%TWus(OyndqF zQBCjFBnIjG(q^?q)9U{8Z0Jl3cu(tePY@7M&pzocud3~jo__q%&5xN0#z;Jto)&ON zr{hrdtKCz=Z9h^Mp}8mEc^oc!{SZ%gZ!^}E0rIXA$6(f={nsf%HI&D5nuikuqUcup z%-uFkYC%)4UO`Q5_~c*^EzL6^B1u*8z283Ae)8SpyE_zx58dl?5a}I~?5=MAr z;$jSZu#DBs@V=;}U$&`Pi~MTq%NrPxdT0a;rOmVear2vojOxl81ai*rhz3MWzvc_T zqHfZs``mN)yap*6p7DTJKH2Aju;W;;4~_*+s%`%p3S>9mPr{7XH@;6?V@JO|-`k}L z&Q8mpj;4Pt4`HCs#52D-pQm&-hpZ{5KOO!4!NWhUw!i&$_2};7ore#0R$u?a>dEi! z?%Z8H0ta^=JlWBSn26zU&uh2z>f$`2QaZ5pSes4~cOyz>oiX}X1=gkn(qbr)S z#k`4K>X}++=<8CzG-kv$&^VvCtLNpxt6D~F9gwoOM-$iH?(1DTK_PNZ%V>p|bk6sR zw*|fNv58`{mX4}So>TXM3G9^LGr9Jqc1YVZ(oN;Eqx_;&k@_EUg1pAP4ddkVqmA1TE}p zpb!&txh59T>fyYci(cJl%$gNz{BUq`M(w@!bNn3Ye;Yr~4%iMiW8BV}8oJ|-pJdLU zKi;gBqB~p%4yuKObfuj6mP6~2K>!FwfM1_>VhAL~r|Pj#hfS!MXMclK1G@^uJUKW! z^gqPiF)w&V>3ZrSd#A#hG(z=O%-;2zEc~&SS(hD8?%jX*;F(MxH*y547 z^y6ijk*3&!$QX9B_U(q34?<9j=+-#>hC=i#`8KZ4_3I)cgyfoa-28kaJ~GX06MfJx)NnO%>pACf5)zx(d7 zm%96hdk+x*z23Gx5t0kJu=QNKJxvC5AK2bZy)~0?FSREKh`yrv~}tF;}^Sz z_r)tce)wSf+dKZjcfZ|!Jnm`d{1l_@TjrANqKz-H*3Nf3+YkJM?cYAQ+tzx!e?TPh z-~XTg=6{O+{P&mt=0E-Sm;cM(Kfe1v|4;w^y9f84+`Y5fd9wXPMhfQAcaQHqxp#MG z1fzBoeRu!-fBiRBeDK}&x2wl@A3bDZ$fNHb?|irY;K}OALs@B0SQ{^J z_3&}pJ`cZ<>eg4aqqdvv+fP<}E!)R2l8}&$x2Ba!ExZhEQUl@;;D|^sPs1YY<-e|; zJl=k=!$EoJFSH-*bi8^yjfiYro$M=>H5;Y<2Msg+2d&aoAI;q;-e^Yr8+uE(uH5+S z^PA-Cfb)ybKHIu^i~l~LAM4Mrku2RBMata$NiM<>5Lf(NOy*L{_#-K&5oX|s zg@=phV6rc7Ub%kr+RZHr=Z`+JizVe4dVahE7qDu`W_4EDSLeBt7rRFXapM82e{}Ea z=H=7b_K^JBYfBBijwj>Ty*@>&+4$G-bV{aS5TJjpclD7Cz`a8z z9iohL+SuuvS5J=*KhgoDr`uzUG4gzU83QqSuD>{Fi7%Xj`(*WRU2uipN&i3B)E;8X z0MeMy1pRD3`j+=$Fg(~jeYX3bGjS&l#)1F#+uMISS}fT5)7d}&m;e6OA1)NkUgn33 z9cP#M;bPy)Wq!C=!F!n>svl@p_X(`s)BH!&sq$O6M7yDu$AjV{_BBT0aZEP}8LiT15jhp7%3%>CIYU2AKK`Zg5_=7_3P-1k$G;OxZ2+d({BZY#BmmPK0H$WUVfFA1@wlhg zu6;`D`_Yx9$5*GXpnpg%s7F+xfT#QSp-PsciR|QsK7Vm?{3Ah${2I%gnj;Zsjp51| zJptoQyHj+Suh;jHUu@os9+0=quQ%*RPn1;Ky8iUa^^$92L;w_gy9_xw49GhD4=&>r ze(@c$PZcX`o3C&A<<2Hp)-y+Umx0;7m%P`I^G#5fS+pqW*42TS&a4J;NDw2@bPJR) zrrX$Tx-S^dAYB+fbP&iuCCC`Q zMH#R3Q#zUx6)q={5?DS(RIWb|@&+2B3GZ=17ExvuTB*&H<}Ucb`# zS>LZrIPBtEk)zbAbOk2;V1DlGo;=-U*((o!IwZk|I%87Gt<`tf>iBk_U;j+D>cZsp}hm)gFi+!A6h?5fz2_iZ34+qERr>KrR z^3q#%?9J9n?OCL4N>pgtH%>tO^-_tMRa(9f1_Vy7trp&oZ#SrhojNmp0=2!#A_WHCJMs`E<-K4@ssZI#%a^RSm z8rC!X_$*D`yrg5V_+{`2~c4l6!~`lr1@RRx#!O_c<#_%D;t;%^Wo&W*B3asLD^Vfo zVeA#IZA^cvnNxlUdct+6TlK&=O4k-VMwq5<2k4b4)YgGaALtA`-?~9TtF2PQv+5$s z13=`vQrOsOjP@Sa7xc_H5Nn4cik%**E&l%t%Ef{9CLqSh_?o$o;57xX0i00hqu4Gue8?c-hF;gWGpWRA9Ozt`@*=iYhB< zVOS~rjGAHtsivr$p<+_kzSh)aEP{Q4R7f{45g{^BnNo zPEgZYWrPm*^hvqNb*ikY$h2wv+b#RFVJNGl5oStpX!4u`kDM;zFk{NqVB|7id(CnR z$6#F+dAR^p^=Ck;D(a=Bw|H;PvCfAAsA=8C;?9S=O5@K|DDg zyv>8R-w+l{9Zq_@eW{|mM<=@GNU2D^py1fQQa{4Ch}y%rr_qk*_`T}T?yHhyXZQI& zGYtFK>U=6rSI1L(K*p)WgI(U5IJ9ddRg6Q_Sbs>`M?!K<2eaBZyC)7jY0U~|n)vNN zFPw#Vx6h)H6aO3Kc}x}EfA*iKo+5&ho*Au~Q532c_X1Ct1%XhpT zRz5$(a1#3iNE?j+L0wPr79sKP&e6G^{0k3jWj;8pzX#y0wx1$Zq<$3B6Y5#1P^m)k zz6&r8<)CB`h%C5XPs1+@ovP<1Npti9)qta;=XvSRam}YLh43-I)G>jKtlZcUgq2gW zA=~zt==P!I@4Y@5kq4;ijdet?9U`I?dJ-hz;JkO5g03Z#42upao$QG?Qtx+L_&HOa zvGbl89LJuwEixrpqX;W<4f!@3Z8*r5m@5U?FE*#R?@1h6)j{SU>67=L72FpVtM?=^ z4z7GQS&$3!dOOI6iMV}iqv&pdfXA_$8b4$@@T3?}9#_ot(w{jI3lVK~J3VS2GBf{bpY#Y{r=bTJevkBFQ1S%;#}b6#iS5`Gw@>Rc(t`Z$OSFrYkzI z!Yp7UXk8f?GFMyA3)y@p0;L+ec}s9Y8!L@FVqb@;C1Olx5`j1w05A8r-AWj?F@|N> z2r{(vIMyo~nS}MB9O&AQ3WT`Dk5Bf0+9eXA3t+mOHdRevD|aTOn=F>sjE_W3uw7Zp7Nu*3!(ld=wc_R zJrGwywm%h4IeOOqR7GX~gIER)ZS8N_m9_4Vx&giZ@O9|z4;meFGt?IOpMu)y!K(uz zk#U#Ih2Rh*6(W1V97Im28Rnf10XR@5bi`C(Ejz~)$i)t5IC6E<0XIJp(x)QK^~-i5 zotD;*3!BfvP6njKpqS zVmNvGR19rjR)CCVt-1b5r{dsK_QS1U$3(DFz`}VEL=?xJzqU6jR@{7cePwQq>pCgj z`)P0gHAfrrAP_Foc2RQQ9T8~e8kTONM#vbM zFg%0#jF3?~YphK|u!Twc%P;Y>Hk z{@=zYd(mxD(t zrKtb?r+*Z6&q>Wy@oaYhMdtv=y&vx6?YXwDeBW-IC6?#*Gn~g%zsMcGbG7xE+)bjz z^=JPlwp4u@6Up+goxA_^k8J<`?w@Yr1Qc?86P_`tOTR$tCq?2N@(RTAZF!Yg}+peLXv=Kgz@S-#)5v!lOE{{}IOk9e*ss|77($ z-4&-N@EnT#hX*C7eT@Y(vfDa`Oo+2B*aWo2ie9q_ z0ge<220~u1vEL|f;?dQ2horjz`}I%8kNJSRO5kS->f(&UPfVHP9a6Tu)|d zd4#AJMF400Gl-!7d4Kn(q>!)och7iIma!R_%b2{0KOFdq0C4ut|NH;5#KUBQh*Qtu zIVBV_c6c@qceKPBQ~c@3xb3_4d!PJ4+nx&yLcj;RC{*-tl!QYNFXEriNXcLxP4IK} z!v^Gtkn~nylIPFA8VkL|zPa)o!<6s}CTWq8sY{i0G@+a*&NqoHs;-AE2tj~3+W@SeB;@}1B@>`s{Q@UMWs#( zHaw@tg7{@o-Qa5)E?OM~8Ir-FUY)H|ypuj0Re&hN2G?!@obB(uR4MQw8sD!$fEx5= z_2kUNz(DVJDd3TDKEoIJ-qxS8oD?Sum;Cc^mn$aaIF^D9O^ls{x>qxf@+!N}!nv}T zQBMfv5;7#!g4C`RXGivac<9;gE4NiTF#H_rl6M^*pCZNL_9Y=K-82VJC|NOSy?O02 z!Gs|sb^Gx6Ts5&pHBV-?D#B6D{ zj^+5`r7co!>UKn7$|bxn1fxzGu-!h{+kNJP?)vSMUl&1sl@EV&aHcflf7rPXg*Fr% z`~|V}JieO$;=Yb2Fh+JGcaGU@o+dzHi(l9Jahooil536bl56Tx4N|5IK{&PM_kx(`X97DavVdvj;->Jpcj~6_b)Q*l0d&QzT)gp{@|ZZw&wJqvvi07s)WpL zMxB3nsQlfjq>M20X!nizc9A(sbiK}pibK|MfLuax=nQ+uP0sHrav-1hM9viEbD_*Uqm_H{2KY{t?OtN5ptQ%kPdMS-N?mx$MdA!H?YQyLhO+hB|L( z=;OS4VT3Mp{9(5a-J}KMpsKbyx?7G0NOJ&@2`YfyAxlaM=r;>bG(}gzBvSLwh^mFi zK0SVZ=0BPW)h6rFPQk7WwHWHaX%ep z9q7)m_(Z$3SI3A07#Y2al%4k9iq81d#Q1E46SM}+G{~QFBO94jrYPBDbvwBFZ3~*I?j2M<`R$-QEl*k~vRzr?W`0v2D?)e`6R|nD|FdgJgII!J8K=gi3 zq_X>3{k_kQZ5LSp$)Z0#Jbq!T9=}9CwBi)V3PQxF1F-QPrlY7i>j$|A07m$dbkcfK zgAxqEG$jb;sWhR#aw5Y!KrT@-?8^9TlsiSFGb9RNI<>3KZJvt%0Ur@Fg$HBToP?}_ ztR^16kh%yatFB+qaWL_`5*rSNDjfj0f$!NHC^#&UO-?2W?sb{E`;-zZKsFo@zE|w! z`MF}L;gg&ayWagFtq}m-8x4{Q>dYi$q-W;jcW`ucOfFPpK2jpYm)?s3W>3y|#~NZo zf=ck9J+Y}=%gC#Lh##_lsLZ zbP!4A^%%&CbY#IZkXke|RX>=Z^~yT0_R@WO{;0l08&c=tc|iV8Kw|@=lp!h=F$>e+ zy|9R07&_SXGRKYC&h&@sfRKQv^&5SJGT@IHA(!heM)Q}cj-kuL^G(>~nM zZs9|5f%rn{=9jzjc6!o})Jg_Hl!?&kI4d|C6}zBV_UY*{vs*2Ry7jFRcCu$NMkZ}f z7&Iw9gjQjshi7a-l8YkfQ3i~IbEx`ziYY~GMC(MCqgX9*6gFL|N%4eF_4EXH9Rsxp zUm;LLCUSKD(MkkFT;D;-wzu$ z@@XNs5N~KL<(uN+wzDqgd5}KTV9`)2-X3qRU4sN^WL_DS8|$kH5GaE}#Nc0JZNMs{ z#t>1mvTGUo+0RhcXUuj`Hiy(FU*PNO57jf!lmLG!t~3#whItdZam4iKOD|%s5)Ms5 ztG7zb%dTJ}5hIW|#o7q{&POZq=UDWSkYA}1#v=UqsVZnD0%9H=5nYbrbh6)KmVwj@ zFS2ZAXbOcIohQO|sq=(clZ`<)qX-un2j>y}D-ipJT%{d%pB~GB(&1hn(7tG-uBuwq!BNc$K~L!kpfqW~br0&|gsKTSA8 z(r^xy#q9rt<|7!vri@5g4~KG773_XXX5DvZpT+E5kXp13USy_kcjR5nj#%zaI1utNsjT16X;GXZ*;IxXvZy)% znh9fo(v*S`pkvIv`*3YL?J7x??ku|*4rg$`t1IRqc;ejQhxW~Yk?177bDb~Uvgh(f zlMHNcqMN$1Yi5Ce(R^?Y2eh@>uq+pRvElMD(mJ5z0)v=j7a2!uny^sIbJCqgS5cQ0x7Fu$m!!p?8`uUvn z!h@rCQ@T|c*Ukz`^1knl3qDG(eCm~S#jj2U)*$Dp>{Qh@L9!cnma`hesRMMtr!@Ai zV_Och3OwDF9sI9u%1>Y|K}M`Ny-wU?j2fh9`Fs3>>56aS-H;ggHOpJjC;+Qo4hL9=;m$-h0e3}i z(faD0Dohum2Rz3?3)2(ZTto-UvMq%eBc_AuMf$l|Aq+!pqWDqEJ2oR`tateZ?F3Ewwjr`z5xc8q)mJQ^(iq!OiDpAV1zw?dLVr!otc1*b2k-Z)vzcg z!vRh&O%2mN8}z4^$%?^$_T*RuH6A)8Ivoh-anYWVV2Z zcpj(8W{!3O3Ft^8D#sQ?)Fah8J8`QF_8a&pxGCB{6-tOPdq3WW^l0%wQsL&J}&KFI};;Auh)MBZM2lnO^Ot@Nq z#3`(NcP)9sER5Jh&gCxNSmA<-rR8+t5gfW=)@V|3<~9(R(0Emeuo|5KNYiI`$-i3?#e6sZOoF=$9K9ZI^{=6CQAB*j|rTZ1M+%= z_{d)f5;-6`7%-s>VjofS;ux_y#a$j2Awj?x$EZBk(2m@rhS`d*>7?}`VVZDcY!?v_ zG^1(nB!L<5i0=$(^_)#CLNkz}SjL5CoM;OJH(I+`-fO6SL?F&wgZiB0m}|^Eo)YpB zPnW|px*roXPfYq@H*BAK2&8x>nKhAnl0yK?lLMd93iSf~{1F-CkOD>P%GW42rnmX7 z4BVO-ru3!w3~K9dLH7rTd!kfcN5E@Sm|>`B#b*uF`irl@2`LqAm}!P>8_sG#w+iN* zo*DrF1@TV}BWl%xgMHr%L78jcskPU(i;NgH1d&CRyx#xx`~W$k&74wQp*+cMjjP+PgjIcFx#Qf*V#w9&=1nB6|nJ){O`g>;}GIpH7QV&_ksRwg}Ki z4nL(6O+ioINBBpdnwkgk$~W%qfU2N^HxfCZ@x|^r0ki@$6heH^#4WND4IsS{4k^ec zES~$Bl=0}LMW#qEu=YDkV(%u#d`yui2Y+M*m``B@ao^l}2$BmJE2HUpj5#^GoLg)^9}^f)3(BW4Z!(hBQ_hnF}T6^*wGWEr13r&t z)`%*1{UBQ|+B)JxNaSLVkg?A^(pnBC13#X0`nH)gnd5-Tc+@8le4=S7nr#Yj9=j5E z^8Md2Z#u^T%)jNDyFd-a{=>Z*QLHQ9QSQt*`D{l7toYZ~4NV#p=-y>uD=$Nx>0PY* zk#In;x=k(G-eYF4qSg`@?>X+M7G>tT)?!4G;*xbB?Kj-sv0ph}HB0hY5^0C5h)31hJ{3~BvTNyV^x))7MW0mUYL z^dM(LDj-*6430+uFoTlXMP0jf`_P0Lwaw1Hko1H-QgbjZ=ZTCef43^QEbu9^0%VAZm4fS75I+v9E-Ho2NGj^6 z!_SqkMs&rLnQga+Kc39k(&LtIz27#(?PbIVe6(;V}y zTxKRR0gK3R05{z-!yQrU-!w+wnJ%%T(iAVbbhBZTjzEsq|6!<)UVpF3@+Fa`p0WYc zC5@?bpckxR{2VO3UTXy7Abiqt)9TTogEU+kB;?bp6B+7S`d%*4$e{6PW6m|68im9= zaF+?Hai=pUlI;vp76my-(54ufoFaIxS)4AY0n<)FBdXy6`9vTRFI-(Z4$7=2rsjQM4Pw~qU5(wN*GI}+k?Hb=Mq!h2Aijkxv`y^&n)o*>jc8wyr zU<-&hND{;=7i}%B>`RV*%<(Zk1qQ*HMAU0vWlS)lNwi4iuV@y6>y*M%CL*&kB6kcr z>;sOdG3YslIe{H2w+WEcy%5E~RI)5O@GCKfta?}AX$nxf0K{8uR!0e5ZI`VQyg596 zD#0P@Qj6jS0Vv2ix=t5F7ox-N=2k;-aQP5u-vKg4$tvSr?&Bli{upZK2ZCo}uH-dvtfoB((!WQO!1Ng$?F zHW}IuBoF7E=zq9JgSL2%-sApb+&?9-_*jygN(w1GkL5o&eMQn3IUt_$Rh4ONQ z$Ty+FnJUb$t3H%xiEle5IlA%fBvv#h=P^tYs3^PfFZ~!sPl~`ItWuGyxZk1z0Lhf5 zO2=0!YDkZ1g;a@Fq=6Gy`D;o@FftIK&B&}1Yx&Irtu(0o9JzVXI{955XUNuqobZ$+Co9q?AN8i!Slo<{K8lv z`bY>!*~0D=S;tAEO$-$s9|OQ|pDmx5H$&(b+EO3#K7Un9K@WNwkadYJ4IXePDj|#XCUB0 zxqt$n2XMcBC{vMa-eBgh%T@IUWxy>87ilGNz>w3xSS=+eNtq0vj7wxo^47AZ*wNE| zktR95x$Fw0_Zj0giKl23mFuN!EvUD<(AH|-bNWtp7@33}GgP|CG(4ASO)dcS3*wYT z3pkBfx@ian$E4B2i6VkdMa46s{+9r`$ z2puTf5;&r`^(p*LG#yk@AanMT;+5|w4#t|b$(*BbLUE!6pyW{LWuQoeMkE9ZDxY=6 zY&g3JYb$xfBsETmFlxXos3n3-IXqKaSi?A~p&{T5VPJOi=Tfu^2?Tc#0KRuopi3x~ zkZQ0(9F1Vr_Z=Mu3oY=~4k?lgFAjAi13qnKSsK*r!sM^j0Is+;Qxk|zXea|iN*ID1 zUyv=Q&~M2GUoz3VvCnVL&M2uEO$HiuiDN*enh#EB2;cQpo5YkZ_IO1~EkT2kI)xjn zvFW%`ZQ?W-C9z7lFvyBGIKZRovM5i>WhP-30*c|=5$0*5XAqoqxYZMPY?Guit5pK3iJ%8C90_L zI!Od1?G*o#=$$Va>N?arONC5#d}8fcnLK>2*B|K`vQRJK%gXDFz~LlPm;o)$QYkF) z$?mMr*TgXjItf^XOcwabQelY$oTnez)f+X*LG}Z{94}hyQScrbtDBqKWp&0dOsr71 zYly3IWk^mZr13H$fFd}7Lr)n}XKyib5~d|q?r=t^O7t_C<$$!2ZDIINQx7D@HOt8H zvl1o?7%dGDh@ymn`wrLf-ZQznenS(ymNzIDZVBW ztqR?_W3iv31%oYdZZ9yo7vvh zx2rc)C#%S{HN}=w5Hy)GkG@5)Itg<_SO&Ng+`+Ev57UK|1H~gnf`El_7Ei zFv*_EV$;GU_ATuxh*f&15k?+F6&LgVFU_%(^c2BTs%T%wU`8$ZP-}LdB%W*{?`h#j z@_Dci^i3*F52468xi~tp0I~s#RS&D7b02!SIC{(FN)*_KsTxTjC;vw&WJS?9)J)Y} zUi4P8SYp-=I?}>u&}2(J^x?1udyG_?$2`y8w?4CNbnrq5VAtl3IpvcsHQ%yd^J@gf z7Pg*ZwLrl(|8?45fxvk!S<}DTw7+#c4=Eb)KK<3=Af=T5b@*LgX7QfG?>1EvXsos* z3_ims=%Z3nS$ivK1~xcgih#&)5WT9pjVoj!ED!sRzwvC4>d29{@dyVg1R{|de#!?CY8(KSMvS@>2(pb|u=uEmJdVW% z`ABLS9L&0l(=j6ylg*vdj8KV&%E@tOI?#w6s&8##&+=`?qKv#XC`>#BKQ_q1vOh3_ z>Lpgp3cI>*tVR4T@I{!BG!eL&R3kNE*PAtkqgi&^{3$WGtW(o$YM3nS>{DPj2fUQo(V@o zp>ao=YcG;AxFBNDjk6NnZE!nz-C?iL_x(ijkLAode0}g7XQqF5(P`1Eo)4fO^RH|T z)!vBS%Q9ia)GLaJPEqcPl7}cEwo*>KC9{HE0Jl!hk$9XH0|MIAd~oDcPFff@OTz~g zE;k9ZG3I2t(ta-zWsNl~at7{@kF0^OPr4hGM(xc^1qoZVD1}QnRz9j%2^Zmad>V zsKOXg+d)p)%YB)FgCU&CTH2H128o+7n+j=vT_u54qb{pe2WS$=wgvmfLyRF!EzzAp z$%(NN9>l~=!+v#SWNG+)Sk)NWn0S%Nl<~a;SoV6SMNBI&ku|Lmm52kf4ES-T%`qe) zwuHaHUr}s`bkSfe5?(mfgb*+}h5k!VOh?sSa=P9a4cQ2E2b$yp=}hOZ5nAd}T!dV> zB}*s~Y&z^kx_pB1b-8te|8reAO@l|~ZIyIFss=`7BP9nqHn`X)MPW*1;R#y8b2?$) zJ-e$L=LVW%9R0~3#pcNWbnP~#G;<{JP89I^m zg<2^+k~Uk^{$IAa*LZHJ+{h`8MIp}80*~eo7O!yuv;WPI>qeedy#-5+A?F{y@PNtenAyx9`$jMfmi^OT3zH@Ds zjGALQzA(}nL7{~f*%)UdF@=z5N>||lYeJ2ga2H4cmp)ZO3)b`evt=JOPpIFoF|X>W zx-y|#OOs4Gltu?-APE0vpV6)@_}`5QK~~QPJk+|O4ER{6l^^kdCVxY!au3IPm_`3A zQ$d2p?XaUhMB%-Ya_L+K+m+akX0|C0>+D@{Sob!vFuPVi#M?sDpU*D67^Q zdBu_RKLfw);FYQs?6jLP1DSPm&oqxF?DYDj;)Uz(rG76-0+ht{nMjVzvub+qCpk@s z{R$xsvM&X%3$7X$c02+}iLy%T6lX+h&D$zwpVRwx(C?tZJAow~+jNpgi8jub-66v) z*a_&ZW;hv#Xr;(Hub?7J(_3=Azg1zL0Z|}nZY`oZCvwfNo}L4V(ENjZ97?alc6A+= zs^2^_B+MGUEowTXZmAc7qSR)@X`s0)$Iq{{&$``We7Ks%3O1~m+*oL(?x8uJhz8s{ zQ1E!vr9MX8)gm>sMgjxfmeA+Cl|ohCw*ijR>^_Sk;>ZZMFw`E-o3<&0P#>#FAa41R z(Ur1n)3Z@?w!SZeC(4M3?Zx=Yc`?Kqw~VgYTRQB${(_q}^|=R7gcP|F;iD!jM1~DO z$wd;|T(PVR5{2Wu>k#M}27&m2NhJ70krhn{i7COjR7l?o=u2tvR=rCjnDF>$$2xR7 zo%=fh{t)k!MT;Ys7#USO`N+6Zu(%k8VpBsu)QpKZO$ucvVnSl{y!N!HWPFq3Y+>N2 zTHQobCzrI~03o0y>em${iK?{SC(-W%7(^iSGtnQO^GB_#ngS*E^S4u~6(vl`7J6~)m*tj@WUW{& zO+$zmRf)ny4YvkbU`fbDQ`4KHu~xN2oTtk@>}U$!BWwh6a=&YYF4h1R;)JRw)A6!s zr!qbq^DU^=zDA7Xi>kf_1`kQ#oX_oSALciel$;m6*x#s4yCuHbH>5)`t4|^Xg?nzo zp2jSpN%fLW63FRogQ8yhk0Km78bx{>7?y$yivk8Ag{sNm8cS~<1_5@IfCXJ-QnkxA*)MJyDscwK7Jbkq25=3@6wuHpXLhqx4b^Sv zco$anaPL%xuWb};td^R@HIx}0YH-FBcJURU)_598=ztT2kuwE11X?nlk1UWQ)N`!f z)B06Jeuxq!2w<|2jIF(y-kOu{`!v^a!L>Q?xP+36m*3Coc$Wzkns5a7SAz&-QfW@r zhlVM|6LmCuDxu~uIVhIs24IY}&e(~mwUxt5!v5q8=mw&UWOI^{xTNd{ zISUukYd8U5opegOEQvED z+SJN<~P$`3nEEt7Si2ud|y-mbiA~~gcp%^59GP(@=PitXI;`55P=YXbm zl$G5Oxt6a)t;xUMn8g%^Qj&lbTEmV)m;{p`(~%kxbyqsdI7FXA()vO-W+gATRtcN+ zD!Xk(Rtt7L7F)50G6lc-wOVog*__e392)=KcjqABTL zxo6o2ll-LLM});EMbNu%aQXaA4UIs!#E~(ij$iBM6ZMCS(ZgjyUuX28B?YyKAzO&} zwBv}A9R)VtJS*_h2|tH|GB-w)fv?kIX2MpM*UIaYIi`u8QRSgE^pWS;HZ>{Jw1EYd zZM$29%GK4K%&|$ln_VpGgq%SZ>SXQr!`@qtvSOfWsSj&MC7R;d$oLfbl+d6cd01vj zwdY(Hkyl}4A0m^|H2IK|P2x3@x$Fvj5cqwz`$|;_-f0yvx=Zbi}@pz0yt zbkXXRf^;J+7(%?@SzT??uKIoPa|`V`m{8m!<5}5XVg#c1!@~o*+b}WfV)n32%HR}6 z6>(zONYQ7boYB7)p^(&PWGBu6pp`hH6+sVS3sL?~8XOqLG8KMdvtl}|BHqyP5DBpN z@OhXBth9($dw#%RLRBcc9KjzIe8vE6*z0+EWXtzPtMyxZIT$Cmh#$8-p-90&>^iT2D7ZEM^;hgJ22s7m% z#WE%V-{CRS5>qA)!Xq3w=0C(ucRG9GG2R4ra$w}H@n;c2DG9E}X4V^COTnWxdmex? z&@zs>o8v&YmlC!E7yP3h$wGp()HJJ?ChQs-g2%{)_Q^Xj4hKP{NUm>R^6xF8_*Znz zi*B$jZ1ah}AZm>lk=^Z)eZ13$93m_&m!&U)9z}Y(gK8vcO}SF+4K&XZP%my^Qb^5lu8=S)N=JH~Z4&oS{dw?wS_cH>u`d(})rhyDt#-qfY|H}ku^=VDo#JzpQ2{{qL{F@)0h_v-3flpoA|=73 z^i&W-O5tE#Uln80056R^{OUkx;hw!!7(>unC<785YcgSATJM}~Od)5kRY2tTjTnJN z%c2W`IJ9%^M!8Iz9_bnI1Oo6W5e@ZfNt^uSyNO2eUll)mD~~CX5za@&!}NSmBZQn` zezgOuhQq|B54!`2d!mU*{f@xNDY=Y8(hDRh;mVtQ(}a0VFCsNEL3le{$mOCpmiXad z|3@amDs!PZ2-0Va$(*ne_fYE=vHYgxRTQIW-Yfz~y$>bO1keJbYKU4sB{GN#*dI`9 zf!dH)sEkBT)Du|u4o9CMub4|fwyS8)!v;OBzFw!MTKolO4_`{o( z?ulU}a!^qfi)4am;^;Copl9xNp&3UOYj4Hj&XSWiQU;Bp{iKJD7S07K@|-zOaVR7h z1P9(oj$G5z4S3S#BlsoXs@`pY>l)+ug9T=R3#66f5(>xoqq!H!XIJ{NDqHpqHpV$L zZb@(E2D|$f!41D5GJ>Pkk*d)aFQBs!0@;rVv78@q7!d8=8cb$YsI^krWV%xddK^kK zE-qW?I+F#-C!Hb8Jp%cJVSGE%fCkQr7>dbH!^Ub*RA@m_eT!abR>N4!)o_85Nv))) zfk=O#0xNF#8Es2X*eI2>_|yqam)!3LcW+*6G9@ULI6%c}ZaTHIqTQ`q*YF75!2ApO z8^5yE5QG0JI}W3xsU01z&&-*1Mo0cCVx6v?5gBkUmP0M1$1V< zbx>nTvLKKm3*SPGPbO{T!H^bv14i5LB**wev>H9NG=Rj#0Z5-ERWes;y-G#VK%}Y# zK_8SB1~~hckYKNA*@Sc`H$WbCyFVl)$?Z`1@07xr`2NP)gk+o5D+Z6qMHqGAjD>f+ z){EzRqL&QLI78By?q`DgbWKRcccMjRFi~fA=F=RTAnT~rplWhzQim8y^zc?TZjwp} zMxcXi5rKc)hLS|Kg>RwRykE!36Wt|=G_ixyh8T#z^y(ntaBDD8@iJ`XvttL${i~qj z(w7$iT{dG}bb&5#bRwG~d#p4TjO{OUMPe;6ZN#)}c?q|Eqls_!a78wFy5_0c4ek#U zGc@N70@r0!Iu?-*NDZz$6=}zsfZ31Y^ zAimCv^rl;F%B|56C$dL7mW(g&MW7vTB+l?*Yy+y;eE0Cx)$b@C+4+^E9ihIX|*p*!c`#=)Jr^}v+8o;S0$NzBvajw4ETunj;=evO7qyI zECtdf7W(cu?EMRvzm{o@vnk^!c9UTN!W~NBv z31xz!KorZe;ziaq&1jH;QqhiXsbmSrupJ?I-qJ9VTHDnanYGF-B-t0)Xa#oF*N+vt zTyY@!$Q+c*@4Rkn7km4wZMh62IuW;N-S-V#V!b`xY$cry&)0tOa1d9uD;Qhm(x#V6 zop6~L5+>5+doPcr_+(IM)$>W{db-_-w(iFLha+g+U|k?fy{1lla>~wR5vq%*D!S>d zIeeol0;Qm(4Bh4J3|QPqtS@o}_*xwW2q6AnOfCpUSC;;=bn4jPyP~BFVQY^YTg8E= zQ0|`g;LYO9gBJy!D(ty^^z7vLAkal|e)i~xe-Rz|Jp4!0&@ujOn!wZM{n@iR#3Ls9 z=}H`+^2zFfBrL!8@&5kl@lRgn#V#Hs1-P{%@rO*>f?p<*o|az33-tFC|Z^#7*0Ts zlYh0ZLgiF;nbd*H&pu7TF-cEo>C{Wj36{64SYPV~`G?)YuPDQll30IXX0k0GBz6289jzy0Liggf0KvN7$ASeJ9+h7wR-I1R2 zx8^w<&Ed`7ZrB2*>potji-?iPw7HS^t$)hIorqN9V4iP;6G7)@$5cLX`W!+2E<+eq z;(!M&)yJj?wG(;&{r>)IdDPkQffT4fML0D^3p6wVz5uKmce{=nJ=Eg2DF%e%tXeh6 z#W+%oAhlu>0Z0Wj7~BXtts0;(Etm5gM+}Qk$t_tb)V%4!`BOUxwOYu+=oqTcphyA? z7c0aWk+3!+6rbvj3&^+Y<_QGm80N{itW}a|`}OP94g!6cwh((+XDu}FA$6Z{9JbJ>b~70t0q%)j#h8Zs_2&C^^5k;y?YP*jpQn_8;i!yCc!+N4m-P zJKedf>@?v3&CfC}gkXXb)v~s_bHD@(@OeLG8LhTSz1Fq8ckXY;6~GZc(s2|QX&6*& zJ;caZsiVXMGQl?(z$@ncDfk3%Vh;U&dT^+SlHrChBF~K>u5prxNKTT?hEUjIGk`q zB8F&>LQ$(zCfP-bPUXbzKtXd2H2@iw;RrR{J2^pyj`C98BgiLHw}`w_nz79ibKZR| z(SyF6OUK6pizdT)V}&HICQCcf_*aUEJOL+3MZBHXUk#iO$v_S3J{nq#GX!`=!mg$e zKVjvRrmN%fbpuK|Nf~(#4s>`^izrkSp&->}$ad2;z;Qbj-%H?iOCnc?L)jcZ)c=Zf z+G@Px_=FIQBz(KdzV-x{uJawU*1KC{u^d4^iH=6o&9adon)GXl!`Y#dH$f^gw+Jxk z^YWr$TX#o9@D^Le$r#BK+)G6dUT{l14j#f%htW!!!DH{-%OGhHLt)mSrzabDJ2kOH zg(5vAYyqGWW||>@73FP}A*UHtJv+!ksbYpudk_Hxt&#*_#!Bl`c|xQLG` z9q%!-KZCLjJLdO>p>o|4A6HiofvMcGKo98VlrB8U19PhOW1UwHb&Z&G`+<>?%wZAR zvOgh|vY0<{hqZeAJOdSN4^Ia6N{79B7Kv|%rUIIjCV&iI7PL?K9*D2)tMqY$?1-}T z;92dE88NDwIX_kD-^uxUg@#RzKo=@W#-n&)#>iv02V|{K0ptwg@`p9r-O&=!CR7a* zN~Vb#k}gcjW))<)?n7GybXH7Wl2%9mcOX?%{zz|-WdwE&BBwMKy0Z6*~H^ol|U(9DCY$7feAc> z21WT_P=392Z7Gh<3!OTxD5WDJEQ%Ntf-yg#kB~ww_K{;T7Yt*N!pi5@P-X>qBr z(Z-MjtdqmBPruiQHhd9m-s3k>n9!y#eUFDIAM#kk^n(cXf|1;+1PozFdCU*4IqbQ z4}{bS86w;)tl0)*9db6Dx_5UJl0M}p)Z~glER0~=1CwJIi871zv~*P_nJ>W!QTs9W z%01)8TXZw{5cMS=tbqj_cV#*9UOT~ioqu3x@|Y**EFyY~c#q}FCgO&cNDBz5XaR>5 zMHl@9Y3I~tiwftqXq0*L^*nyQ(E=*@!3MfbHZ{tjrd)0Fh<`r z9%I8urwprTa+2nm2d%_Yqvg?_Mh2C%5p6hx$$xuHG-@O3o1h$t2KiV3JmySk=~oBO zuACnH1%*{!xO`xJqYIleN2Pez33gxFUHw+P?t3*5YY&0XK<1IB;yJt(=+y%`{3+s> zmST{RjjN)Nw4`j?0intL-=$`3=*`q;14~%A*;uSpA|+f%^FwD0TKI-yaLmzg2f3CS zn$n^!vBm^%#afOMN%>*gxVrtxM#IRKj$ban7T3|%Y|CT7{E8em59f3ji!uw!W~}6R zBW0H^$rDDrTp1&wBlNAb5XV-K$U%deiCJVDWz%Ee1wf#25%`c50aK7)&pK(F$a1_c zO_OfU7^~WZTz5AZXls!;(2|J&r7rhkj3QjZAF2ZcYLHOdYh(=E;fK{H^IV!MT1<2> zql$_!j6Z2B%5X7jg>!Ua{$fDx3LyF_n<=lA6qJj%*_(RXeB|v@0aB)P$vh{DUD4cd0u2x(lV5&sWpL6BXYU5A#M#ZOXY811`U1je*T1{z_^og85*9GM&q>If*cNG#FMUIJ zQx#R_7--_TNjbCxD8}4{yGHF64mKP!Fn`6mTgrYAMF`c=S?Cf_)5w}Cp)INq=AqlQux9HXJx zjWv5kN;FxAfYmMW*bNbx8o^#Rwm4j;L%z{Daq^~Df6by=O>)@P)nHlRf^mS;u5x1b zV_DQ+OC!O#awO8z?Z+4qVtsz+5Z10brI4V*76spGaS!f$iB0YIsml0$sd=S+_J4 zE8|o55&QSD3R5L@UC=lV0ls~RoH!?XBT6g#RPlZ&=4_t?tQcAZ>S)L!U-45ykU0EF zHYPoYBjk>|Ks_K}Ohn0`u~3Z&;%EXs-G8}zSi$&4nKDIew;uke8+^N3ybM9wnj9pb zL)pt`aXVS+wWjF@T&~0U*CO4w1ah}#fn3*f5HD~?-ufvzB|$%kHY5g^e<2HUgEAR~ z3TCB3(3*tDm_f1#%|9t>tmKTWPd7n3Kt7Sx*d`Kzy5K}+iYRCn72e2tJX=&wK_jPI zBKEME;D}{AL-vV+l${SO5r&9UUZrJf$cR%}6xO1cnX65g_{{#NGU@bm%3gR;xYi6Ak?9;)a`l_}{B zF(;ct?*5>H$!=%FcEf38sQP)YEows#U7x$js#Pr__33t(7MmoAsWCCu0FP$lh_y&i^E)X zVzC&SgN_PyJ&+|EK4F`0CR zDWT#@WifZd^&Om6pGm@@MtFd1Ao_B5PZkMYSC0UsKqE_)`Nx<(Bjg^^Q+29HJn`S~ z@*RFaZ0?dm#GNL`7YIiPSU8cxzmp>Ys0n;@mXXpc(vMFDO7{<6OCQ?@ z>W3`OPNQ=wL;Rml^* zyf&EyWLD)Zp7%pQqYO;M6qRm zR$7Ewxt|XhsGyGwN$?%EMLg26S8;r@FDB&u<#YiR9&O^qZh~Gx*iQ8_63tM*TR=U z$^Rjy!zDfJQ3?`U8Np;NY(Xtu7xrThyIo>*;m?z-95XDTIK=%B+fa8FCaC4YCYV8a zBgoPf(@Z#QwXF1FnfICC4cwh*kzomL2g&S?_^g?$d3YrFKH>gM8xU6@fTJte+hNnz zY^B1nzKF?1eKLO=v_HnWLhK_Iz#d*MB3;uokgUg)mC7Qqz1xeMXS5|b%o6NB zW)lKvMTU7G5;{csW9*2A45=X2QNA|T!^U%)(gdNxcJ0p`AY)-Q#IgEBDA}eht286? zX@oVMfto2aRA`&1N0UKuWZP$LK4r%FCY=ftml2*)O|QMqtZ%Z@DFarPe-@{T_>f{l z%O2B#TonuJR7ZqaJNXh9%YJ8uoJW<^v(JnU(k7{_lBE!VWWCrr(PfPr3K07(H8IHo z(()t=ZFB4te9AZ-?&GrjnY;z1=5U=@M}Ca*A9iyNj+8;Qc_5&MCp9sN960B-Ucz;H zis--uvb4ugWpJnk+piVa;E)xGvT2hEa0hqeye;sovaT$24iPC*>}f+8SCb~*alIY| zGYp3{?S51fsOdu^u~G=Hy}?pGVAZAW26w+pc2MUl06@XG5w_ogYo!n2c7{fr_I7oq$aC;zy`V%#srrBq7wzRwhSP+tym~u5}Z$M?(H4WhXoIOtzW) z8WE;LL^Fw`u7KB$`&F$n32lT3Y$G>vt-3s?{bu>i&kxnL5^)k6pO8{>;BqNZxChyN z72A30E1tA7SP0I_{0O4AnlbZ-{mK~07@nR~T*_g-xU}-RB68ohyvO5yafB>Ubc!sN z$I|rcH2a=}1N7CDfb~5mO?kg>V3p_6sxBKHC^C{W_B@>$v$ok7Nt&{l-0*>y%4x45 zgzHNS@*CF<%PUA44yWffjSB2kbe{AmnUzS86pV~k|3n7U8-}%c!b%BUQW`X6hJ_-0 z6LrIEiV||0clC;DXuBs~Dn=YG4SlSF5}3>ppzN29C@OE|p2xTi#fM%UwfTw> zERT^9JrLIb*F~TV?j&{q6>&kWYULDey~KD}sx3lC^ryX$Eq0$NhQ|&w&fga?VS`y+ z_ss@Wtnj29_3_2SPA$BPF;-D;G3#p{0P0WnJgd{HTYG0X@wGcu%s$mI)w;uby zLaCs$-7Tn60ay?2!tmq1R}e@fyygrEOb*|l9KVU+a0pJ{LSQD~B*1$JJhxE_vT-xu zECNUv5-w0;J}R2Zbei1;Cohm6Pv>%>gEe3&teEuQC2)Q?cyTPl4(iZ+S=1&L+T<-^ zrLM7Zxe5Zq*Tdma1Z5M$?{M!8iQU{Dm`r)ip#Kl zh&&pw?LLm;uMUU`+YbmbA^EDrq~XmHSkVI%NccFE{t_>N157~PX0n5;2e+o#^bimh^ASsFUNJZegQAo;Hypbt z(K^0q!;zNw-Dc$|u9f7~JSZ_nWK3MfT5}3_pDH)hV+Te?LSD zY$k^X{J^yQQ^g{F-%lX^ zGtqXoT{(}F6=6s|;^F9NLJBBJ4wz-p{7YQef|QG#z&Qyl!mw%Wz4wh10{i<%?A|dZ zs}OZD_$(;;*9*2vf(**O8Obt?qn1_T$`d5Sw1>Nlj|yq;tNEnQ)s1ubObwcqpMYg? z>Xj?*i=#JssB8%G**25Ehh5ig@i42VZnlF`!;0!5Y>=5TuUmC6i$*xe)lJPn--RQ^N`u7+AmF@I%+tl&yzQ2e1!%Oo1$4E`Z{ z-bGx?VLPoOyTBz2`(F)#jLOOwD=mxiMmuum09BL0g|Fc7CA%*=fGNfF5~F4J6_P3@ zU?>s}y}mkCkYJC5yp+T4NgH>z;nszC#I>Mine`t$w5yI#J4aM0% zszzKwZ|{x9he3BmHN)LLd?Tfp9lS8w?H*EbOdX!Y-dYq5SQ-@6l7Z%|(T!3mF4OUW9kqrIY1FkHMw#;VQo1A=oi;j8aTF@YA}m zrXPmliU#jKY)2bNIEE=+lGd-=pvfY-sr|R?;Lw#ZKhuUq1lUmEUTC@{p|5UJDDkO- zIT`Ha$-&V(;Ya11QK2!!hjEXeVjHbAamaT5B7Icjk=;O21Ip8A^JZ4Atj(x=4?u^C zke^>6h#Gk@9%~US8P10>mF3UaQntuOG4~)LMur)Bm{?u&$7a} zNoJ>%!tqgD?DDd-2oJ3w2)%;#R!6&d=i<#4#&8mAyfl~LLGH?!`hZXe65U*aKPQiE z+@Qf;#OeqURM`eGDf_m^F}w{R4J@5484JQl*+p4v3%*)Xqzu*=h9z=9-$mW@27hsY zv0129TDa)c`A4NOCCdqE5r=4=;SUGLoL5~J9Chi{`q6y(4F|QGG(4*y$#Y^AF4uBw zG~b4sw_q+oS?|-GT%7u0ChA+l=ruz=9$Kd6fV@J;j@*vk~4y_RZ0COv_fYj9cGos^k=u2^nG)M9C2{6_hu% zRwC4GRuDTH#1f-onG6%!_8s|1dmM~|uovW(D2Q1iX+v4KoHQPBZ={mS%PfYAh9w3_ z4E}i)X3Q~kKVM0J^x|aDAUD|HM$Q7A2Fs>bm!xixmcKam5A_(M88Cz9oPM`|GrL-B zK@YMG}8JPiQ8&>6i#LqAAgv=&L{-;wr4F!x$N{#n+|C|qc({eE9Tbmfdh-QAjluRR79VBn0s4?IVF6uP6l zqujZvp&RI-QtXH(4#4~Z4&_#G&%0#*FVBfn`I$Y6%MLSo9x!~SDGt;n;SMUwl6`?3 zMw3vEF|O{7X|EA~Q5FXrs6Mg=3nNMbY`m;J@%N)Xzz1e8X&z7Vtk~s zFJgNO=5p5;%YcZS84&5VVhe0W(S6E7#Xie}0xEiY&4Q3b!)X+SjV>gSN<&ULWCW1? zc?)29H|J*xt&dD-Q6}FM4{&Np;ms&aJx(`6>|zdBxXKnJ5NK`DPkSkdE`nr6W^U-7 zaG3Ncp-2bHqcmV3MW15By4$dOHm2JA1wecIkRt^a(K?JFH_h21m&W6HT|D}{)Laxe z5H(17W=+Mf^wsNg?gZK!h*IVr1e23GpYJQRK?|g*HaTR-DqW5!mrXU$?Q1G)M2%M$ zpK;a!mQwqq(^B$_r1+9%WL>Kk%BY8iBdD%tnvkTVS!Q(B15`?BK!#uY3+Xd=qo9By z)|^!_e&NtSli{`IB*^`8r+_;yQh-X-J3G(+>ipE>Pr}E1KQXA}^l8j)#(HFV#PpaM zaF~C{_@yIW74hBBdsCN7q|#eix`jrWp)%P=lBPT%#_wG^iHbC7_14y-!-2n<$IK^( zv0Jn>a2OLiMm7r^rCKUcDFx?9JM{32%^02voghu1^)t;H9!1@nZ&(fkFZ&;M)bOMN z$R}`aaCC8pV_a(1Fqk%2?tZ6e1Oi=IXoGwdRAT5m_qRv7kl$X$2rl^lA4Udi7O)d> znFhjAni8yBA!9^3R0St?tUVWV#0!eSz>V52+@dwUV%YMtr?j3}m{AT~g9|HY*#|@4 zCi_NDOgHQQuRR(ikeD=1#z~U*M<;5O9;(WjdwF- z=Q&9k>r;5{V$FkQZPHn_QhC$ta_Fsz&A^Yc25QNC@X2k6NciBM96X~j1_KKFCZW3f zf_e$X5>*n0724-4^Vl?s683QmlbECnqjLS;AtQhJ;ESEC4qusTcvj*yL(64GVjf3m z$fX?1oQQmz;}Ow$jVzgcm%pz$WElD@29}Q||8SiSqQI!+iP@)P30;qODEJdQt4yIo zf-}oJ`Mk(We-=$Ccr-Cubl#X}?~R0KHl?A_(QU@apj;5ES)lJorlUTymjHx;TIGp@ z)s1x@Q@co{8Z}LDm__%pyh%}(QlrcG5@;n4WZ8k|A}|yOxBR70McwL@~%|b{4V~+#b;#<2CwND#K+dqX;bjKyrow7`Gkye*eW=U`Wwd+ zaW&PbOPqI7_hzL1_W1Y(>gwBXZx7tZ*%OCgBFa`E1&TaRS)Fu4Wr~)>X3ML4y-bf( zm84{P_U1)E1RzfKB$~+1Dui^&40f^6=kaUS)CVf=Es24fIq^a-4E~-J@(rXv(FQ#M zgG9Ih)4pQ*t$HcVfvmV9_L5c4Q|ecSw|qQt%pgaWeEed(sz|?miDYRLK~4e>p$Mnp z7IHqRXOX;ISnk@)K?ba$!yrC#ZLd4+BX?mn*UOW1`Z?IK2%=e3T5Qn}l4LNuyO}E0 zx)eNj4QMbEsz?4}%rdbdXxr$*mubzS@vs!b1Q28uR~C@wJMHHHUAlyX(}<7Sb;`;B zonf#m7hkeTn$QOK_Vd1xI=cloqv5xyacaIMKx1a*iEXHm1M*e%jt)G*!BEJ|X(rVZ)nHS=!`dzsotV?apQ zJ9gnWFU^WO<=in&^ml9h7x>(Prwb@Jd)cb3N(~B$%L9kzbQ?7`p(%LD$PWT5c#h0^ zOul27oF}=D@ztT(4sKQNFkZZQYi61KRH+4hSIY{Clj(0Qkh9oY8brCNP$k*q!Y}GrfSd!JgthG# zH9b!hN?~=oZw10~hQ&?kIs1@lMiFY#dnxB3&SgC|?o2-#|K{QyOD*lul89`>i7jWL z-V#$^joCwl5~5%!=*A`Yf@_UL?L~Ytf|_}!g|*kTbFy)HgU=W;dxPCaZOZ7JrnS;# z&S-A7c%C2~g0|Je&A9G@)Qi$T+CRZ^O>fBd&P7Tb^D!lXolKxmz0GCjdd7?ldXl<1uK6)6ES@3I-P3QXex#;oD}I2E!iHJ^-%13 zDE#0^HOR7lS%Dv47y?K8ce4gQlGIXSN58eKjRuI~O_6-pGCUtzR8qPHI>OG4C@p4i zjtF2N2r-!n?f-w|z1wnJ*O}+}DtSRwz!3n9JOi#P2qa~yB#}i>c2o@KA_;&bY%syX z!4y0CqN1bUpyvttx}zVWAH`2HzyEhwYwgUP07y$cGci_JLT2v0j^FvH%WuJI9g?0^ zk6!XSw@K+(leL&aMztTX_h=Ug7MCSr(E?uPcn+;yzuK>$AsD_M#PVR<={M8~P zULhmo(+uB%V3i!z@EW0iF`qnPYq_~bUo2B(^XHYK}x z%Y0;J8_u!7%R}E zVAD^+9>3gXiMFvOf5tZEQ&RTa^w2t^d_80#hSJiElA1zulU>QYqBG0vdS(PPp=gL+ zqjO25ZHhV67gX>;GOHJf$QRwDzeGFgATB0hBN%4(gaN!*d^XPz+loN#9`tG8uf2<1 z`U&EB#AV!!QLn850aLy;g~v8@(2e;@#6|#u*YG3irROleppFFt+ zrEifKiQ(+*GM#@;_KVzDoSt2SzLQy7M5A1Eb3wy-r;v~CRE=;5mMA42K!6Fm(YT4( zHU5Dn(JmCTilVP7%6-jdiVgOQtsX|-?MJRhqXl8Ct;zLUVR_Cg z?W9v@gZ(EJ2syIkGI!w8w%MIi#H}G$RKkIoK(u^BdZ#Zbey;puf@CBGo|3f1Id&Aq zDD@yidw75UAf6hYti+rhYiJfJDshqKUHv6PA!q}hNR0}F7>XdKkgrqp;Yz{P-2 zo;YVdtALc%F&D%TWT?O`-GDC4G$~+o^;~keJ5P)iu!FMAEO()403oW|08>uRnzQ8u z-k-k(ySPBj`r-T+?J#kzbD9=-6VFw|Q(PSd@Kgk!l?(jAHI37NW6Gyzzt|Q{>kKJ9 ziYHm+q+oUJ_Vwn6%hU6>sBx7Bw98_-UKpOcOX^~ZE-QtDce7+v%gey=tI@NhUFgvYygdRTPAa>iJo1`#-9XAFu7o#%8#fCv4WhC+aF+Myuz{Eqw@X)!bf+Q9oEbYgP$ldl3&O?n)U5B5lZ%wiihT z&cv}%sAv>0Y*x%<8l_UH+e?{2=Zu*)DiE!@GI(DI;D{AZht2UmSCouqIc>@46tC)V zw75EN$|R8i@Xfb^2g^9s-u^0NtghLOtIfS3+FqzEz&c{A%!J6ke#3SEk)#U(={Tw} zitOD;Pz#}7fOEA_=d?8&pJY-wH_TCBY{z^r+VlhHjQIsD_;{tNDtj<)ls+FmIz#g6 zUo5#H2WC5l3MO!vucWIz zw99qJGHm7{Hw7#mU19;D*p}6LN5*az_~npgTY`tx>-M^b7K^~qGz)bi7?N4ajt_t) zM=Wpq)eL9%Vvf0fFcQ-N=dsGj>j!>tLMC&ptN_4LLcLYXmVxPtZ26kP1cG+5c%!Q0 zsu=Q+Q*@Vv7rk0Lm!y!D#TP2o(o-WZvPe|C7woEE$O<$GWjZj^WdI69qvzm;ttZQ0 zg(!iTsing3OYdSM{l!|=vk(<)K1CNv9Sw=XIE!0%R;v2t;2pvjfrN5{K#Oc08dAHF zGD>Y_kvbivP*cG_=1xYLY7h~_f^mJTECcbEVKQVfzIPHA=hfIVeI(#SMbT?PJv9+9 zhya=jigni<70log1}ld7 zzEf*}4_!l{jqX1OLP~v0V1$>Yow?`QWA7#GAZ^KHV%nO2HlBb#78bF>2Zhlc)d(z< z$n8@*4R`CPkls3g%!g)J!U%wfG!`he-mv>=eb2=d}D8*M= zEVSfF3Y1_J7Nh#GD_)%rN&3>&D4j)RV>?oU;EVYQ2J$m-vgv1|-x_rxDPk2{R|PY@~+uqD3Y#Oh*R zwMRm?b^VFf3Qn$R|hoh@4hCxZJXS?d*izFhq=^DDK33wsokDs$jIEcCNYAd}1 z*;GYwC4Is0Fj;KFJRGe(_$Cai2GT@2Ps1e2U!LmSfq-V%?5W8mE$japt{#GT9HS@AX(5Nu}cs?>8&A-@d?W7)-F zHFzdC(>d_}V-R&9oS>S3NJ1{n()s<=J+#R3+=`L6PQE;gWuagI8=xyJ^xRl zkL$n@k)`!&bmBbbRx~XJ_zE{7_B~v4#M^RW{jPXtPE|Q8N2{yapl)cwa73jsNswhy zpv7*PH58{%bOdH*qCwEg3O(_%Ry`Ql{UYzFE9>`paT zw=J|XKyX2zor94KfSffTe%r}HI6Oz&d0!K5Z|X?C6d+Q{2PoE9enNOstsh%j_t{#Z zJq<+F!{|;cq`k*TJzFtSmwdBkc-@E`=di(ae~F0Maa)5DKR?F|eM{s$k{3BNo|JC{ z;hE$?@zIx&{BRs4&MH#beR!{9Q}FdmjoIPVH~0b-Nc)NfC3A33qJj`~m1g77dezeD z;{5&PB^awZ%te`rX#UU_i$K9USR0yM8U~r7%f4NW_xLHfI^C56UU{uR!z+UfTN@YG z#~dgI>}+IPHhu2E z2Uv|LjSlOBbS|MCHVzf&&>7ly(q3qr==HhL&8|q7b!=$|Z39uh!22j9_ZA0t=57Gh z-+2Z3!Al96?$l5)L$B@H%L;V)XpOY!@-;gWe?h_0r%2 zAg~omCoR^kpCZWVrtGOq{pdO|n~U)SZJb;g#bLOw2YrcYWdZ--m6wRBQsFTStXC3f zcY-5c)qZ0T--{N_elUA>?Fl9(yJ5h{xDKNBIW?YdO?*R~{_O4&OD?`$Hqs-Dmch~j ze!yYQxv6p8xWaY^FYF$hv$eBSFt{Ba8@%#J2P@S@EfeB@x-E|thMVev>D0Dh4u3It zhm8;moUB)7X%l#h6XcQF{l|%@F-Sa5D=)(aS@gQ(=Zy-zdtn^;a03MEti+ZGq_582 zs{XwJRH@qmQiTZz8||m4p9xVRARsiW?p)!o{rU;*l1%=T&C7&xbS|8*NW2AFQH$KJ ze1oKjWMR6H7U*2Bj^PQ(gpi1t*E8o7tgM(13#0O89gI(ndEqsp*;BV%B^;1k?B>N}A}x9O_EJ$%9N%M@q&LmUGxgx9 z<%sP{oZSWq5PBzEIrS*8*wB@Rx(TT=$e@ujSx3*%P6xwpcL)6MXUIdOhaTS`3yLe5iT(AGd<%sL`qM}D^wDRu+6??$_hNha zlU`SgHZuST&WZarI61n!LZblosDuTJ0}3U{9!I*qGSE3v5f%`ERVk8CyuCl zAk_Oa(gI**Vul0#QY9;jL;Al z`%1K>X@K=~^Ri6mQvFWgxD+YU(E;zF(*HBoLRHH!c2WRm<>YV{%YABfk-avktfi1D zSqw$JQ~;TPt&{@GZ$--%_d&>4zy?HVb})`Tlqr0HmC!BZxs zH8&d4M)w#~l4!MWvpJhKXz&G|sW`VX$%H1{GE@;Nf)7>AmTTo!9ebuCYkdMvp~5P~ z>BBh(QDUFCjM3h3)+2^(e(i)5O=bfA1C9mntkc7Vo9T6tl2?r`#O>-kt=36Ky-Aj0 zcn+NE=Y&YJ9h)K1Ko~-S8izuy+S-U(8q6S$Kjp82TG&~6zAMH1_|6p8rrW7W2MM`` z1*W!W)?7qVA*7AN2HB4llyuHbyiyf-KSSS#P^Sm?+z{KI2y!qmg7?_upY$@=l5%j5 zA>rm#J)i^0Mkwow**p>SrGPCSf9oN=CCHY^tb%^C|8L+p$Z8nD8Pq;?N=6=dUL z`YzZG4N70*byyTG7`&5l!)6!JV>*RH%e>Jik8(HZz!Fr>1}Q@LGvY={Tsf04AzG@} zO}gluh~YNimA(!mHkBI{VTfaI>lG(Q(cY!CI?Sb6v$-!DKh-JcD=q4la59uXq*~)^ z@_00)PMei<=9Y+LPCj9XrLt0IXKS0VxhHnsy$%DZK-ZO{(q;g7v5q*aRCz?F5HsE* zQ?s1dr)b66@bFOC4*ZZ;$FIu1l+d&24WTs2TSKAMgX>wjV`JTKdz!1SKa6HG0$Wav z^a#xvKaK5E<7o_|%m7q!ADzLsl;)%q(lug_x`2ZP<(tDaDf=ZA%ZZ&vUYr#`#C`IS z3^wsraEM%g1|*nI2Bb{=?jAwXmqhFL3v5*Z+;<(e@YJt0)L>V&-PyB#6~;C|!~zGa z>vNz4O2JO&x8+e#SxJ7Ds19B5Sy$I~dUhs)UnwyF`4p5#GIC%DOXcc~c1~j_^-}|B z#FI1RLz7Ss{Y*ew21R1s+xeF!YwdmTIjZu!l&knDi^cD|3#GW%-Zq!L%_bR{T>Ao6 zf(IDhvM$tWo*FDIkA#bSF!rNcduw^QJvbt=02;fL@8r-R?H(@>#vZw}IV~8r_y95H zl658X>0ZndFREQT0lmdGX|llf;N?F(j;15>VS=dwHt#{oyDlf7ev88}96F>H?eO3p zZH!+A7sXA$cG7fip)u^CDROF$y#kShKhnaA#x1NXy+v2{Ap5CV#8aJ-f{6*iGy|9N z1=11V;kiS=C=aokcV;zoatet;w)D6aI~~_lrJ>6+$SDcL^awaCsL`sDUIUbN)nmKr zAHc~A%o`=``1SH}v^)9H!ey=phm7&8lbZN?`FuIxXHa4^U2*BvLTy>vJd|_TG*>~2 zqL}^UmH3Xe#)L4dTnVlv#6 z0!gG`xgV{~Dnf(g^y0AV+*IdANfD5@&}4dWd6k;hgN-y)$Dc@#4z|LbJK~fA{5?=g zZ|wKy*mMF?R~E6}X{=#zI0;!-$0cu|DQ`_)B*o`=!+a{Ho(1AE%6QH%XAEk^8_r6Jf9t6_`y5&-5P&#MTG!&Qyt$QwS z->H3%*@Ue9QDb(?jfGExb0L^bDCYdV5qwn2+6Cn&Kf4vGxW7%*i62>5OGD7**i(c< zThhfjVgXfC=-@=*h*Gf8Czh82$|e975|PKpb;+_|ZW-N+kH=#qhr*$}smnV1NGNoY zSTsq$SUX}}ks#@Nu zZ+eUYc5A;xD+mBH;tBsj{zjTO`&`=e0?E2=ps~LuV#@fwj2s3z7;s1i`8dC3TR(xA z--BgzpXy^eh2)?m{BJI*C`rT`w**BF5ha?gnTOZ8Ajc^Uv>D}VooUwG z)}%$qnjF}n5v(-=mTYx)@fJLJ@)0ZicXUifYOa58BRie!4z`fX^`!xP!mhmYT+%~e z^(O>FNc0l#g5(Jo>#CGp>;%nMN zpb2v}TO4?^=35NdYs|XX2U1EsOtC1gs^}4QU<2fGVRMWPwZNXz9% zvu+|w6+r=7$p}6`g}b#CKbK1=11QIPeW#fR6I(0iw{cV*HbOU|ycBL)c8W}QH}acO z%IC~=HRw@2UsaqnR#u&_4$a8@paXbbi(~;9QS;gG!?=(q;Gmbdmlu{7WqXrixCapn z3(q*tNkDT&L@WyV7MY-E%$?XCZ~V=yL3NVymBGP*R3CVMAbI5OL{N zw-+GKEyOZP1#0J~wE*=U2@l2ID#0+U0*n~670~7Ylx^>K+Qj)ZTpYOkO}b&TtzW<2 zb>D`Co@+Y}QIBJHtG@6Y6N=(2xaNmN^_a0_V#bmm6?ApHc&lodaMvh<2fP1?3pL_- zA`1+%0K^cAYn=Z-`{h3^HoN~k81Bp9_Tup6tHHBpVUC&l44$GS3H7BSV$t}QH^z$~ zod`37Cz9&0rM^770BH$KRTxQBRQfR@+;kMrq^w;HUX+*`5@bJYCoWdWyixtOV9QipGNrizA z+c0n_pv8=h#@pk)p+^-@Q z7WvNUdsId;2wCjH(ZK=@`3YZR-C=D3N_RZMB0}7L_Xp0vK==Cf&Fh<2mzZe=KiTN7 zmke+Fx-MHi)kB97mh?g)K&ta~&RK8)_U!5?qIf_~X;cIMtIJlp3s&+;VNA8`)|4s~Y3;b?m_%hmfSzScSJA8hZp@m*HLor#Opk^f9KkU{zLZa6B%_`ky5{5x`^+jS zK(J8nNdP8o*Ni3*9i`X>8h9kqqtV{(L77peZ4WP0rK||_w;D>D#ewd2EsPF9)Dtr8 zEi=_U0tm}AzVNV|qO*`(y&mG06lUcBAu+a-y%C20SD;pG77MkCWq{#c7Bd9WxCKtS z1e-zJJhVOnaXAY+LF9^xusLePhn0M*x=y2Zz3AvNOF>)lzUy$gwGL4~1&8OBs-Gh$+(|4ABZ<66dHRK&4eT4o)s0<**VGAv{vhla}Wc- z7^P!FtaKoJOSH_6RS-J4wQ6CW3ogQK2N!G`Pu1-em8VY@7bjLz3_(UxQ^wli5p>hD z&|rbZl~`JiN-z@3bWl3}rx%0i-X2oN=@~f$ChKAlM#%pj8_Bg>TVA0cE-wj?_&gwP zLk2Io3H=?13*Qk=bHZ+~2akq~C{QX(0FbQEDA(UCVGYZEr8S8G#Y}GZM%q`E0Zyo) zAamj8@PIg7)k1OU1rS3$V~crp(kKMz>5=vXFAG`I#V||6K5lp)&>4*+x-}CssYqS> z&1i4!o8j6wqqT3wYv0grpo)?D6=JH}(4Y2UwAZq$c}ubPlX3CRcr>c-OvX0AvI8uA zgAa$zc*ALuf30EM3_hGr>)<2jUdu0lx!$QK&1|D#^P#hj(Xg31HYpZk0{hIw>Hp&; z0p3^iWc)wdvmEq@*xzd8{2;EMG4iy@Z708F2hCS-N~U|SYm(d zMi$jY{9~7kja8z2_i*P)zk*mBr9^_3>+7Y(nu(Z|gD`|5nUyL zf0Y4O1Bh3k^9W(vf3gyEAj+RBd+6`~^}mB4;*icu5dS`)3qQRRiH#~mm)WNQHqnx;dWj&`KAPRBbCrN5?4$aZU<9xzgmT}YfbCYAF_ zbsnMhh0$Y5h7**6kJvC6hQSLgLkBd1*PVwcB_3)K*AzGv>X_Z#YO=iZ zcUywd9U)>spbxATmst$V@w#?$d1BczVOYpjtvzCmU7sKO^V||xbah!0p9`;qC3b%if@Vn`KTh#5B8jnh!GEO+ z;1|g{JkIVsIfyLCtc2r67_;-1av=t6jIHz>3;|wfQ<;ML!R>*0Yn}>(X%~>fL6#49 zbT)&nFs%wU0{JXBodGLrE*s(y5)Dswd!>+}q>y8;8$AfAfz1QiDaEcTAQ3KR3P>&E ziMs3-&o-FMSc|UJwAqGlZh4hPL2t2O$=;-AC7>Ny;NA?|aOW3u64kp{91G6ab zt?WVZ^>lkU^Z~w8LJNkjBXUC)uWx3v?E?T;i{OR*d|}RFrfFXxbSlP~GrWu0%kLL} zJ-eQ6@0ItGA$}d$gaw5DM1(#QDXkN?a~iSN^J#h@1(( zLHuCe0*O#_`4Sc+h~P)dGekp^QpLAxWq6HtdX03jATBum`y0>KFd3%qf=2gavk=nI zzG~xMK)E6!`wsr*tZosJKPs7N;YUGnD0TSZeEH@av=y0yGX#4#=WA3^m6-`wX@IOf@nG0jXP@oHTwc>XavBcc{-5TdU-R01`)*rU-SuY_f?sRHwv}cN4ZyO| zUR3P;wi)8rJcba@!wJ_O1eD#1%mojV1ODDKu|+-z4*E9UY_WSv_i!f&eNi}^@8+() zibKim{7yA8I02LHe|^5>z!%n%;r4JpjT(RdkN>NomeBj{Y5A?P0+`uoZ@N9%H!dML zg)a`a5B8J$6q3ugSn>MXuf>4@Zy z<2-Z;I!X~Enf3_>rYNH}v-tY}{k{i&n=O}Bts)*PPWY^UHEa0QZrEbQtT^lq(a?%C z*2zP%<&eKR`(OXlR)%@}7RyZlJd3-BrjJF_zq6|5c=QRY-$dctlD#%l=L@U|O1)7L zj7`+sFh;s!`pfUpI#So*zc3zOA`&J`{DVvK_U|-+h3c_~7(GrRFI{ABe|vwg{bD%T zp1V#_@9k!e96e3b`fP7|Tqx#r#xF*%LjrHN?dr}x0)1f~rvDsl4=1U%=!^N@_I%&T zI1+ce6`3C5;5O`PJl`!`W<1*!fj832->!88gyUTe^P-?aqBPH8hmI?gDQg-*4HlJ*E!Gjw90&(7Bjtq!gMS| zZWw9jEk&Eto+4j;e={hMKRpO$nsP&VI3b2#o!_`#YdMyT)4}V~$Yzv<;Azp->EU37 zX1b-znmRuMn6;Ky989&%JfX^o+U~XAso;UW`_*XS{T3MHd;~-#scOZlk>l0(Tn@vI zGEeeWC{63dKB)608S>1*MA{nPm%|Kc}* zy6r2Bc-Y+X4sB`E`SxU{xAafDwCM!tI)5m`va%^h?o8yqmD%~*v1{;Qxdi(ZBp#~U zx!}jm1sjqA(<;^kn3D^eYrj(-HLw0DVNvMdmGXeQDX^G1Q0cyyMwd4wFFDV}=ulj2 zrdtX24!ai%ce?lX%X)L_Q{oO_L>bW2D5-0--}^=!u)AJh|5HBJ?dfua%PQh`m4yQq6$nw?uXC1q>h$lAnDKBnB3 zg#m04zKMw$dE_T00TY6PWBFMFSm6!U>w3c6J9s^+^S%ZS*zoQo1%tc(;~wYy?~H=# zB$Oo4f@{Ap$OLrJ7i^=rXxwq40-4c!1b(L? ze-_-d<5@o}POQ*8H=ycQ-o8e`oqdPF`8T;^xkm&39(H(kFMirzbSyt)Hwzo!Xz`KE zJw*pt&2W*Z=G=-L+2U|_w7#^`mU?on)5)xHj?~Qd@C8%6}OqKsLsf;jg z3UwjKgK2`J>u9`alXdc^MVL?G>^!J0gB)uc6k5sM42GkO?ba)A&OYOD>;cYn|JhkW z5t>wOu+Gd+!j%%S0B`aXeT8;3osaRPJ!W$-D!Zn>L)17&9NVa_gQSP-pc=CvjKt&^%Z*!XB&r7@UVlOB$YFyiZ5QY-{q7QTre z(;7s5T%evN_~7h+@XhJ4I-$tWuI`}C-9lghb5PfDPjQxaZ1o3u;#P=((!s4_N~cqV zfkIj{1-D*^ThLx>l1M4a#KTfmrBg;lkt%HuS-l^1Rfq>TQ5~=cpNm0pEHwb5#S!Pj z(|YF>4C-m#aW+JBHO+1_S!D3sgPIi$&;^wUwN|>ck|elsKEI({g^TeE1X105DcunBcNn* ziwhQs5m!XAQ6Czu#pA+bem53^ZrI2bu%(nGW@_Fp#mTl!6hvyf6yZu3GqSeUMcq+u5&f zORT73iGS0|hH>8wl$fHc``tWOBU|Prbg-9dp+w+eKai0`F;I^I9_m^+Ho)H5QFg`D7^RJG+ zKeP;ak>E$@J8SGnR@mg4Qh}`SSf!M9)$ zKPwZt^+M`*uOaVl5be4V+Hrt}4L&_ZJDh{_14klMe;Ge>&L-9@v#UZov;WF!%g z*6u!|h6#27P(Jyxg!Pfknqrw?!3zv^(!UH8)Wj9Y;WF#i%bE>3v~6;-F9$382cvN@ zSrrEWFIT9}Etb%wz?trH>%!2Q4yKh>YJCn)O;W8^X9Ocx)#pEY(7fV4{jEF`A!cad|n%*T!QN z_D-h-Oe0cunhbU6h;K*jpgOyZL+>q^Fr$>70GtqY95&*(c3jE|wD4exolql8ihBmk zB4#KWWckkE{wG0|wH>Q)4=59*O=>)LY7V=CDCWDhQ4&r^`+acglbIlyZ$5Tlt>*d*T&f8hBGjBJ#U@vN|58(|wFp3Lt4J4!Yf)z&Plu%p?UP)UGe z9Zglz3T&LarNZ?iIryK05pX7f4M#N^0;*S#BgH|olwxoETR_mXNp4T>jLSfj~Wc)XJ++YqNZ$R zQ-Q9Dh-{ulkgalo4$FN}hGrW5?xuoHY|gZEOigy2arAsu8mP7lOz=0Ug#J(lXQM6aeRc|Jv$P zI#9l#wi&=o9!)Eh9~!qH&Q+DGR3?87-arF0A;P*!sv^+zSNCiio#RrX7pta96^eRK zmL=yub>&MFZWDY}(~G3nA5`|$d68{7(EqN4T z-&qg{D>+&s{Z|iX!@Dx_S4V1A z`brIa5G+-gI4Y`^5zJ4ki*%HYi?Uk;4A`m_q7q=L)cO@gR`B0!L*w6K2CWOxFn|A# z|3-mANdi3GFU#xTJ+-i`PUtsoKv1 z**JecvQLZ^Fj2o<$mIIjG&7a4yVtuaOn5wnOKDX2W_Rf!t|w%2Axf`T;db%R@sO~L z&n%20>n5L;y97efkdU-sa-AE2O50rPrej-X{W>cv3^wJ&K5H>ariZ+sXXQF6eAlin z-@te$DO#l1ujZK0rF|7)G@c~Gno&F#uC0v=ZgA`QN$x*Da1!#ev{^`W^~Fmv$EnHz{juS$$w%#2 zXlViK7gLrhfIA+(oM(}{DRY(em|EHicX#=Xg+i91t}_OhG}oIL4vjNP&3Rjp$$J_* z8kJXSL(t^p9Hz-hP;^}0SrCdVfkXzzKOMd_qm5--Y2|LO>g1EEeL~?mRk7q@-DVVn zU#0TWIaYap7Xe(tVF8}%<>raS;77Tosla@7L9`Z)*g;Qp#QJd5-}tbgIwW1%MK;Wn z8iu}xXnB>h>~_nsWg}0cInXuWXuSf;+C}wlULm47fK$XQuKYvsKY-BOjKJhutRhy3 zP1MABk70*C+HrTm*d=w|3@iG<^c!h@v1X_RAm&?EEUK!BtnXNd{%AVh&l(Jd`;TTM zV@6rgFJ)p1V@<>P#pez+YiOj=TeHk~CB3yHEU?br+~J~LA%KHI;E;f=u`|cw@Fanz zg!*HA49Ui&Vf6S?egDS;P-$YmIO zytr9NR95*spyQ~OtNVsffc^`lca;llMDS(~F7!F3v%qyWWm2WrS6Qv;lqEamh*+uj zJ@&RXKL!`7r1Qc1#yrdl#T57v#gzFPn zBK0+|-7aM1PA{z+B^7kAQ$;QO;wS8QZM^bg7$s#11{GihVziQEG`@sNvw_I$+6Mim z(*R>^cKr#_B$s3|!JD&_(vQ8JyDmt?CukOvi3**xc-ymSAQvf5+`C&#?|u?w6}~H( z0*Idfbo~5>XO9nGJ$XDhe#L)&eDc$)dAW`3;IlD;4J7 z2=$Mu*3w^+)qIUIbNRWLEdi;cFZHe@q1Xj#4FG2u|)D$wMW=$=} z(ZN0{h;pg)51PW5Y?a}G7Zc#^%tWNxKwFWZQ-|QL@&n!4INf?U$=> zYT}YvJfy1e$TNCbJfURUles6$byiM#+HjcpI2_r2(ZEI{sv_IwBk|0VT5}o7q9F;n z)EpX-v^*SVn%Rgjj;Ytk?Bo)YsMASBri??AhukJ12U9{bk^rVm#m?Qm1S9)%3CC?B zVJCU8$rpS;#upoGll?fFn&8*u^li?`>n7y2Nq9}-UEL;#59{NAIJ#OPSK zf~(u}aUzHoGxWT56PfrHVe&X|!E@z>H{%^wv zz7ERV5v1F#!fN84)Ff)r8IIY%mu{1hynx8nR!$6avH9RuH!g^x0H+Anpcz^ zZcm5GCWbq^?Vd4}M1}J}HRsK=`+F?_p$DsH)j^oNvE9m8;}dOKXR*ZTx&C2Pm~N~Z zboysZO||$7`1HaNhvrZ;QB0zyCf%|X{w|kT7Vf60D(dLjyqPU1_*lh(^ba5A!{!5p z`t3NJ?z+mRgZ|<}Vd#;{2-SIDx$%J?&~cgmVW&>a2HqO;q*;m>70V;xslDO{o&4sZ z$k&EBXNEj*;RL~si1qIIvHVI`FxoSdD1(nmn+3{D*^zv~$=|h`QnZ9gh7hTw##6vjssdmr4n#xq)nvVb(F&h`mI;vIaN;9A{R98$R#v zZ%>^j|JH<5nrdr5SP{&>J^bPDr=ur><3B!m^6FO?$JN|W_IM+|jVyhi81#6#I~b`3hOPpTM1vxgHlzp!Ve}%P&jSLZ8HZqcZC{qRlI`!AnTU8 zo5+0A1H1oa#7fCWEmOMQ3z>+XA(PU(gbAk3-Isqt{}i>lT<%yeq2^5%Hy&;87nz!Q zCQ&L)o{y!XkBA7knFD?azcAf^li(Sh^8nTbt0^b*Vdiu{;dAxrDIHgu#}TVtL!qJ5 za>s4GYiGUT$f(3QnWtQcj|Ne}9Un+dRIYJE8 z;dK|op&;^(lZ?zLX%wYXoqqJaF#`1u4iXGT1Z67$Mr7FEagcINi~$eIdVm--k*trm z{NdT*x6gif_UhRadj9={F8jwrgpKDvJbv=>*laQX`t!3_|JJ~26MB_Yx&l(9?zl*} z4_qdpVOEO8&b$Lp97G;MGa@IU%6WMbQ>r~hJ-WwA&zHU93TOHfC)mwC74PzfAV@P; z*p626Goel_BVh>H&?WR`b(2w4imEADj|5@a8!W5MIgsmx{6vwt?{OeV3u(gM;(Bo-sPbON}7Qn->|m*l(i?S2I$;(9aK86(dJ=$=8QU)+^zK2d6?Z$ zh&JzTbg)-6DIM>*IicN{g2_b@+7a%<$b!ICd!F#)=5sj%je-2-eL2h`Qwwh^(4C6x znYFjAbdEj#Hh#8DaKyd#in7&Zh4gyuf&7&eU}a&Q-Y_>DCo zS%&Xm;9bjFKW*yjLdD7km0oGN_FHI4e%SqoyN$a#bC0sHgHy(GS%3}~0C>*kNq|Ht z@#Y7M{sLS{{4x~$wrA!F#5}^C?-%lk`DGj;L}x>EqQa;UQlbSVSi|boc})R{ zmg<-B?YLj0wAe8b=6^#nfoVRdPY%t41^q2fg$rYGwG>I=;3L!MgkmuFxvO`_@)z_} zBw?Z0;R+uGlR`D&bs6|v>Uly)Bc`%?BO5Tib4VECZx%#i!0f|@^82k8yMq#RRolKx zNZOzsam_Q8FV{a%shJa)pBnY9W83K%b{ebBV|u3J6;SLVB&|2~j1&q&8f2^4f*#WL zC{Gxn>fk_SYxU0-pXPr0cu5)}{f}HIY-d=A8`tCNie^K`bduSfjA;MJ4AgRAjQf+a zz`07%mrwAe;l6!Zu3c(BMfPdq)FrkQQr<_NHybT_Z?;lyJ4>K%FE!?2SfuVXjXX#_ zTi@&k4$@smNHm*>6%f?L3sI()$A~g*q+A%=9t?%m%qPdu%j2Jo3R0CM#TsVfQ%ZsU z$&vTBW=A+c9?Xu84v+shc>2ThKd)$(=!3tuQ$`x0TFRjpieQF1=uu0EE!ILF+GG!i z2&_NZ!-^C}hCgUtJP~}B>E5+AU`M|rF^2?R&F|{sM~_w1xem|yV!~AoFcv(US(bEt zDkM;zd)thsKPduVb%@*xuTZf5r93{v_NW>)C4r(TEDf80p_P)be3%xmj(CQvA1=lA zaG7+n*f6sqilaqTR#RL=mr}KR#!th3W-%4b2F)~Jl)Vw@ zI_C}YsCR=w4}kMgJ4P_NllMh3DhK|D{wH3469Z3AebGI!mW@&_W;Of!NriC;g|ZZM zI1LCZ3uq3S`;q>T!WkU9I2&+dMuWT~;pM#mDtJL>_3FdAcpzq43^_wwh{LGR>5-x$ z#v8!nEg5l!MX*ADJ&5baprQ8b1PCkehfIR3KZS6%VQ74E zm>;AK@ec**XT_i+TU3}Ky5o9j_RT{I?@H$rSbjBE&ABwk52}oKtd9)lR^BBthZ*+c zU1k}H5sXqT<0$;o1d1)LVZLWD>Tt=^z`TFM{`8?**b!ht;#j-%-)}`u-|w)oE7Z4p zfzVdGqUo0dF>7&uu6`VnP(*^}2 zq~udCD9We3QSqlDTJHOlifL)#_oR_DbyIMlNx2*ZKD76gPjS;v_FOmaf|nE(OB(|e z2#fI?gs{eWZwP^EYX;>6LgQgMxzqM-Ed?-1;w54Pe&$NRCbyi+om=te_gkIOen&`3 zw_I4-R~yrqRGxWG!`~iMP+)O9E0a$5%b&xUlU{?ufV+(I=>U(eWrV44zu>-Vs81S3 zAo%wKm$TclD1N_1;JN)JST+Xyk4PV^VP5=2SiOo>P`F1cCu1Vo$v-j)ivNlLYhm)- zVWF{i$~(&@dXOk&k@UAjf;CkaI!xCN-pVqF8o8z*=cGbL5noJrA}C_Gm#l-yA^)>t zRMuyp$osth=6(`F&$@E$!@b!av^E%$bp7AxGW^i2>(@(#6IkTh3y%q_(imT4e!OR_ z+#k8c36~O$ixhak*Xl$!8A%b-pD>mwQuUM6b;8WZ*F0CvG{S&i5haFXn3J2I*K)P) zUx1_(P23F~GxS(V*Z)r0xh0EFfoVz=Vy!htv*uP6k5)GUOlgF!`)w@9V0E<3FQRYxXPH`(B=p6tq6TzZzQ~yL_yziB+ z(Eybq!(WE8XZflwfK_>>Zg_%BThst13`GT07G&})g)VLg6(d5@^L8!e+{0W2`R_;- zxLQi8BqJ`I2-0hr+Kr5!H=wN(S7(^eK?GaNyCv}@gt>08N~XT3m=nt>TBxGmj^%Z| zF%oGU1j3bB2ZEuFUDOwE$wn03uxc3)ILVkS)Hu(KSl2qQ<96gWk|5lF&zZ zX8E4B#3~9$FNrfrZf0ZkNO7qcWZ}GlctsI}QY@(TEw_rOE%O7p*JK%;Ms*hr zXdPVfFp-aJCzP?NswyLVW}s* zm(OuMt_eLg>+re@XF-c~N+tWpUA(KN0rhldqa+J@o>`lk5!~dcjg#)i_Ol#>K;;#@ z5;}Dkk%*URRHZW)s24E|Ypap?*i(iutKjKPPBKRX6D$NQjqEB-Zh(f-N4KY<6)dr@ zbS{g21MoNjD-wcGD+=nmlJ6gQIBTr}!dwix8e!}!KU!{ueP?1!e^p)Eag@=m)p%KC zBboGcs8?`*NLC}0tTvLmATLSn0xexY5DoJr9;y_0_Lb3jDqjd)@Uu|LQbi2714}A4 zLMs_4lIb{}%%u~+TEtyA+8J8XRH2|qDlrHTy0t@MR{M%grF#;=gztGhMM+$i6JP~I zwB%5@?C5G~DZSX%MX~((I9_uPi3~}qySjdV{?TYs-!|}bbQZO~kEiVVL&S+Ut2HhS z3Gg&S*&xkofl?Ct&aFzsv^E==k;sf%(npmj(%`FuX7Iav!HDI73$70;UPPrWH3Nj3 zM24f$F`BQDG!7x#RjJhyG+5RucDp`@F0`^k`EWo+VEsLr;3;P|sp1N@6uak;b8Tz| zOkqARN2s4-DOPtW*N7b&BqH|;>P!p~u>Y!ofutHNpIlZ9vIe1L?d6=Imc)7juw2+% zZ%hYOU8-(>#6S79TolOZ*T45hwOF4j*nlc zd=@q2{w#=J{B3b=#g@CvLcM`Nz7aTB?3vw?-E!gS1C11;tUsw8D|x6HU(ee~AmlKp z7u2@niSj+|!Ps3=g$o*JC03L}4y=CCY3lq|cE(TocEhDbfdWYAxjjc27$r!Wm{N=L zg)mo7&qTR(shl>eF+@!OR?enWMT80@ zN(NR+m`1#Xq1m=>m&kld$?UC3)MA;MzHc}MVUcG$3x>7-ir;~T5EtvYVjh_mO2Gsr z3j--4CXf`CC$Zn_v?!+@YjcPq0u`-(!#hC$c8VDIMxvoeQA3dNX$e~={-odso56gy6Eod zaAOiF=Y$-r3LX9Mxkgh25{!K*9KXqD_ZPXtQ@AS^ z3=_$Qs@IoqZ|uv$c|xpo{=~o<%2$okfhtk=EjyRs@Cr=<~!R-%h; zmK+rOYEAuixr=2~0>a(P3dh`xoZwr7F|Z5;JE&OgQ^`nS!BguT?@SVsQHLCK zd8W>66NDKtO!*JNUeAg>enuoM*Ht7T3Hhe(9asFH=({sYYVHI^B`cOyx*I+IM!?t}L5* zBt8V)O{k9C!Ga-T2;Ax#mb62bO;)u_KasXHN|wdc7DYxe52@ULh;VkFF2i@vNLS=@$x@|Q0_d~VX#>4r zYwymLWnQj;F9i)cFjPwfpKB_vP$JHI&ts|c;_g@h$cJ9UPu&?4ed=~Xz;O-5q&>`H zm$&cU+dOFV-k7-ylm+Pgthz^4R!kr$INhkF{UBf{hj`1Q-B~*349WW~U^eTzmDs(0R%T^$hZ8VFoYS`sc_{!0qp!(rh71QA&K*xT^;Z0sSgq{mjx$YJ z+ryF?YF`jv(ftCaZ&b;$-tCH3@Q4%*Of$u4<_S!QER5t8Z@!KzZ&m`*$gPjQi~ioo zQvvSlWKJCn!WWC%pTLRz5`;7%q{3S}l6V?dqSmO(ugjKa``v_jeW5tllAml(kS`s* zvx%!?x-xZzh7`9TH3*ge$;o@5QsK0Pte0y}=`Fllk)|kqP0~TO1Q$f~z=MLqO9*{L}#l53+{IjN3yvWFRXR_#g zq->Fu_fchUjjHRny;g!!@&Fk5J2N6*QT~lWD5=jn>1ZxFOf&!#)txS}v!jPW38Q1= zhSSj5t^ib4{xRCt2WO(KRj84;Ebr4ApaOyF)zma?m+<={Mdno~5V5I80qqMU~uI90L2j-@hKHba0~Bs>=m1FNzBkawY!f z>h`G@1t@X+lEU40w+WO6TLONFirgYBIoXo!!n}TA&bYk221xHV%Sr zpZe$)HPVUshfH_E{`I-mb9hXdNIWTPBmNmD%6m+yI}5DFDoE?wkF_>QPsE^nX;FnI zUY{Sxv6D0-V&nPDL=N&x#wDq42E!}~!$ifCob4ffYYWZW@uk}GzN~V?w|3FRe^f5l zjy5Y%z_vL^K4l_{f9jOA=mC&;>j9N6V5gAWt4nIcITe9DWz{z%){NKo6gUiam>X08 zkWhFtx4Ja6UXpDEsPnMacblM0YtU+sz*ymRTEoI=DxnpAlHDk8GZAlMh*v99bzGD3 zId4-J5Z70X^8uajPJ;yydDTLm3HRAR1PgcN{k9KxY3-{l@ zUN*<5r;j`wr}d?)BuR0m^N3PS?|aOG0}O0Oq=HYgFXwht(%nKlidDs3JuIU3 zRt7)LJUE#j>o9BI5efLlxFSPrk4lbp&v1kWmr5jch3f5K-5*r+mA;q?`K4>c8) zskv0rR)-~}v*-p}(_w~jL#=BBVU!YKGZUhcQ*|LubsU*)HWB21Nj24W8q}Z?#a_>0 zYgCd@$)KHPYW1)bxteJre~Ni4@_qX0}8P% zf0Iv9N)WK^Xmo#st$`1*Ks+!Nr6UNh2^ES z9fSoCd!_1G9jpG;{$66(`LbkQ$D<5=g%AvVLhz$gc6&WDcI!FlEPXU@QW*}W1&|38 zE_Inl$;N=6y-@lS1 zVLNvI7LY>5%*kI7qT88}&Zh-YB4w0O2(6#&<&LPHH7&Q5c=rW=y#$WiX}dIme#OA=hyygt~2xsYiww5k~j@%og8G& zQ(cU>?KrQou+8Nca47~TDPeWo`d9nA7)d$QlH(T7_He6Np^J6A`d8ntYv0|)sK_GQ zpCo%Kr$)wTNjsav#4FRtM|JguO;O`z0?u~9!#isGAjudbz{R)nk9-DA$mTH zPmze_SwSFw*$}N3DkCA=tw36xaqQKB#9Jsd5a!^9M^UA4QW*I#Q9wCGvuSeNp_NZc z5JMEAjjs#Plx`V%aR5!w6eDt@Y2i>5c$k+|MM!9=;KJWFS4jfm3r18jeoVm^;!tJt zdb<>gVphG-Ozh@jSqx?Rbt?-YS??|MBq}^&L5lcW^Cq-$s4_cMBbaG@NqlPAUbLy& zP{re@s#(!=S99B+U0F~&(x8Q8$y}$XQQB6i_B(D4Y*BLIVgf-b!I$yxx7d{wuV8J1 zB320_qLqQ)IVHT7NT;$bZAQM5*0XWG#IzKlxQt|h<_v(}k|t3m)OnV2jfjfLh^1bj zUn5m)Hq}Y}HI89_h;6VI%%_c6`_X83mNq~-8+3bWo71~k7;J5EY)V5h7ZVQ9#t5-_ zLW_H%#o_roOiXN)8*Q3A@lGYe^~d7NuJyt-vgN^lHWQ zfo-}(9b3d1$28t}Om;xMwpFvG_S*@tv3ZI6N5gSr>6cwu-xNb@*Q~nzH7DHo7mBH& zIr9GX{Xcx%n?Z7a=9c0Wlx=gin;os_GoF(o7Y3Hohmc`hyB1B9dC1vsaA=o4P5bh2 z?;DI;-imN)KcOu~Qj4w>>vqSsoWIhoaD%~qdoT=>_+1)Vy6at1>z6N`-By2tm>(O&WLlw$d2)f z*gwJwyntYSEQHy7LzU{=zM4iBk+Sj`0@|N3VLR~jdoMz6?)`#aMpqKBEgooR9=4;bxhL?c&$M`q@Y zi9Kb6hp}Sd+hfqNK$l)LrT<-)CfCGzwaE!9vqvO?MQ`8+>U8E5RkuZp;}VMy9YMft z0vy~u)c6hcbi>n03!u#!q)=h4OzuSoh`{owYP>7Jnx}wd2R`=FIo|AY)&qvd%9ORM zsF}isHrzUMX>r#JygI05ZN%ge5hbMupK&l>9&*c(*t55Y0J1fJH-z`jRCX?8-MP3T zv7?GC1zjv{s;Tf%N|*rIPhc!GEK=WG`TOG(2k86LzGEt+V|&=>MjR{Gbqv0!aY=FPkQ6z?{Se^ z6Po4*nqxFVwYpM5amZM6@0>)ZEJ`5MY^Y_m2RJJHI=6U23-jwJGAi5eC&FSi@!FMk zZ>C(U0rvX6CLI?FSZ+K+R*wL9RZXdABchY_>kNYW zvM{_>4r^J!Jush6!ouuID>@4_Ro;pl*l}x>-W(VpD3UyPlLk4efB}AVYwzYkm*q7o z%}l*2W!NnU?29UujojF-_W^kN&^619U))?~G-1&ZNr=%zq@;AVzvE_IjtJ30gsrw5 z2)gmxUhE&$E>RRqb;*Cf)fB`k6)tP>av*7gDpgM!=`)b z(cx^jR8GsQI$5WytP1k7R5RzmuNJ4sPvx6#Mza%?Cdm5);%U_pi1_(*dG%MjtaFtQ z=xRsf{cnt1PKHek6#?GNh3pcw)OqR4u&--)=+c&^o=6Q@4m;O1eeY09MG%$miJW&O zf4J&-C7CXP;o=JyBxezs9Y!)KD+DHxmBsrql;3@3k&Vz(0KPjTWJesEoXA_HqIpC% zav8HoI`1d|qVXAXj~OUavz^H!hvaKic4-FWom-U0>$4B!2g(~Pt<^rc%0UKI#_UVv zYZyuQXp4{-(rmMWQ?eIMZX`46Fm=w%bhQ#)Ut+-9%*5Odv$BC^NU*sqs{~cj)_uW~ z-Xy$8%FONM1AruQEySf|!1N(Kq!tKUaGH@>D_UO$Pd(2cEV(wR7)dE>PDr|n1-%Eu z4;A4qYe{pUX0uW7U)~gopn}@0Y#6~AoFGA;+&a<&bVarsZp2hZmh2&j{;H9ZHB2fR zmE$-==td`)YsAM!<8Rj2nJlf#>1A8`-@neF7Fy@MiiWkC`$?gXQ;WcQad%CMS0>Mq z;rB^GWdzlhD9E@)qjRn^0v^P~sl-K3{{l&S9~OTJM1n-9Vvrp%^%aQ_-=A1KZL3cuU*|vcyGJ}6V*KwjBWc--b`u9$M`h#h!$%;wrhenh$ODYYwR29 zi`G~(^=^ndtL=VzU(|*`>C!)h&rJ)FvLOjMU%M%V0^#Bpp|b`5CgA(^uk7T_`> zv4k8O%c26%$MdBdUX}x*RNd1v+S{8;wL^qm+JkU9D>UTk>|xJfpto9z#0VaEhVA|R z;0-IFzpa0ZRDzsXiU8)5!5Rl!dJPBU`hj@ii&y--{u|;8W@U~cH_aBYE~>N|oLi?L z;Y|fy7PYyFqlbx-?Qx`V3SU;z@%OjX;$ZV*Hstw-cutXV8H*gZ$!_fNLM?!q&2s3i z-yKFykMGu3u6lfr^sO=xyht(-Ilh)Hz_K-elQ@`%V&$0fGGd_!a#jP3Wy(nGvUBW? z$ZE^6HP%q}Zx@c+;P3zCf8bYb(p5fQ+{!%_x;s~w#9J@W-tsE2()@a z(t=R?*#L_Ngi_7XcKqsp1d`Ml*#t!A9)QiI%gAz2n1-gCDQnmHr=FA)%z@T1(!vb9 ze&pc>X~$Q&u%3P_ZuN9xr=x~9-g6XopkLwI4_P{zTjaH#U1Jgc)aL0*^Jv-tR`;Q| zNkrZTfOI>PdOZ@^9}TC~QNEE|Vl-3rm2=9AbYc}WXx9y5rdpwk{n17{m^9IG)c3p{ zJhtDUj<)1z);M!I)y~kmIt30b@!&|-?I%sxg%&plKs2=8}iNXX#I(dDho1Q~r3AHIj; ztE^IdU%183qRE9mcE)hh2*3FL7S&F)1tD+Gv7qxHq;Pp_1p;&x>nq$HFi5pS(t@=a zsbN>0jdo@*-KH`k=QL#xWyiV6B==8_zSky~>qXoF&)2~1ZZAA3$mH2BNy>ASR{>*dZ~Y&Ebv3c-AcORZ;M z8-`|A}75wf5taKh~0&b3f4wHF|l^l8ltkEE~|Sl}i^+T6mn zBDY*=MU$2qffx(PBucHYOg&M!Qh`x#z5x+ZTzEtSgiOi;4PQtiv1E7ggI0jDTk*6v zan@IiBd@Gmb4`#buhnBi_|P~GCH#AAqwojWzuYjDk;TPg|5b^3Slav3GlY-DMH;2i zWJ@nele%eHQ2I2Oyjr_m@DY_Fx=W=Nf-RNK2KyOS%ZJ${6Ev)Ig;`x)Ohx-{B4H`j zU&MQ*EqDr@;d%e+5bbNa0?RBhq1l9^s75S`rt+x=my+<&Lc(+bWN$iCWjH1AilZ7n zIrD6lbTag>26{6oB?9)Feth&UJg@-JW;x^1EqYem5*(X1i7SW0iIliYl)2hjgm6o5 z^0fkLEzG#i)HVUfPi*C^z- zR{i6xgLq4b6u>Z`f7Uk}*7-Y8nK;dR`?YVzPMp7R0Y^#FGEZeu$7IdfWa97UdK6G= z-1++O5}04fG@ajB7(6oWmLF& z*%&@7pLwWFT+KS?eZ7Q>jY=!G8p|AiEuUo0wWbdsYZWQ*6T5?V+y*fDKr{A&t^`tB zD#P+6M&HF1lAz?4Q>6)Bx{=QP4`H!VmyLsrgjOa&?HQ(|FiR3z5)`A-Zvyi|$W2L+ z+(>do<{oeD*A{Y$qb_ufW-!r0&a4j{W0D`*g_YC=Z%^CXw~yIb{;8lRM<77o-f))Xt)0#(`)w zH1WbM%U2wJIK9jV3s76slUb!oa+vH#me8U0a96jWaJvfuv1^4|#1&PwHA78xp)YK- z6)E=;kx2y9!wu4sEFZP;DmOg0a~OjyfC;m8rnaoP#siPiFe*@T9C^_BQ+5s^Ev_Wn zkk=477H&g3?K3};3fCk>lJyX;`~cGZVeqFC=#M++@{>xPg7nz)YFjIguG4Y8XO=*B z%!0D+czOeJ^w=3{7Xq4dFJRCbu60mTZO zKE%;8Db))x9*vv41b#aLUm0VG!2j}}9`_DGk5te}3v_dV%7tM$5`L;rMW84Xv3KrD z6Sl)NMHOO=Z(cnXhLyq`Ag68UHdB4$E2lF zn^_R4mmB-nJtv+TY!usQ%##8T9AgUtl_iJ?n0mFj6?u^r+%G5g^$!)|qA+wk3rPMY zAzr_uu0${qLV>Bdok(Y0uBF49G5u!oS2CHx767PQe;EZeimc5`0v>uv$zG!|Vdz)b zod1FGx5nNjO>!YB+ANd2`EaoB{hq#b1G?69`uHZG{w0G}8HH63Jn$4f*h$YOJcY>v zx-E2=QXE8j52tk^+Y4L zyo4t97reRGr{@;KY0@2`J;WAUewPgvIzs!LB4vO{i=-Va-pVeI1#51|qyySGfybJc zHzrz95@3%|03XdD)R|5ZR3Aj7QB+hPT01`bWno?q?ggTEp_1EC(-BLTE*`RsFn4)z z>sN;}0QrixA^M?tnS=5&tg()+XW|Xc6_gtuBJM>@`4C1&wjb7A?^fxTv3ha>fB;+a2$!w zN?+zuB;D&WiM#P00LqFqoB&8p&xnPPPvhf)xxs2?H^cb8IVFFPS*{y^ zXH45ofo%<2gO9v!DR(ujqqf*+-5D4##kFs67b(XQP|>zjbG(f{6O>vR%M1F-EKW)? zWVHCG83M+QE~%AkF;a{~4}m4Y+%O4RW$Iuuo6Hd5otxJ=SS))cBUsgTK|S*=&pu&# zkHm^?LQxd$p7M^ut{Pa$Jsaey@(3B5m?pD7p=Cp@amSwXQ<4T^)Z6o4xH%Y?$H`xC zJUWB?6#Y)H(K!ip{Ye&-|8U?5%qAPH0wEur@gZS^5&S~pPa4OL} zD=FhS@di+Hh?&E+zJ1Q_yV;qJ&-zV52NuH;zv7=~GgmZyebGY6)`LT3bEIL|0VIjm z7=Qkbxuf?Peb!b(j0*Ixt7i)>bX}>a{u*kD%+{k{Z zfue=BE-zVw956wPnXc=gl%pAz;%8EQ++)R4b3Ik9J*C``nvk2>PBp0a_0YI9uq|c1 zWWM%W<)H&TG%QucO1%)w+HfdcJ!BrPFL_v9iKnwP3+|88C`P%N@bNeO(mF*rX{VK79|w=*V$5 zwDe%#eP+zI&RK|1T{D*yK%7I;`?)gs>!P-SIGdrkW&hsyo4 z2AR}0A&f}Z<)SucsT*2Z5>^}Kuz0jTIY?R}nY1HWB92^~zjK}2CDk?<&zI6_MUpUzBBB0CYAK+^l2yGy>mVvl z3(z*ymIDonLn1EH!sCcOh@D!7eE!IWycw*T|<4wbj;@5s&$u# z2By;5a0!@BeZLY$k^G1ZJuoHgG1UfDzqGU^f3bi|uUZVQiL&F!EPo4nV=d#nvk5+4 z#e%A+DtqTCv;*~CH&q+Os}B5811r!|J=pA65|>qr0fmZVz2=Zk|KM+4w_K}R|Ahnv*rr`acvt-u4Wglp^>)T9tTYU!~iOS(u8}>+4LRl2F+ki)CSom5_0(OIQ|QE z{8%LznC0o>Gbi93a9g2K-rx$Uzu$U^H6*m=%eTKwx!HI&a( zft;Ctsa;2>ZcQv|^J3N}Z@p2CUyAyZE}?YRe&^eW0kcVFTyDv$WG?!zJB+%N?ywT$ z-R|k4Mu#T+o?=m7dD5KxJi~|lBHR^c(um42I4MLFD|AUsWg0}amIRQNTFry}H8p9k zl(A(o2D}9gS+$jJ3*2C%cFsZE`R%Oo@L` z*|dWc%R`Ii=CM{p#~^Jr-wA$GcVL#H%4DDai+OR za1OJW(+H}Zjp*~DHQPU1<5E2F_0rO?GxgX6f(1p~RhtgNXu;-YxGQfaxa$ij&2X5M zW^HTMSY}p=3hD*wTT@6kH4!OZa{FhVOcZG`!(YN;%!^8UP{MU=YSL0h8BUW^w+Tp_ z2jiCZ2_!0&b2XeU7dlz0vRY`&E6W5{Z-aty1~IC=Bv*c8NmY7?IT}2aYo#)aiHr_y z23uWjZ<0!P2Ct@q5LUdB$gdcFNhxs0s|%r>m#iEI+|KPSD?hQ?jw2e}M}V}&Agh%0 z5$lImb`8_(mPxv6_xZ3}7ETD-=@h5gwC~|SD&ZGkZV zWFn@Eb{<4s&MvIR_5>yd$36E>gz%HdCw?9nDRBZ(@onb5;FjUtib=?c7wH*Mp#^Xb z5nC*xbR-UnkUgyHT3cDm*S(2U-)j+pE{2H%)QXZ9d?!1GB6-{z!xxw=DB2m$PCjFu zAh^G|Y~hmA8!&q*z^3-=aryjXN$1Yt{<& zI-Kxl4*Jpl{_doBz$7(3I_QK;bX5CLiLl^_wH&K|iE@8Q?I&EqvOjJ<({DlF4-l6^ zbr>K7N|_;lw#{s9cy*&^P=Sy{&TRVO{Y*qXMU5ni1Haz>L*nbB0|fD0eMeWa@Qqa+ zCbcRu@GeaS4Kc(~BmhxpxH!Ri#vbTs6p>CK%B@%M@g?mJekQi2l#A2$;7qaHa3djt z#R-^YAFlW}kOZo?q`L-X^W;io6PSB3>}8imt5>E$gx z(&65l>CP~;bsa1*pB~w9cya?O9_va>M`4#b!{eLF6V*l&5D}@{p9b$k$kUxW3q7K9 z2_VdB7b(*r_AEwBM3FN{p_FjWBJNxFVCgS{ zNdloRE)Z=1J0Q_ex|N9DC%^7iL%}huS#^q)tgNol_VpwB7gUr*PM? zhyaNa3<$6*SiAEr?vqm!;K^Y(@^8Z7Xz(PLZxAwg0mwO+9M+&(ZoK!wlJsN`=vDJ_ zDbmM}%8A8}dF1~lfsaSrC{(mv9pRg+%f%@T5wygJQMTk*69@8qJNR+-3+ZK+(@F6z zlCrM&Rm2Qa3N>5Y-eyDSEV(#!3<6z+1fF-xC!S?;YepY)dth`vmo@%0uD_{$l!^}K zbwOFt&?T4G@m2^~j-)Xq688WYDce=)MsAt{^ljfjgS_JBONG+ zm}?|$t%Iozfi-e?(vnZc_q-+cyhDhxrafo*hm=9PcMIm|PkWJFkr!L0`6vyvI7?Uk zSnv4_)G2sG9=s^5)@CIn%P20M%l2hhC55eduU$KfgkBQSK?Evy*^TdL^D+`W(Y!KD zNos~btmqVw=wgSfcjPzUY2K|B8@!5b76|4TNpd7i-$~#IT8o-Cc_13~Kgb<31GjC- zWk8!0N8=Wmg=bSFe!(Xmj$pp~UjxCM-IkREs%02ri)`hti4<`r)JZ&WJFZeBq7geB zvc3WWvpdJ&azCqcTWLYZ^}Yp|(d^CTk}PV!Sdzir$Zic`SF-%bG}H9ZeGl#t35i19 ze4XKL)|=UO2{ZT<<2DSq91IX~SV?D38_CH;^50ADnCKxb-zhI?q!g)G9=6uMW?hES zAS$woMI4aEVUXf-c#|q?;Lgdd@@NN};$FmnK$|^f%U`}_H4rg3XH+i!nntZcZ;T9w z&@6OFns=#Y!OmlVbMO=$I~sKjUN8(pu=;lxZ3olVo-=*9<;a?|-DV z4zWGbS$0xFFVSr0#9XIu*q56$7umk`N6LON-Pb>*dCc1a*)R72jV;{nO(14tCwZXd~Es23DGG zpWM2VjG%|vN%4=a?S!HCThrYENo>`!v$_*Hjg-724LzFgx-0h1on$};FQ_C?N$t}J zuN)6IccQ$%bjIrG35S#kN_X5z z#PjpQj2=oQyHX=eDaVr*9X`{4c;v-V(k0s{UJkUv%&IC;&&&C-DnJ-e+v%Ia)m8!^ zwUCcB+{yH>VcSnvys8&@>tqV;f5r3`->H1AkZ)YDazK}0&@+sO6G@nLo|`ho^(`FD zoOKPwF*ygoBGGBveq7v*5B`d99s~-A3o8c&5266~;w+BE_Y)&H$D+#m3DVV}gU6B%)($boyi)$jI{LeG-L7^ zoX_OOh3#CQsTaHF$p!bOJvkzE@^CtvwBm`)0vlDZ_=-<5MB!NFDL?B6 zg+F5tmhr_hmoCx0^@%v-7ir6SUV|fCFJ^R;6XgWseXvE=9xkVv(%+(YhXT))okiS3 zED6XYC?e{V8knZdG^b>1?=CM-fm3v&(&e6#DO8kdmYBw-7JI$mh_Eb{Y1HEW_pp>@ z&^uG8>Vgh93wg>jr?jCsQmD8J;n}t+1WW#a`ii2_b2UmY22mMAz092^VqiwpedBop zsWw0L8svpqx#s+Um6{Pur7@JiAR1_XC@@}8=j02pZmG8xRlX)*mYhCm)coqSi1c;d z4{D!%sok=IyE1akS|r=dh0`pB z07?=dHgbXF0p?@tLJ#!H0N`NV1x&QVCapse+t}p@w0Y;36ruU3M!Khq#X0&`#ObIW z7LFmzlR-eKcY-QJ3=63iSNJVB+tTdA>9NK4@ZQqmlz8(kWo%T%ltd9MKF*Gz3Q z@41OsBWbbcO9l8XRXLWM_r$@Xt3|alO^T5Q^+Vuix*B&Ux}rImUlBq4!JLsxg5GYq zB#KLN)iQBbhFVXdTbhqYsf|QUKv6gwWebyyM=7%IcPJWXdPb)tBTC7eq}b;bkZ*-b zSiAwF1_?t>(i}+-3j&s}B+2+S=Ks%f#%i0=H;knZ5G?2P&&6IqBdBXQ<7FFx66tdb6Bw4X!EeZ9L4%QZ|%sf9(rm z_kM5fJi@LB&*f?_-zeFG&0Cz7nn=K2EzmD7wl}qN-NOB3; zlH$d<6fI>&Xi<(94`}HEaKzW-3AF}&)N1g@@XSb0xmP=r^+UCX5QZr-)In!5d?`b9 z^?B!$$|YIAnVh=Ad2CAS$NKz`0NG2Ab_%UR=K8`g9$zcisAev?d*ncpVY|i&O<}wM`M{!|`(t zhQLIV0h+t(^EoZ#Fj69jh(M6}X6_uGLzM4kP{jn2IFj6mIwd_6cXUH~fC1F&7`EJ<2?KTFF;e? z9(Y-|?ZJ1!xaprmIqo%M^-N=reE|Pjb|w=%GA~q^z<_*a(-emiLI;wW30f;x58-7 zWD8-bZrw*)Ff>B$5iANn`VOubQ_O5dSf2A`DH~uQFu;u=T<#8jl3B}sm&Dbqr67!m zL=|kxz^fgeVwOyA;;?69RHA4SIF^ z6qP?i-zs+@hGSL!K2TJ_i_4;>TIjj%m~VAs`BX?)2&JTc^L_5Vg$%ShbtC0b<@|Bk zh4cbk_c&Ut|NAT8w%_E`j3pb}I`I92rlF*#otWeTrEVCS%`>+OGrTlG+6_tFAL?%Bfu~# z?W_W^EoMR%nCDXY^HlQQD_#c18xsN%8gYj?-La+_h1%P0&2v>VYWgu#nw=`preyan zX~YTdr-MgJ*z0alU85uP%Y=eEmZIWw?Nacu5$dg}eYgC65Oqg-mqJupw{8gzoQ_$L zx*|~_y^opQu`)IlKoTnfXgo)>e9q=h{VStDV~KJV7?ScgOMja_czHtr`5(yz_CkGNmbRQDp95CwhRn`2~0?o4FnTr$i^BHGD85vkdO=v`NCu) zkobd1NG2;JA=^wQ69V6t%>4i7uJ693-jk|qLz?_zTd&@|@7#0GIrrSNQmm`WxHzqd zEu}+wN{i8BWCpD;1o9d;V6O&~Abe9~fs}%?$8$4lE1b^QJ=hgvQbC5w zKEadK*)-kf6D*Snv~5q7h>T!#v7+t?)N+d?o$f}!oA2@*n_veG#oC5mXRej}iw*8`j(rWhQkb@yJ7uU`UmHx4Cz zNRe7e2bS5JN5kDW2x(em;0(H5B@+Q0egO09gm`b|ObRwDK%~9$UF#%vyE~GYWJ}kg z`;N}?R||_#qI?d`DKa|F0P6|}NK2*nBwluUsy@<(6|Qr+tC0M0`>KFl(QpzuDeQ@W zYXT_vWEcL8+0vvUX>#jbD5{MctP0r@@0JP6GPi*JEnL<)=RwgY*{BSEI9-f26CfyP zS5TIQgrW>^xZH<8G1^kfT^OnW3ORtRCHF0n8&HC6d*O&bCHSC?L$n7FE0!1IdNC}6 z0~=yOp#E(?Ex}k~&EPtZb4w~{1yW2t02TZsW!eCiJVwI@x zzzJW6D`_595ggz!hPl-#=g}0l4Z(@p`mWHD^fvCQI0ZpXjE!K@1%Re;$J*1i6aPGWm<%G+MOcYfO>R{?b{?UG|zcNVhvOQVf))53drm8^t-63F_c2gcd}x zKuZ>fyI3lN9WbsB3eqwRK1`9~?Ue;#?w*`HDd-k95L>s;3ksRwh4!3ecgk0YD{L0C z(&!sh$kY65aOm;z3B+u{BwSrCDSjPdfEj=iU8}QQz&Lqe^2C0^q4vnK&)dXs3zvqN z$Z5ib(N5x4E!n8s5|@_7XntgC8=r=gr34cV?wsg713-YtDf&e4)P?L*&L(DNxvlN%S;+!*0}Vz5@CHOlSDh_^Pl+?TXkv z_A|Uz6a*~{#VQDsfMW#5c~bg=`%9j|YHBD^M(T=kh}fW%x_iv2B4gv44!hz$|VFjzoT({_UND|K9Wgv}ld0NWlYmQ;ndgb6uR+k{05p`HQs zDSH~p2rVq!?Lax%DN_>IKp4){`gYw@ON}yG+M8nvkv=BgsEwQn^#dSf?;#vcmW8}d zB^+uqDLis9Q_7m4qXHk00rYTi?=7N41SWtR=UVa|EiJSWxnEsS0A%5L9e&JjYlDc0 zOW70RNx9X4S?l(MiKGihJ=4KwVAw`fc7+5P$lrkM=6URZ(5&2M-2&6_jnNuvjyc%< zNLeUtfx`i&oi+ebB&etai`UUN8d@dxkPeR0n!r8=(}V-}s1Q2x4`l}uKWhj-i9&mT zq)vtu5LDy^8Ae;Ph<~O+g2tyA0|#4|f!8ia)i%Ux;CG?19!D%{a*(}YkflwR2nSt3 zEOW_Rol)$$cTBHSg%T-LQ}-f*N;wc50LpA?CkKT=)mG@Wr;51b_&whZ2uO9w5-E}f zBbO5&kvoaD%$iS7*7GdaN4)S$)}Dxj(4`%*LQt>A6vpx$@z4wYL_G3MEu_F%2XIor z70^J3HE4x&aN~qf4wYH+li~mn4t}Bvwg|Jd^85e<+!JXWAUX4A#xrnL;%4R6Xty+3 zin^7WOUv0La#PD;xIyGg;DA7+MScdc3mwQJ_zUA0K^LSupl4qRdOjwg)}}Z^?I}2- z9U&O&ezk0(XHEo_(+`br2br-Fofb`U7lon+RS*|(D27rq1zM^q{Rt&e{D}Y(+Q~z< z@s5t9bgS~*2gy5O`}?94FfdQijar#Jc)cw)SArz?p@c{&Uf>#WUr?Z#bc!WG67mRv zatoD0obGzZ4Y?-6BgDYMHKv6gl9IHq#1Nc;CV2u1I>oU1yo>G*C7Q~60io)>1O?v< zagbO6`yku*)Rx3+s0mJ!H$ygPo$tW&K;;6c6Sw0X`~>MJ1zY&#fVwV`=DnaFNCh1m z3G&iHN6t*5v)P58k0C+OVI?;@QW_SnERoA`Rb1(aV$d+{?68bpMOq~Q@Uf}XJ*AWd zEgN~iGDSp*LmObks90D2IimUMPzdw@T@$P@yIU0UcYF z(&z*Z8o@HGMbzMUj)U2t$nol-YlMkNQA`)bd@A{MFPFLTy1{Ctk_!|<8XrIdFob@ z(udU}(g~@f_%!31c!lH^lWPoJ#Ceta_o4`Rb=g4FVq-=0M2y3fcxvw?5xFBs13Q^> zjkgnZk%|TIa~$+5)rcA7OWY`BN;sPFPNF|CmP46E_(lr#iryB{7KlM}kZ2VO+=K(1 zv4@a>YG;K@Fs+1F1)nog2^-HZ`(zO%0V@xv9-M8q&LiUrp==ljiUX1%kT}5J>F63k zPzkkdePvWeFT5mMgGe4&0a%G{v~(AUndPn3LF|7Q*9WK*jSgF#&Q_G0fU(065|qeF z_E5p@R2Uv8JqDGmZ|Kkpkbpa?xkQa80m@EPoFCju!sud} zk~Tg#?I1*gZ517wr!BrJEqU+6goyjXDRCGVEX3f`Od<_V7*7?osq~cX(%AEfV9BOk zDq^fUL5tX3)*_~C?I1;mGr+PuyqkGR>XOD z*hkea?zo*1Vehg<`9+U^gm5a}fvs!qm`%tKfi{Wm#o#g}0eNYT$x2a)6J+IvjoA4Y z6wx!|(^GMc`VtmTfM-7givIf-D@>$_pNlKs>l~x3N zi89Q)gKz@GM>5`5q#KlE=&QaoN#%XZ5yIaB5>P^D)a}o+qDzLjirw*S{gihV*Fk?*HOJ-~B+3q5-gdc?8lFh{0OovNGE;I2#)#lEaV2&bET3KX7$i<{j zx~4V>=v{z!?j2M%W^?CO=*RM*hbwaG{$f+^gOJ%u~Q#KWx-3?`#3<=Jiyw?#?=~V}e&yoc$6)DQx4cN0(WcHi+{ct)iXC%RucV!I6VnC=mLD=IDIU{tF|mLqciknb z2oxT;NHfz}+;YG#7p|8o_NSQ&Nl!dRl692;g08sWdD=ZKhu=`4<~lUU`@r)Bf}!2m zbDa?3Z6@s}%75t?1(bgdwn-s;cruX>hb?At1Sy(F^5`}VG{iJ3`KkDl9kk|(Z^PSZ z4)DOS)+(Sz5QUpRdWxx73@3}#L1VlDN!*9?Vt-|}j4$#FRK`qht4ebe69R;IehI_G zE*fq%0>t+q%SNKIbI?MjPQsWWZVq;G1D=GK>3T7TgpwKdu$1EfL}=2^#SsR|0Kpo| zkFqCt=aN2FRhHaL1=KN)jB9XlMcpNWU0UD#thl5nN!kT1w81CqDF!OHT;tw4$$1UDMm>2rtsbHF<<9n;6n znL6SLnoO)%pU43ByW=Na%un$j$VVHoEamv$22+~`gqAu9y+<<;yV4IA%ZChO;Y@Tj z*?xv>m3S#P(HnMK9C?v5b)AAzMA4-AFH|)V z*Lpf&lKdhc8}<#RO5P1;C*zo+Vxho_^DBz`n3+)9{)AB#efs5fZn^V(0tg7R6dNVV zBC6=%6h-cirv!RpMf9F@rI5P7y0pOX6OOS(4p^;F)IdR34}3Y!9FQUy-^L9qg2$|J zjQSqWFdqLQY7pj+)X77(knIUo$X4*Aesju#{taDQTR6g~6;g+niw%5%;mjfX(U+)# zxu{8diX<%`640kaH~-XOeZ2Uoh}_N!yyS~WM`B5R38`W#j^uP(Sw#`AY`;8O7#(1E zK<*Dt!{;=pTQCDdHL7kDQ6BONqF?XoA}^iYYq@@H0fFuf zw_gPG(jsCWAmQCj5G|{SG=(`(I;q__IXT#rgfOf_UTDJLfa3`B>)D|Sb6yF9u;vft zkV7hfI^$3mLS;3Tyt@IRO}ZQKq~{Jqp@-@W%zJ7ZZx?~FO9f;YlpE}Z$o1!zXlk|T ztnwhn8LmxsA4Cf*vV4hLgJvqIv!O0rtY4vS8}aJ}mu2-NV{x*$!rF>lH zS~n%@nA=AYqG@U~k#x1`7$QKKIQ_Vy7I-IwhZ5UdW1rq~6+mLk1B@?=Zt2-7VmEvecv@JMH!DZ7bbP_K%be@*#8G2%Nx#e=V&^{C{ z5nK7+Odl;wuj_F0`^R8d^{}j}kf?)pMU`Py5qeTsI562@xIrJ(e;tS|mK7$2n$w!S z&z42?@(Xz4JoUdU%%r*yP=$xq&o(u%p@FC#@tk9LC|+nL~pG@rcN|0dXi7V8~r5&w!hr)OYiuazXwlCr_Qm z5k95GH(JY_DU0tLOv{2`Wu8Gp!JjKO(8Bys)4S`~e8yCIhPWI9}x`L9w z9AyqUeso6T9qciDP0c-lE zj+KZ!ZNoOxdLIq+0c*1WKJeBe8zn(RN4!wsHyDA85b&fNQiT&FG>h2dOSVq+76jh1mKEG_@_(K3GV!$F2gT{)KWFn&~nBo;C2vy!aDa)8P z%TO8cq#>Y%N4Dliy@tA6h?JwruKI{-YeZL zD>Z8pa4Gk(RwbOx0-$Q!AP|L5BiNyun``DQ(uT-KkN2V`WKkzo59K;mem#BFjq3bGuh9bfOAs zwHI?qATEWIs^XGfx5e3FOpLYO%q5r&cxln4t$;Q(CuME$w2xEhxC%5=>bhYL+CGA@ z8<7wZFih*CY4$e&EvDI+6p@;BndQE`xf?g+$b?a(`h|z6W*$OV4+>%oVr4*b1|SDm zJ?1WWjR&&3yLYP!!=j%>phzUg=I#lT2_yJ+GAl<>r{R}3Cy*!!H|lVLjZBs6VDYEY z)IsD7jh1lXnP4{;WRxcW<1=OotCc#2ca_OTJP9pHg=Yi;4q9A5MPHHbs|?b>{wnJT zPh#;E*@QXzt@J}syi^|IrB?d1GWnSbD=Z@L>@c-UX5_7d!BSrIiUCP%MJ8;CK=|Lb zCM$K=vJRI-knp`(pBIzli*Pb6n>JV;>wvVza=nQ#^Ie`z5CL&owPP@XMhCPG(KK#H ztv(1i+;Md2lG60Z5mpeODD#vRynl+to~WfDP)Mtas>>TCnR#;1C8F~&;qZQzM<_o7 z9g2P4c0z7TgjneiBs8CZcSq5p4gZJoVj@?O;KV>7hSva22a|_)056pTu|G;%giS)5 zw|2`NaTh3U@5m9(tEb<)^NyY45Ieg^$JN(RPgTrQN+Z!<-oHZiTpa*xLTo=1+P{r4 zZI`lX_@C4B@7+1Rdnby?H77>LhKJQRJzVh{Uac58a{Mo1#t8!|8MDa%OSo)-GSS^J zKv}6!3=+5EF|6BIuSi%P=v?4wJlbDwqDlKaDjT0iMqc}D=@{Cr0CA_=Gz(Jni<|EF z=;SDrnT~p1p@up=B84xp5H4e4=lGpF#~^AZM&&VVJnDKU>OHk4Nq5IpD7L65{KpW4 zC)-8f6+x3u$hEQs3yl^skI1+n1)Rl-PtBbcQdF6TPVts}TwY>X8Q=outBhY!uW{Gt z#GYGYW5z~z?Fyc%t=`Bv>|j8I!@rMsFVv&@_H~Y%ODBJI8kE)u8>)23B)dWd_}1kQt%4 zA2zW*62&+$G&Z^?To3U!Iu<@f!_)E6Jt0<<)jYoQ6MJGv8Q%$Uf;L1Gqv(LN0hCaj zP?CU0`il4Cz8KNt|2+iFbr=j{}Q1nPQKz5KXTZF%sY1O2Ac>$pykyDmf`M2vKi|m z3v`4IQLm-fc!DsvBSzhz?K@;OJ?oC_!IAoS>0m(pt_|VZ$|IDA)<JYzV#$I!Yrpg7JoJ~|$gSoD11_zK?Ua=@6e$2f~8AoYT`ci*nr_4aVUMEo!q zr-C?!t^z>5)_|oKm#Ut_JCiob!b7`W1&dY1)$M;Q4gl3t1Ataq*ZCo>4MR0i+E<^q zehkzZV4AzgBPw`Ibpr}p?6KMxYHY!Pgnik&(_&>~`mN;&bw=Y9=`&uk52cJ>aoQvx zPvJCnlJS7!2_Ili9a-@M4n(kf6fHxe+9A4ctAi}YN)vIJDH;K4PJ=NfHYAlqB_K)c z;t9}4>=P%w@VhsLF+pTZP7#qwl1J&tNm@Z1V>tS8W-63zOid=rw8U5s%GhB%&{V{m zLJc{7kg~K(^zh#!GD$6DV;b_|F50^Z?IvtKucqGhGJd;+3KQGDINEQANx`5UFt1a3 zdU^^;ApzVR*J1E;2(UWoVxm*gTb#`mhoZ51$h!#~3aw_`EF4zAbuQdp$&}Kt9)cS~ zxAs8RsCCEpPuOoFd|MQj_@WtRkVphtk%!1je5)BdpCI|f z^b)_hx;2Mn@?}?&X92bSDHtA{) zd7W^9*^TLU$4?P7a8vi1n3{Dvy`53zb}#7=(zv%N2(0}0nS#)He!Wa02L|;l^h#UD zcEBMpJ{DXY#nKX2=CJ3G`ynGxq{3JlN+L7~RJ#?qOVdC^)#RQ0O@ZY#D-LZ2QloCAH9mfd@SBzM^*hngkpb#%s z%M#U9@b80lJ1E-_ zMG=sCZBh(0t6ON_%wDroqyh-T-D2)njB>|1fy#|1qur^k)1a8G!$nPyMEACWXYZil zad#)}#^}iuyUpj2SidPmPa)9}!R}g12=Ge2wutq`UvV1F zxipVz)Ln)cPB=Q@gf$!Pi$TKGM@096Mm8KY>_Kzq@QxA!s_eE8gakdfl!C#)6dqW+ zg0Bw-7twEy1>bxuXd?>2cmf0iUpcZ;xX)8TV(UrCa6&9I>_{fCZn`^zOr9G0GpVS- zXb2p(ZX98N=4D34GPF~x!@2vIavEs&W}1^NWHNJ-$>n8~qpz%>T9t{)L|7d`m_{Ad zvZ{=@gurhV5QkvRScPLb(Rt2p$46k#vmaqfv#Oggfq?bW&XS}w%YVB_I~^IBQUgZK zIBvi$KBJ4*)ut29h)AGeGbQ2}s3&S!|_bsG#><8YZ8|>n=UE%WmXU6G5<*(wY6Ij+RW`0Rlj!#Dvhw210?u zLIFG2lhy5-7YonZj0-Yg{1{?z%g9*DL7Lc;v0W2p&;9j4=hI7I5wo0>Zp;HN7}`V> z18caaCZh{LFytK9SZUJ65|Vzw5M-dE8V|r>z_g@KwXjB}BJ*L{rNm>N;o-X^5sq0| zOfZv2!>9vODtvw8;iSTHSJ6XN{;-HiWE_*W2ulD)erW#6bGew3%tqNOhlC z_A(O{zN2xvZ3qYz&mPGxH&NR|GuwwIwxcE(O5$PaXaKj$bo8Qr2|Yr%AK6(1yQ-`Jz6z*ly3o=#Ix=PN$Vx5HHKBD5HD)=BWmYw0HQHyJ~ z$y$pTHFoE2D3N^0M+`!nkphIyZ!9v(mNyW{x_*aBKxFl6`~b8tn{=jvK6mq`kfPvI zy&yBUD`*hbQWLtuvA`2!+xH=+yLya(!UJQrf4ZIEwxbh0kPvX84P%k<-t7Ek@QfrQ|$`9g@{ktu2~qnAQPO7Vwb7HCtXPBNG%vj@6>Hf~s_m-)V1C^oGYm6zQk5ips=$ z%svnT>tH-8xIm1ctb*jAG0hk}h?n?joo;Ot&Z2p$@+JrCDFV9Y1hy6@OpiJX1=vzd z&N>P6D-4Y1o7faq*pNT5V7H~(A|Z*SAgI}078F9oT(pUWXqDo; zSQm12=TK{wtZ}Z^UPkOa;c3l-`g`$nut2-GfN>pXvgnRv{AlJ>^oK8VCY2q|1uLor z39+S|@GTb2S3Chg90C1&>WD#Yl6uM<3uf4;BW7+Nq#AaYhM3c}<%awRxm(o>4k(>( zW$8P{tcgS@mx}4Kel-hk=QMHIaeC_5iPQJIRJiKI39%93MJZeCGZzOZ%M7iGC5Q|U zn%J)?&>X$@z+~yz6Kx1ImFaY9*A8pn6x!gTySHa@iF(&`GG+x(GttV-xzA z0>goOPEAdhj+{7t@PrS-ec0nNGJ=>$4^fONCn(?2<{NRO-Zy#t;ACm?-s#g*#}zIo z*}3#?R2x6L!XeqiCyyRFQ@Z=asp%sx^&yySqOwl8gdn7a9CI8$cF~YB?~crY zB1-5Q0U3G}oq>_G+4QFpibeG&lm*l@E}hx=N_>&1LUGT%r(~)_FPSTXm)AvqK9+v@=cOO4w=jwewfF<#^w`|&U(I)M~ zP<3nlb(e11RNZ!L|J$oKR7blr<+ar<%jlEv0Cdb+ zbFEUn6~Etx|KEQ9+Un)dI~TgR_^qv8v53l-BS;sotyND}U)-&Z)UV?Fm|A^fYyCC& zJN!&!x+@k@L-~Q_l_kt4AKj@w%E>l!vaR)3Wx*VoY)fZ#_hwsj74ve^XYRM3sYI|{-+>>}XRnXp z=hZFp35e~=Lu*GaUfn_;)dSMpdhN)QR=-7lT}0t3i1#wKIO+SJzSu0Yei^3Ru1Mk1 z>gMWY*z$yD^{c(t&ioW;=-A|$2aX;(e)s8nN-togAJqA|g^fg|=#(5fwI;|0tpS@0 zP!^~joNM7wUT&R5WlU8{bBpK^sDauXx@~lHCjs6G)v8e$U4Cf!wjHJ0+P9%9w#r)H zw}k~|I#?=n5gvgr5T#@k(r0dH`7E zj<1OmaMVIL-V;K5tz*HTBH$vaSjrJ*Kq$=$SWFg|z9_I>qP_!m_csEt0o_2ZZIEt& z8mYuR!tS|E94Rb&2?CKbsjVAs>;j~4413U7*7E4!KbDuO zm>SIG2T~*aKgh`14$Rwu;5!wpsmulECw1O zMA(OJqc+7Vdu*2HZBMv|(p-;(F3p&wR4j==mm}9oR0<7pPaX4&sH)Rs1Y@6S=)T~N znti@P!II`VRFGIM&z|i-k*&?58Mv-V2yR`TGIaMhK}F4w7nB}?a8fBqleT{jh_huBkNE5dKlh!VedMzrKY*EF48@h8jQ^@unlJ}eI|pELn}Kplqg&~2 zTscM;Dlny>?7BjmJtTY%z=k*qfiiLqRSscfl>KrgidZ=CTnz;+^c7fRGqRhO&=K95 z#iT;)N@@YqSevRHGrGkniWg36wE}YiwR&UiJ5S$lI>*j^iS~*SgXyg}8>kFs# zh0_|gD5s94pVrQT`vu;_w;fYA^U!oTRR2Ewyt*0g{7QK-)pA>ZGbf3gY{hi&sJ-e( zt;6;A;)e{=!Ta%Zw&`G__RmYA_Rotm?Vr|k;q0H)J;wNX<~~?8Cvn5FrZjP_^Zo#J z7v?*qM|YbvEa18bU2R6Gdx#%EJvneLbSdS!)kaR`W;@qHNn_NYYp;y506qIUQ5&US z&i@$OGQt}SL#e8m&ae)732G|>>1VnOJwgFMRTz1(1$ET6X`o3}Y7(m!tkj6{q>4xl z#;JsW(pTN2#*3z~5}lF;(xQr|0H8h$r9~_j0T(r@j-^+^$y|B$gEQS)V{W9;SnQ0< z!wx#qnT0uWwmLEculR%eM6(=%4RZVfj)QH_gJaKG^EJ(h)fW^~HE95VBZCa~;o)0d=192AB{~Q0j z5`UuOgVe!Zd!zh{oRj9-8|z=>&)MrEbdTUQ?XQ~o3cxfd@6J@OTfJzXhXeDA!9i4* z`D?(u)d`4bOsI^fo&l@z2=W%Dxu1q>e!ojS;!H6E}(?GcSMBICUI6G+A4$8pOcoa`C z8|%Wmh#G;g11eY+mxhzs7GpUOylzmlo}msKcNfOSoWaIHyRaxLg(xI8?4VrOc!7_N z7t)B1Xno3joMNc#J=a>Kp&KfPM>B}6@qesIp%6Gxq&Vb-Y4F71O>@;HXN9WK`95D-3#)YBGGZh!7IH`u`9d!7{La`1}jM#6Et22E=2rh^Y*kHg_ z^S0#@x*32D5!(&~0C)&AL>~#dBpR_HkzZZ#Y8zddn#)k9PBWN`YEDB1r4qHx3h+%$ ztO;|OvkVHl=4uNlxhj!j#5&rNBM_i8gP^sj3>DE3U36KjjuQ6@Tsa(Q_BeC-1&Zi1 zMWD>?H!4jyVfRpBVYgs}ofAAxZq*sSV>P7JTboEFj-37`s)3nUi-;nn{U0ioj?|%W z+XCVC+}o5IQhl;=2v@I+svJYrrEGY-^En93u1;T}o+6^JWLaQ|^Ok--h#mF?l?j z5vm5@M%ZSTve9U?_%!4ag!AGe#2hs}+_ShO1$OCXSvSv+n+Y8SqK0sxjq?h(&;`6q z%?A^+nGy&@Lcrxx#|RuPRn@)3lb`bt!Z@{ngXjSztHMOelLqKF>_twOKDLQVTkU=gZ;Fe?gWB~x;IK>8n&f&SjGYVptcr$7Q@Kq4N|AJ^j zq@#zyOsYVdjHL@E!TbxM3@3?xG`A$82*OS6aJPpD+I;b*O|NWr7jfHs^@GBE;MWoC zf)?opvad)MmG%OaPC@~s8a)2E;Ri35Zn6*E%}5BBN2%(1^6A z80vKA(2oG{BIu(w4}nDCex8{lJWg1g1U57*2FVBI(vp-lfgD8Wt4MZ;Zupv}J-GLQ*__^teecf2{r;C;3gLyrT5GT_?)5hzL& z#&bYZqqRf>7ILK;y=OxlQ;sOz{z+tZp$}kemTZMk@h46g5QM zuurkZzC_kgBKwNf%it?#Ld@Em*NnPR{~$S4nWCO9%a5{^XMOodCQoY%)Wx0UIYbfT zpCbyQxHam-oM&tO1Nc{#C1N$*4D|^Nb!Mp5&H78Jrl{{$rl`dALH>9asKe(ehPKw< zuh&W&)S17)Nq0fIK$o)G%?0W5%`08pA#Ru;x4Bhuk21J=_lPT2H_z7=Ao)DGV{ETi ztX^7MWF~_XNvqXE@hd^TW7~K~&R1$IL88SuEHV0KAt%2%_#f1&Y&891%M7&&z|>w@ zTfJm)W@IcX!B#IWH;~zocoSQ_RFsFcBj37uF>*)OR-gRIzB3#DIcyxKp%PQSf)XVrP~|lSKX&DB zQO1ncYAmeK?%0D_8F<6{wP)!CchksA#SGdjlq+TFWtVMxeP+1vlIoz&&%pRl7AuKw zD_vx#EUJ_Uoi`!L_!HAhF0*K}RG%Tb<{)C0V)`iohn{>M?YE#pLMPRR1g6E@vEP}l z)nx|?c6f<^mOO{tcp89d%f+Z&@nK?@VaBXhZt*EG`o_eywrR|*AhieDxUvmVr=}@4 zqF3W%FhXk^c+}*99A}u*&{_<+im;8hTTIfXx~4R_S`8e6PfZl zbn4OK@Lfq32PdWKH%CmrR!H$CV9c^sNYRP`L$7B@&133)>Pdu(;NpjZjbJ?9|BRtG z;TN~mqq&y~Gw%yMGw&PRil_7(5plT_7o7tTI|zxU2w0+>R$NGxhswO6;sO96Q)@IJ zu6T15dnc~(FzGg!cUbA{gNYP@DU?+#I{`n>Mm4y&@dWFCV>4I*#Rg`(_BCr0TvJRz>3C^7&anu7wRz21-cfO zR}f(Y!?ZrEmaWv?bAfa=Ksqok7a|_@et*dab3QHv}w-n*uoh{H-?-qx( zr&d@;KTLe^#UKaSSuBl@2s#{S94;WMBdT~h+OzRoZbJ!bp&JN3n zaC(V}J^|7YC@MJPNeQnRB&)WpOMP02Ik6T8QMIjMTS<2oyQ!ROHO^Hm9tSnOqq8>` z#_X!Y>EEi_)mzxU$Yf!wJ*8L`lk#=$wCqkQ}q8 zRA-eyxZiPmfqh$Y{Bh)~3Ii6w1OAG`^G_AV^Y=MCzqbIMyDG(_P$3kE_r`&wojo{u-iP%%Mf)+?3K7}GH^UR>zZ5V7%$LlIXup1QEW;C#!wWeAS)wx; zqIThHowL&eN7;WLfnm`4Hvft=pnRKGlFv2d9)bQ%CQTLgX?_LM`4-<$2xs^-{}Dsi z;nR$)D=_N*5NUsF{mXidLiZ{PXyCi%sL^~qKQ#*2%8BGrV}AYi%yArC!@~!R`+lV~ z*@2>u)OLvOb4dTzcX$xnX=O?r9^MxT>5W-@K|9J(<5?N(EE3x8;-<`XzwMP89Szw- z48COnOKb*yC@xF})_BZfgADzZ$TJXdt8{b1*>SUECb=*+lv}k?_v%(}d|s+B3ACd7$`01118DZrjW)y-~WpM81MK~nz>(3xSq)#nvJzmfWd#yCK3 z3INGi!uBSoPNUi)y`h1V9Q4#=L}T&*;g=DQ81h}_JZqKPn7 z4}@cJySszH%-#g5K7>TqVzgDe{pnYyLeN`lMGhW z(fJe`CJG%o2yG{j0*FVgEF+JYarKN#$1+gAyw*93v>jB5g+HJH*)fOYYu>Guu!9W% zA*+aig@UBr>DpDqTIedwo*xtM!ue_q4qO^|SdWNa4;1jCxKde@D2;^O^i9FGX z(2Fcp#Ve>Ft%ej*NR@%cR|%ac9!$eBT%~1L z1Jng-#>@*=g-EM4yDB+I8Pl0%5s57+&z+-1p8imA^0H|LnhN0NgR7q}WoX4@f)NZ3 zVz{WyqGYXzI6p}UG zQn`u8o}ASPxj?i7GzTeM;*PYqC4&7IpwQzSWXVmrKEO_*6ngR>o>nEzL7OX-u3@|_ zFfTAPON9tf#ne#*CbhjZQxgTo#2(E=1HkrV0PF1>9%jj6;ZQkrX)d-%hvjKjObw>tKY_1x7ME{uhxg~uK?c; z!fTSK(!iViql5kczmpmjACI!!TK_fyDRY%YpufcD9rcHU?%NAPcVAKH(q#zA{$>KO zwSHrcS#MCUDh?59oN3L)No%Nn3to(F=1}$qKP$!eF+420jO-2HjQ@JV;q7Sj7`-;p zjBltViWT0KPKkklA0>>lM01VvnQO8Rr2t^UC#pIgT$xBJ~iLrxRJmG+{j0HxbcNDH2Z^^8=o()W^?0B_xAE^7)s3XrbAE_pDuP9R{FcH z-KXdmY0bmmo8N&`p0VSZkEa60M`A zltq$N)gkdc!Nl1FuQ}|Uj>8C8z+rrphr`}3L$g1qIqYrnYBq;me+=$5=K3Vr&kf0C zzvR&J%lKe1zWP*uSF@LX)2LaW)=batpJL-TD_#Et4hz3u7z@8!6bl38uxo~gL*r-i zA@)zfLZj^UlyDM*3P=>Q%-T+8H77pwIz& zw}vme0+IDEaq4Y{f7Ee-vpBmi)epig-NG9t%7^odJgcrwN9S70ePf%)!K|zsVyU; z6_p#%O$>2ujO~!@2vqrEYoqv$FP3pCl15yj>k2U)u^)7QEV!*qNeEN*fteWy zK|v%8R6CT>Wr1E6VU*C4sAn1eDv2vuSz=le#Dr>Y+89~twwKUXK!wmDFb{Ec%u$hK z8CT5>!*OOe5QeSdU|665jxRPXV9tmH{h-zwqU+eb&SW^Ng~j2g)UW>qNz>qeRlFfP!+zm8ZWB%V8L*v?v--j#evIl6Jp|Pw5NfAc4#AcV2X!-M4BX);5gBu3GBo1x zkVeM}3Bo!EYg08`jC5+D7NqbfrHY9%);~f<*ka_0nS5Eq;)0B;gFtL_=UAcv8ncci zPLBF#(P%^2UH3}t%Uz0g# za=Fi3*gy#_iBs1TegmBv@Lp;s0JuwaJV&ii z_s~-}tm(NQQ#o9`yD%=k+u`CJRu{{(Oh{z3H|)pku=G5P)zL$^Iq4uKmG{JYUMi&7 zvU|&w8!W)(g6XTO;^ME3-k_|T3s&rUjVWA5h2;tXM zeAKTVt=wc3@rl?_$=3Ej2v$QzHml5PmAKXphI zBa#Rk9s&MIAt~eTqAp50i$O!mfgNoct9xU_AN?R|f*?c`cL=fEPD{a?9SG(}TpUXb z>?obC%vPIJ`F9|hXt_M%{RHj$5Ds7b24$CV`7UN0)e_eYvzM&;*TEh}vtnhotRNv#&EG?HgpKZLn}f zV}^A~=4Q|TV;0(;ysGr2@;(m0n zzppUt?*Kv3+%Q35t!_#8nl`+OyM*!Ytr8pRDnLizVeycEkely2PwAb+0 z<<)HG#!{l3a{hKeOe>u22qU`znjo_qX;JBX>rDHFBh1xQb-Ykk3NzT+QKho3OoGm6G|ZwL zPaA34YS1Z6&$s8xGl(X_AFM-3o37NAWNvv^bv(l4`ZF~@*#SjuQG(8tv(j_ws#P#* z>#7e@VAAWrrrtY^&TlQ&NJLXNmj~n0PXJVl7s6btp3wb~t1r}1>~B&U0$~uHY^?C^^ccWd2eFK8*pLi5?*rJAg8=(EzjUto2Lb$bsD+jw5&8h`!XUuCcBGUf zrktb*B~0c~FYfYx>g%bp`dcGty(b4E65uQ4#t6#5q0TV+)-5W-z&!GMm@{t=P$hj` zC=N{i$Xjir5U~2?RAsKqGUtuT0?h+3jiX0!SDgoVz$|-xN*t2(b$+)|lW^5JhO@%2 zFrt%KJKZIEMAf_}+sLznrNN$Y9!&6-Hfu|8Dbg!pPXS2Gf@|~W=#2qA?aH&`$6_e2=4>9?-~TS&!vdzO$B`b|D%Hde|V&nmo)pZgkK%R5}rrW&&w}P9EC*R zTO7SXNHm?uc|(aP>zPxU%gnDRz5bSj8%pL4*<3%gna}*`7Wlt&BO8E=y#2fU3;bJo zHTyR5w0oOUyH%9)$+>ei*Bw0RCkOeHuZrrTnJ5>?ufT{blcTpac_9A-GWD!755x6~ z`vAIx(geIiiF)PcL>o=iAwZRr=oR8%tuxywqqqU8;fIPm2o(+RDEE0hR1l0peSZB`AEz}bQw*-5Y_w0CHFfM(MGwuy$SWOxA{e(3=|~tvIzB5@ zRV{}50P%+h0r6H(wF|es4={gv5HLfe_oBr7oc00eLB$z->LgvrdYLDMXuG=rZXadyhdc$bT@gd= zEGlUrvxOIMBuBt~sN|jTF`6@$eL3OLthA{Co5E{KfH@69(ko~ykj^)?M2&a`;cdR@ zS$ebDJT7rV}bdXv(C$=+d63+(Sqm=grJDykG{cJF9Bl39p)= zvr5^^oO0mW?6prRs?9zPBXUa2tL4>fZT4v=+qH9S_62KbpwTA%tvrr7f$vX(BV1i9Ym~%K8ljz?G>q! z3tyk^@@d{+$7|J(u7;+k?aG4o1Zv%Ox`LwF>|6r-#&Sy%UFjg8trsV1I`AIb9tg0U zSGXSu#-%evhBEsWrOXlr5$@MOnT=tz55RuMAb>^pvg~c{1K_V11mFzs$e_JGfc;&A z02?y>07^WkFhn1q{-rB2F){FixJh(`Nu0JD$s`CW2bPyq-M@ql~sJi7lO z0!=dhlqfPv0yv%O14i1<2EAM2t%m0CZezpa6dW- zxM4+3+1EZm{AYuJSkzU0$q9+A4={gy5HQ1v%xL3G4saqPB<$WI<0C?b>4fa*tV*TJ zoN}W&>lHTN%9u92CvKUyKDDUkdNW4kl#DmZtJ#|CQ%~6p>*tn^wiar$2Hu2U9Ngbp z816g!3-?cgXJPcLjUZ!g$>h-+>!^{{$grkpWuhAexejAfzsg$i10v)a)ZDEGtbRU# zWO)1v0ghe^E)-#govh&S!}&2=Swiu7m?;|e=R-(Mmx>sSXwzD*mFiGd(;@blb~-?9 zUXlK?U|c#UWGJg|Rmv)15Rncu+p%&o8v6ipa}XdyHm2@vA7Fm%AYgtP)V_e=`T*+M zAV39rC)2o~4=}%X5HQ0OpU9d{o`p=8c{YfKdJ=&4Q4asKGx^zoT3mR21GkZCriz{? z(jcj#2^!WgG>faV2tZcbU~d^Ui&a${6!{pAu&tH}JUG;3C;~gzK>4ja1ktDhd(jI} zB6_Vz!;$WEX1dpC&DGF^oZ_fmsnSN!YHD@VIQS*P7R|-NjJ)Y`8~qm-LpAoasRDr}i*0myY(d`Z z=(7XTLXgTUeRj4`lS-ndbrtC^#)Rep>apu=fXciA{cJEUod+`5_1`K@l`x1v2eb*; z>jSj^Y7o%U&X>NWeSrFh1_AZcd4&(?tPilhYY?zLgSlq91d31meSr6)gMb$|tyGS5 z(ko=S%rimc?}GrgkMj3}PUWkh@+5+{PzMnLYZ0AXkz8yAmObnjYaLXkbduVJttuU} z(?XaOihHQUWNGe-`!%L9M$^#4X)DDwD-{z1>#TRUmoqXz05S0gR$YaA+Ni53uzSSu zJHaOB6>fhNjN6ECBMc(k=;$(eeldjh0qDOU1kgxTH40SvF82ZW%bwl`?N1*k7UQ55 zt7MyKlPKx+0rF=L0&=+Qdhml2Cn1sd7AKz^HIHwxet?ulFG zq1<>jTI+s{$SE~nB(G*`tydptq2MLLM-k<3lU$)<#hyEuUtSpIm-ZLtcY^~~5V!hJ zXj(A-coV)Z84V@0<8C@b=}A{Wv(#EbU))IKz`@pRm+@o~F|8EcL$pH#W>s}AE+Idd zY0RP?W2A~3v%>wUF>pNw?F7ioE6iURj7z8c3{CZim8MD$WQ|lsjUz2es~b@J_Uznga!Hl=%)t(C<83y2ART_PLhSpmw6(H&bkDE z`zU?i=JdW<%3)<-jU-}eU#juvqcn1-Yy9@^G*yj%rTw=z+UW_HrO{fFNLeVDHI}%U z)wgYvQNL{OBy*J+Ra%R8ZE%)RO+yep0{DwyBlC)}{~3(ih!`UbBE~2Tj7}Qhtq&ky za!ntUIxTrE$aKNECN$E;*==SYfPTgxfR1RQi4@ic$cG03IdYd%$leKukfeJHhc6cu z4w+LvMjGh7x$$c>&{G(ZQwE-pSF<(Hr%fwzpMt>=xk8?z zoC;JzsX*0$T1i)YG(<}spUwfV^h#Sa3A(7w&F!e#W?qu4dU+ZiF`cOk(~*=OwR+}N zQE)uo`_}=c@=E9L4aTiYI=@XRnS?>4GxVNB9Q6U-9~}g|@PLOK*9TC4b`YRmO|d4q zE9hYWYU%@=zcdIq;q?ZbF%s_sxL+6qxKeE^&Ua1{h5VH%*F}%~PQckm8T$QBNz;5WlK0#4G)U_-95+M@+9EG<=7es7#Hq>Qnc^la8ispgD>454~6i zRDBn?qnv}>7S_EB4yc*(>{*mow9;9NdK(8C`=C;CFiL|*V}aEz5tP&mY>$KA9AG)G zIRE#-xOM59|4!+fgh9kP!U9uq*$0^a!ysTrOj61Q_W|Nh4gzARbV*d#2XG%91h}|_ zxVTG?75V`0pA7aApE}`T*|XL4XVCluX}_-9r-Y&F-6p;L=If z^N%alD|5=nT-WU8Mzqm2+xZvVl2@~J&1(<%u|%a8BQ_Da-$qGJ`PFUMYGL@_*kAb9 zKvXEZ#9VlkOl97>lBAQ}IeLQ-w(08hx%y3hjy1AUksGRq9eN1vwPu2!e7d{1SVn?s zH0<97KSV>ati;A8Hh|7!&UXg5%PX&cIvAHu{25O2f3NgO!XWY*m)JCv^#SBx90bUW zK=n!@=zZ)1w4WOgvg|&teE1xL3bC30OxJ_v!1a&Pre^83O798nFKUr6CNy+vpv<6_!6hOen zE+*}Y@k_{O$pF)1&<_O&&8uYod@wGZ?lY9kw<{%+Fc>8>4R?J2`7?t688(;LhV}v0 zKN;b>A-mh zN*-zZos19EO>D$gsf3CWCDvHUY!+jO^mHiQo;s*?Z=%U;m3K9n(G}r0Ut)U_rlDg} zt4=~aOM=AP+3mp&<&{cf!MJqf^_EJ6L8KBc=>dBB0O`TpkiO-Mo6xHg|0@78#DB)- z^#T0*a)Vz0YRJ+UMfCyJ`XFG%tul?w9nXhk+?(g0D@2!0wlSX1oboYHBHxl5xkib6 zQ~o9XfV|p6i9Bf9+#M^ko`z9)uMVHPZFzrTnBUi5nEwsfGr0}xOUjKdY?6)ILeqJD z%t}xj$uBa0niu`0GV02kpmuarW-+942L+frZv6Ce`D~@yY9Q+qc1Q?h{D+G;rMd{t zivi?u-lqbDkKLJBT7jm3`QIWSn30$|9udU0;{pD>jSL+a}cm1jMk^8 zK7e`2v-+TAg_{qQ#)!NRus&lDup$H_o%5VD3YjZYqKjhq31NkFX7Ub+JQDO_ca&AM zo;O!nYP43I1aZnlpaE(Vkk_!(niS7blNR8!NHJ#m_9&zdJxcp!~Nar1DFeg0F!y6Cd^imP#++Dco2~K zah)MuJN6DKwl{mQm~_>TO` z{V{npTOWM#ffM5}b0A^Rcrc*fL?1e6KVBHxkM$SYf28cKv=g}IUY%geJ>8XM7gy2BUZ8RIZ6&N2SfZ)k@$Oi0dApuq8p&PnvI`(qI+ z&vzCOvT2P0Fv@3Rz+?a44z??=^#5WoE}geBr2mg9J(Mtr^k>Do9^29f(Enx-praB< zZ(8XC@E1M14=P}Ycc=>K1l$LpuNef;C?TH7RegZ_wn4xRWT&%wAAsIB2%yngt+)Jf zhd?M*GLKVHz&|T8AYF=hCv=`83pJdK-K*jswo&13lp@$?86a=+As1TZh8DUfRACS3 z&@G%Ga>HjOxmIUczi_NlS%!ig`9`e22Rpkpm7r$H(KcL5kl8qo{Ps{*e533@7VI90 zygb zgMb{(k@N9`6DJ{^_ZBBF6{<|9>zFvnoHDBLXTSRJ6*!=`)^|ObY?1!z>Lt?V=g1|5 z2 z#?O3-pV@Z!2dQ=4P#p!7ZOl-;zIrhj_{#0CU3)cJ4qaN^tdcIDVjiqM9qw3`f@cxU z6HtfG)hg%BttIg{w{yRnn}Vv(tG@yK=9@74c?aHEYAE=yY+BpzG-k4)qY)jy4|u3p?( zo?Bbpf`5*v&#qOt+8o^4B8Hy|wz+F?97Z zJYZkewbjk~ORHDn5jt%HGqvTlH_98hqBPgOyZ%K^;V+8>_6QydWo#GJ220J?4ZeL zgpC^K7yzA0Ow}97WjA35!NUGdu3lVjEUzUq+v=rEsjjRY8Cty$?RpeApa^C#(ms&m@Cq2^eG@hsUkc@Z2I(DHXKzSzYL_kc^1;4(iXY- zdz|0SZAgV*jEJPteYl#>AhrnQLYJ%UN+l3A`;5%&{i4Ifw-v#JQ1y@ZkesFA;jz)u zp@+(>eBUVzO*PRqMEbRLD$CpV4G$}sSG}&f*@1C90HgjJK$4Y+*Jn*=R-OHl`_#R` zr?U6{*8vCi<{fU)22_fiOJE@Kcg7=k> z=uts7!*a`Z{xTsqNR2441+CUI#pW-uH~D9#IU+v+aE zd{-&Ww^3Ofom>RLo(vvkY|J^hXiE$27NV^Y&)r2EMpRmah5)ZgyM_ihrJ-S716s{; zV|cqh_kroT$KuPLPVmNH3#wPFUS3&Ts+K#o&f1&T43({3Zh$rHZXf>N z;PaUTSJ$V>d)-zT@Wa!@JlA?h-qXaJ*+X`L)8tltnw)lItd9%|KXa-ZeC2%Gq3iF8 zpi9X1CmpW-wgB0B!~V(+%QyjUF>+W}7zQV6^I4^{6aR%y1Ihsc2F~@aTk{pyL+<5O zHf7E4b8FtL2j@BUykY5U9`aO&%Z)5E`{^Dy@Jofk|0xIl4Ho<&D$PBoDoen*+@I%a zsF4r9)Ut>O_|6()qmb)!XD2!(&!OoOoMnx3bbFznC=Tr!3Wt`K%bl}kUHzNT;bo#Q zUVhr)Wz6CwQ((vmGpy$e)q}KBNIDH2O3cNp!%IG zA3dftzwHK9>m2Rya-=X`-tX{ok6mDIym-TM;bmt6UU0FUuPtEBNx{v6${5Yc-YwKXn*EZ4{|klT|Dc2aQ44?O zM$7r-4f~uOmT`VlJu`B(dCOwZ%-X5r%zx+ zrpE!lV8P8Gg$bjTPc_j&rZz_pQ3nogeYsvPw-+i(F-%~D^$m6ma?1@x_4W_DO)lxd zdGvN~SUOgG+2qu8?f-EP9QgYRga3#F{|*a&5&87|W9aoP5y7F$%PZxIdMj*t0AI~~ zt%+;aVr98qo3)p#4b9;xpk*YfVc?p5a*~ZeF7swJR)_>l0Gc1b$K$# zQw^-vb!Gux;^RoVgr&E<3}=Qpd4`8ei-_Z4kfqpqm03hiDA?SMSy*;g`*~^qoA0*q zQ^XEfx~Fv>O$gdMqUK_msm4GcWhEY^8|Qqj!4B%n-FB0feZ=~AV8X}!1aX{bw~kWB zxaT!m=XaFO<12Vy59z==B=AQp(&iJ*7BY?+=gTXdQu!R_kgmf3c1fy;z!NxHnw*d^D9#GL#Ub1~ z4!<{`<)|8ax!D-QEAD|~hc^dPWYV=!OF!l~!hpcD`pk<#85d}v-!$Mh%OE?y&EMOp zBwk+q%Spv53(_`>fpuZP2KcE{ZJlqDs}e#!MiycCt37DgOa6idDl}JvkH8z+)?b+$ zEuAK#>X;C)Q0u(%29y;z^a|baDRS%&~qU zcvE4ZgN_82gQwN-4pb+{I8;8h!INhXPp?{=`eqr-Oc~&r{LJC;n0?P-^-nTs-w)j} zx4n0gmK0Y1P!GQ6C_m;79FJEmfMGQp+@y1%3#EsEW@kUSV8oR*ANrn zyrNrfF2jY#$eWqE>W|%6QPC8*d4#$b0+?_RXcw(~2SpanVz7i?lshUKR|Vlj6|+XA zj3VH?R-MOk?1e{yc2xB4zAX~WHmyufLufleQ$^hPe&&`7=q%+xr>FV7FyJ64t`}{| z{M`?>3r9z8 zScYEnTw_f}No*rwe8Xg5iOl=DTls4Xulz%9<^ReqA(P6K{oV~rUwL7R@edaU|HBTB zw^;BC5u_LC;co?Qbz9A#l5Ed=h<7nGI4M5RVdHlTW85J z?CQiu`mng|+>^N80c5qx)mv07C-kaHd!~hu*wWA`C}Y$IGXoYj-56D;qsRG;4C2g~ z)9iiE_uN)r7JM+1g3ZDHF}K?W;P7BK&-I-q@4@cP?BTV*!G4p9Rxnx*L}@5B43cuZ z>Cp6?B50DM{O25wZqkGE9Od4yZFX3Ocmp%IeVZ@5@LzBXpS26`y>H&I2XhRIOLK1mhwyZr5R%*}RV(FlHCQch!-DzQMJ1!Cu4IP@XUud_s|T4`xP-an>(SCZ+LPOWiG&3u zP$(St71%}CM;mAo%Lbd;G{r)$Y_i#4f%{m2LJTvlQiWy|NJ>H$q$|TOb*|Rxb^tos zO0-*Z-Py{V$t=8pln7EB6}~Gs6`HI3hqK9VbzNDM9}K{Vs!`bqlG<69{gPYp$AV8~ zib+8rIXh1ke zGQE(~`XZxXY-9?D+0Pfjtms@Hb!h!Q0JDTsCANoCG1H}f60#*0ePJ4`mP z4Bq^hTjM`lV6%tO_2do9wZ=Q9VB}T-Jf($J3z;Ek5f3$tCqPFMYUD7Y*`ZN+sAMSL zu7BO*9d4dk7&kxXaC5C5oa-LphB@3gl_so-5ZA>#0&={RK7rB2JQn<{-O7;ed~vf4 zL13l176Z1#WdcQ`yj-U5gU$LZ?t8uFQ2hMDDE@hetGyP*p`Je!F2bout9!{j)FBMX zIQCJNED%_`Qf`dEp@f8_4oV)t4byUhWc?Gkb)P7_?vJ~5AGPc5&34|fDLX6!J2yMF zYp#@LYGsMsBf4S-N1j*RisuWj_!r!YXD#TxSL_XQD^BNyI5T-Da}<_7fng?(Fw>dI zqrha9 z7ksc9S0&rTLZZ!+3=q~=z(~#p zWg^>qcn&*D&i$LvVg1QB6}@2ml0*3wdT_Ce;ZsgZPB0Eq+zrU(=BgY2!NFN74Cnvj z;Jm@YnMqV~+4F`y+YZan$gYBoak=u)G9p!)3(HlrmhiD#$sL7P^2=@|6BeZ2EAfWq zT1n|NHiY$Jk!&TGw-zsWB^Rt|*4Fz)x7y={SNmzV+9L&4>kZ4b+M7>-^h%A|A~I6o zNo2U!a&57~oD$P`(X2Pmt8T@W!Ylr-ZpAYNR_qOPEADkN`1zI|sXI)C@J%aES6wY}H9}HxhD0 z#{@PPRYob^DLX^!K)>N|{Gq}){xyf=4_IXN#<4fd;W(YU;}>mjlN{}*PhiA@$1+Yl zqz{WLte$-FG_Q!l8YwoRe0?bj>+b~U4iwg;iHz94ChZt-c36fa9X?^A z-%XBu=^U~Zkt3mE;=QJUh7XDiaTpjXjDgQO4BTp$lF3w}uzSNC271XGUk&n5=x8W? z0wd=<()+3-y`UVZ&t7+Ei=szkFldy!%dJJIqR2~V!wGl}HOF9aq}dF%4pwQlr~bOf zyG=P#cvC*-Hsv0>DMc7;WWRO{%~Y1pS1L`jV1|jyu`Elicjv_HWoWM8D7V4~3a{|D z+zMZASJ<2EykRf3!!j6e#}rF5kI;n7rcSn1vdC7o-;OX08j1~aSU6W03%~8K(6P(u zjRkL5E-c(~fLa>&owdPD?-JYy62f$Hz3bNeeTCQjs9W>*6j-x2%&j?HUc?nEk8~VQ zrB7f4j>n2l;G_?WD^{Mw@-zgeSY0x za(no5!L*qKXjH1tyKOXJg({VKUQng-X7&(PM5WqJl}elXoC0M+&LRHKS85AYNPjEk z3yg4h`$7@CiQ@DHhqOm6?H7^jL#HY*-Z8bnM0F_Vzgy)zdJvXGG)E<^Qy;*VgOKz1T&uise^M+Ve0I7mwOMG-_uN{aRd}tx>(+Xm9-K!p_J+B&_L7#qTIi94vMK%GAL%4>&XIZ^@inI>u$Z%FhCiF zhyO8;8vhKO(gfi518{fib&Yj6sTan{?>n3<6u^l$%;6-RY2rGH$3EVX>vWW@!^3+b zi90)WE>Mc1@?F8oql(HiQsy#(E%kSY+V2fMkST?Y%JK&ey9U5eWiihSsx02j9{zf% zES{SoqI{vG7L@3m>=3$)q*WYrJ8(urL&r$ICRb;}Ajs zFDf21(4j($DT{&p1KjFAUwHL@>{kEV1y=73OJBWjqVdEmdyFx=!3BO&5MT71qH61(I*9+-Lfo5(yyBrKOa{rBuwqT8bjDQRVDE}ECTkZjx-93;cDR;T7=?LW z$@KYhXL$!hJg~xUqukadabSFIwHL}weW4XcDV?p0C}E0xhVoJkRnpMOs*Q*VNJ%D; ziBXSrW|dK34#h|tttAO%9Fhb93}?a^$oHo0qoupBHo+)MeQNZbtyGqn2cs}0nKO(7 zSLH+a37rmCTkcdEi~^VZwho=Xy5T7CD+hLa5t%1U37th7hS?PX&NsTAt93@oBlxHD z5&Llmr6KcGw?o9LR8GY%Gi-@xKxej#>iIf(2a_GBmY490ZpDS_o);)cnM5v75PGu~ zqaY{9?=39I|H27!C)k{1tiSgnKMD6*osMd5rNYnb*BhkadfBZm4cD7>J~Hc*$wH=H zX?(KR?KP>g)hGAv=6jj0l4VXl`?tf=a&9akY4Vlya?Jcrm7^+u($4|$yU5f#xowOLe?X+&K|cF z`B=i1;c_@i5oDs2E}rSgpPZ}Bs-%b}gKd{vXJMd#u7KWLPy=W{8!fTsAF~aS>&6+_ zN_!Etj_{i13=OL~jC2qfvg)A>ov$Ddg&|`Cw)r0CSb&QInuj!=mGpLe-tw1Ue(mRi zO^y=tQ)37-6qE3aqnu9$ljb7sUv|W8fD+>V>x3Qp`>-9Bep5ZOTX^Y^k=!0Hm8C0_Bgr@?F@zK~6_D?FzKPyil``7MG9JtD5c6qZ zvRKe9W=)|72)NF9DDF^fMOkKpSt(>rB_2G40|Qnba|W>jISc#G;V7F$T}{MD<4EJV z1YSwv-xhVTIm@oi5)-~064B{^@&(jN@?Ig0_ z9|xQguwM+vmi^+tIKughVA5Rd_g@|R8KB61XKu!3>+mYKuSxv(O|rAHwBmc~uy3%J zpKU$V|AFPd%uN$3sW;5Aty64!CwO~&?;Wbvkg!^3^%XEC!o9#yk?S_N0l!J$H;ywL zE=q|r9JmA7^z;ttp+=bm_rffcP?K2~V!rM%{iNHnZ@IOoP4HJ8wC zq6AN^2?cwGi5f;q;jjnpfX78CvmvqxH8=-H?fq~?Y1X8>bVY(70R`g9RYtEg#*<`-LhWNwg%$!XJ(=MN@5~N9jY`crcu5$E2!_nOn5xS0l3ul#LBwHIy`=; z2p&a>e9j^919r8U=ocyC4f`28ETk>Z{PqGTMNUIK@@^|T5PDd~{YDj05SaqJbh?YM zE@;n%6%ZSo#o_5!3*+gx9G*UH7u*|9-Y|!!bk>b~w>(5UYD}NN@V-aHj`!1ttzKS1 zQEjFKt=0b?ipuI{7;ENh53N-<*Z%>3*T0H?VD9>P{2SI*PqZZIduK**OS%i&Nau>D z!sx4QveGL~EyX49&9oLq@ZU2oOVG@Q4nM}Sg98UA5H7H$Aswce#fh#nEy-&}xop(V zLT%TMB>2j35w3OQz`}pQhoxFY+%={mBUBj+43LJ5Xxe2hz2=q;`6!DKpcNBCbp>Gq zOrd8s!J`pOJEVXK)2!ZT|FCIce%&(9koX16!8KVBbB?Y5t}t6a>exDwkl&>VIox;9 zi?++KR2qsy)O4_?AvotuHVzrp{Ec=Q6P1LFq1mdw{@HO|5DmP?D5nEcsk|Z9Y{if2 z0X_~S(b$Q9n}N#x1G|n%gQI6w@=_F`3I{~Qs>}=SX?7R`PUTGjM!q?9;@-Ot?I`U( zdgxxo8naatPMW2|v^lbXRxmWn;tE{rfCoouZ-NPzHC-?dZ)`%@FcCxNvk+>ONZ_$@ zuJev(z%`sgXERK;@P^n=itFB83V9KnsSrwY7o4-~b78-}LH5fr?WX4zwKjY{n`u`c zo$@+1qKfT^=8*?!KY+v)lO}E?Rg}*~@d)HHfnv`if)@;fIz^0%2n;wd^&y2{iW^DE zC$XLy>a)s>Jrpoq@)-wSYP3MO(dKigzDvHrS!OG0DyEad7Rr&UD4b0kFUIP;i}Y0i z`l78FueGfieLRRp9_`BbOirV^GG6Ju>V4?h!H1&CPvM4)*I~LWYkWpS#^+$@IvO%Y z)?VvmOEL$PPxg>bVX z6=NGPf4WV6eW6XB0PbHWxQ~jZfEenx0Vcfq8nsQC5NI zy6QXeJWXN>ArKP4t+^;bBq7O?{EWZ>*|8Hlc5G~i7}8W8&5WcOk7m>v$+D7~hSCR= zfff*5_TR_93+>WwcU#&8`rf|&eQnu(wq5#${@e85{@ZQ;+sCrNcDwZd{r=ARopbJ; znX7v(DG5aEHi>5Do_o&k{N7KvP7n=bz>gm(BsXX^59pWO1<+-kG%E1915c#sTtxjG z@EJU5-7SF;X^cujB4%qU5b`|YPdb+Sq$3-9(ksK!(ZVIBej1~}x^1Hp!Wc+#m}Zj? znk+Q^T8|Fu6H2rxFX%)k^$9DpO zjJhQA+jDIr(B1D(0C4X0PH($`8`0}Ae|W&3PCVC}wA$OC^TA!QI(KUB^xPYPNptsD z#Y<>=N0oaJz4{ev!e#?@UfhhG-!&X%yD$&IB;?m-Vn+l{y&>H}q^V1)DEqI5-{scR z4h{~AF9_q>#8EnYs#$@D2JFtuA@MTZXM?3)QuPo|?@8QDTs+-<)o)WAUdIal+CGrj zWcqbjA@(O;i1CmKA;yog2(fp`qv96eL07gD>_+uLj>6b`kD<<|#kU-(m`v?9M zpUi!VU*FhMTpW%LVIl!gV6m~xIgR45vI5UawpnyHzz>{AqY#6&Ps}mDxZlpWs?=xD z$`K!9w8%;z)~uitz)-M#W!g&vY4B$W=wy{+f1P-)H+7}RF(L0ARqjFL*iOi?6i95q zw!gR;+a4Ik7%?+~Y_03@Xqg0js>~5x^G^g!y#XDFF~i1Emt3zHyMJ)-Uv1Df&Mt>iA%J5H{!+0LN;bGf3Ks7 zt*76Ym2-dU`E|-iSNey)66XgM;UeK!p!A^&?3Bi#P_P2WP%J0s1&+-jTANQcLP@ zJaFHTcu_jgET8=|&u6*O1fS(cS@`Tec{Kfnme1~%pRU1Yjfw;dA4#FpNcn;WgwkE4 zWwE&l=n?L0WVInCf-x&A3#{xx-mWPL>>m3#ws9+ZfM38-^6}Y6Hx^DiLp)U9ec7fx zcy7Da&-{s&bDwB&V^4H!IO4$H`du9O3#AxluQv_AOyTESdQyLX$!(`H zL*cLQ%6osQORkr{J`aKCBWKQ?Wf#-#vE^S#065M~Z+1^B?+iZiVEVPhBE4@Z&`AFu z&ndZy1gGRjSvci?kVn&BXgTFi%TLoe<%7t)XpvMH=w+O~41QTE0sk>>1D%$bXg-YS zD00$E5rHGDvruE3CS=B%1_+q6TtU|+s5T0AWLXiXX|wGU z;N;m$;6zq9Wc#r{-9P6(-9K&Y=_a9)A&?7<2z(6qtF@>cvngRx<_54p9LOW7pr&C3 zb5G^yZy$_bXI4JBGx1z+f=J<$LXkVF+=KARSCUVzc|Lzz$<3#-HsO{p zl2`TKY@m%A>P=m8z1;G(gM(*JA3J;`>OZTo{nKcV)?m!P0m&E{GwiUjI)fCR9-8X0 z#HGY}>;9{Jm(tQzKkqN>bYg?)7hyHrKlgl_2Tbs7ew2l8AC*VbUugOEVfkq~-#&Vj zU2Z^qun{?Y9PKmc8kP$5n6H3QFjr>ad6jVdx=ZcZsO3DU7jTGte0qLkA+$T@Lm;CT zMup*$a|J5<1e{{M)>SF0UDdPx?BA06?BBStXMYeXD=eB>3hhSSR?)=K!m#rb9II7E zVHfINkmZB+1q&Fv$p$M{9gxx+$I|=OUN_+F-;)4CR^I-v6VLS~niSqHRJ)_fJqT~_ zhr1-(Vf{TO50J`?g};Ai-g``4GS1)AfBM+Xpf^q5?)}sD4M_WLtv+xACCwLZl4ndp zxqqe|t1~FD??`p#xop+ z7HiZn{MWQZk*1oZGB$-aM$~QDkSpbtY#mx>)f}3LGRYNAI#cqS{%Z8}9GM-#%h`Wm z5hbE!1oc3sOrOI*3v?#3Z9Az#J@ItIDWK**Nl+!WckTA{@4x$*4P{U0$+LM{NH*O8 z*?`b@9{=tCmENuK)Wc|&Q$c~FQHh_R(%K80l0FI((YWSIirjGeJrAdy?!f6N^byce@K`1|z47!?69!6oLah;WVF7J* zEmn+>Y}|uMqxrPyHrHq>>^5O#56=U+;raU>o_lk^GkDCyvo|~IY}XJVZa3-Oe%oX; zc*d0noE4F`G6*3HNyg+$h-rxCJ~&tE=B$S?f;=2S+Pd@S8n*%9-5Zy@j63XBdT@m50QN=55=mQ;Ut+sN$ zpfaJqdDY3?GehCN=R|)C!>DR-=9{|uasf@;2c-GD2w1u>S04NfCxa}Ety zE*b$m81=(JIcuMvhj$pdpUs*<8+aAg)JC~8FM?a;#ia$;vaJ1G&*Vb~%2+djw{c>) zB>^2Jg^tfX{ydggFcTqs+7p6qNC@Gcb>4>GmM)tet%E%UXq`i6dFi1zYE48JW)~KR z_cSgD7^$}3+VPX%YCf2NWUPw4z0ItpH==*~6Mt{w@$`%M*fwL5`HRrkFRfXP220LA z_5u6aEV@td*!$dLDZ06qcu)SOn%5qM4<-X-{K&dDtLaOAG@M zjK)=BO$G`=+rF9Aj8?G1wou23Xl09qi*#7%*K3(zY}iww(Z&{34b<64oyA;vUf$n? zv~1S79Q&k)X3XMTvy3ENnJzhDHryZ2fg2byo}Q_(sDG(mNwny}x6T(dH6Ha(cl>}o zeBdNPL?3OQTRbC*6`3{#zotjGnHK0~-|I+L%oIFPhIPzVQ zyP*r{zB1jEF7gf3nP5Hw)d%ax@|xdC(AOhb_!Roxc()%kA+o^GMwGY18cixLVDy{qm5)f0}S;XwR+2qfgBoGsBnN2awg$_)3bAeZEbh~HC&CQS#VZzqU{Qh98Z|N z!_)p+0IW6Lo2uG3)zJ2S37sKV+czN7es0y46<42+&DzT1e>etu+YtmJhp_u!eVo2aZU|yw}$-386(L2?kLY<&N&89?c9*SMduAxD+6RT z1?8P6sYhsCQqELJ$PXZ~mZF31!bT`b`ui}iY_?XO;+K5`@;kxZ&L7Ih_9ybYJENmg z%Wgz9GI^}`5Wxpny+t@_v}qVXEZ@R=V?{OtBdD3QO~v%z`a1{2mf2DG+`;IPj!S&h z>{}g1Eo}Y~w}xVz`H|iEVaYrx8y&%rDX*4LFjR{r_{Ru^Iwn&02U|E8{C9xat%LrZ ztw+tq6K@MOC$nYGCh$UmaIQDHLs~#3-iHxwwi}^A6duw41S9v*yA#~YqL$36D6j`V z5F*g6`;0NNulY&L;WxsIPyf{!&4>PGCOFF7m~e5t^Yn+T!!1CIbA^x211~|od=bY-tGkk zA}|{fKUclV`|O_|-%Mb6H!bwKn@!!!YujM7+gIMGc`UJPZySLiwJzEhe$ZLox-Ib( zVtgDDRS-3U7sA%9NT6c_0p)kDZ&rY;ZH@)o_L$JcV(IVlS=?${(7PUkzST$F9uqk* z@lML%MAa`W_HEZ6jfX#yOmzBP_=`?l>(_@6G}r$eA8^LsQ~zRTLw*pLlF^3j#ajA) zPFTwadNG20tVLEctmS=f#co%Z-%M@4<#AO@M@M!i{s(!n<+Ex;5)IDW6e9NKbpR|*fKF8^WktEe>w=jA9k1!=VaB7;E@!u^>2Hw z=y5B~VXC>s)~#`|^@3Efr8gGyxCCPBj~|53H|B{~dsek{_~C<8E}wOB_Q>IAM$!Pq zpMb)U#~5qo^aV3l$a+IgA?7@J3{w;*Pag~2@0g_EWZngdXw%~lkq6#?LHz9(!tRX5 z%Pu^UC2cKaiLqpd@o=ndK7i9&5{O_n8s~|3N53F>&Oj#qg}rPQ0da5i3z7g)%Io~X z)60KLEE&h55F-P5IQ|z-9_p4v9zvbifE$pZfGKy786Y>xWhoTwU;gOV41>cL*gy~pi21vJV7s_mlcdovsKJ>Ouxt}f)%#5L z8Js*yoeWILFD<9gk-xHtxDC{ccy99S1Jr(kHO7XKfy_!*>n6ooWDY)!rF^-Fp~Q=( zqz^pB^Q)1*?Xo(edGq+e!DvR`bLP~EBNNe^8%r`RQnICybmP*qq%#~;Qj?`9FRnaB zCgj&{8D}pyJP|$4e;EgnzQH<*$iBd>4q_A=0Xu@R8TbdbQ!6uu*cy>3RONp8xxnL~ z0j+#Mf7d+XkZ`oa&-Zv=vr#MeO+h8GjnKav-U6=5$QRYQ}mP?6qQU4ev#94R1VE!wYucB|xCz{nCStw`s--0e7CA2p1j*XY~K1`q>yfGo;;|kp!33FLbttvy$@4cLU zbK(V=)Vni#fOrN~bc3Saz3=IUwrD4Dc>AO3R9Y>rL>J%(JA zZqX;uNnQ>lxzQDkMnSaH3*DH-JV=)F+`edO=ls<#_TUmp<&KpC!DCR-E#KrXSGUyra`hM4FE?2JV>vE2cr4T9o;zZb zQjqV52@b(^LRhL1q`4_^8aH&G6!wfrIHEq(b9E68S=JA3{!bFu6u+Hix9lDz=3m)^3>FwXhJKQ!Dm9I2MLaugxm;L$U@Pl;8BvU2P zcsQn<03EU#?G)K-cgKg4Rxd5tr;9PMt0fk`x(nQUR3O7;p!lF4b#6&iAh>8~=HKZm zO@sF{IjXx%kmM&S_s#MgJM1><-UVS_$RxNR??klK5D>cb9!`bz(e0?Z{9!A z3D4*jHMXD)~Iy&DonJhn?)+$ zKz5_uhNcqdRNCalg<7it2QE?}#kZ}DKTrgOiFxK};$1M({`eVj$hCFHt39SyVD7hA zrV4wiQYZ>c^BbHW#v{m8s0!`#BCxzJ0IAq#itGBe8%LUG1r(O{b1Ax`r(J$#YT5Kp zS4GyRQezWe;26kPub+W@!w(7rd2=sv&zFuNs~HCJrd})NW*~RO8OV-Q1`_OGefTj? z;zvopK@+2DKzZt-Cjdp1QK)`mU9p|YU4U84?I})~ApC&Z1W)l>9VWef{h0K=|16mF zM6Y|#he@)U!K5p_R?Lk_FNtB&gQZ`|R-pL(%x?_#Wn7EHc!LB2XCRh>oLE7R&%V$Yd2v z8@4U65dB2EZG1Bnm5@PdGGq7}36<1Wu!#~1Gn*|LXJ1+>a*REe1%E)#hBAW8Y)FR{ z_z{=pbF~Uqw^=O=GMg5xk|Wz1=~I$_R-Dy~{9h-o>^!d6lk`5UBN@%2_pjgu$yGz2 zMmr@L?U&Lw7h5JR8BI?ICI9CgZN!zEoXKdxik{ly9+>>eXfKWN!v}VzGQ?m9>tu)@ zyfZp2da>7iqk3T;nmq`IbZQOz?WA>)n2?n=Qv|mDW0eIXSXnjt{SJ$J*?J`&J$8h|AC`WS{w$I!RI&tttpw&8U#~<5y17qp`s~3Xi69=-I5eHvz zD|QnHA)`P4KjE+oT3Sq?rp$AGvV0`$5F;k*bvFAxQ<*F?SVlMKLNzXnj6Ily9q9{Pb0Sq=Je=U#jGxL zG$=&ND1{ilSZ^$|D{KLc0tl#9YpL8Eg6yf!RGOT^)3(WEs0151#_h3aIMj} z$Tx5Q&Z&#(1|dAXs9Uct_OiGxHj=7~1v~J%Sl}l8 zt#h$F5mlZfoj|*Pkzrk`VB#XA$#elZUYr?BetxM^US@VLd7`v7d<RF6Ov9(Q^ zja=)W9u?n^cs#DVhju_v0`QARpimhVNMA3x3LjlBsKpf<7{QwkY!3)Mh{7?B<_SQE zhctvsGuoJzwEK0W}hb;IDZ_Myczc@+~L`Gv;LM8%Gr5Ta77h&MX5Yqa{7YDX53@F zQ##KNJF>RzAJwpe%q?O15^Nz**7OpLAh<9&Fo4EV1Q|TdnKml{i5h|e`C-}xq74Wt zh9*p58h%bGWbq;s$sGLAqL?Lk5VlBV0i&luv}(DS#}f9V71);UdYNzRUI+C6leert zRbE`aOp2YC^k1qE%AnBTj;%5{0frstP@5AN{oqUVtilvaA=gapBtLL9Ve9MU@3#S9`8WEXfphJu>TVvv`G68eK-^-%rh9z0WU zq>mIaig4z4#m=iF+m#d(tx>J)OnmAQ;-{{L9Dm)D<0l+WKza%}Zr$2ix8|X*(92Ga z0qFm|1O3|M7(C|5vA3Pj*>pA#tAYCLo6bG~`aLxREM7wV4RgjRc&0&Z8g{1>PX=UB zm|`{$XGpP76)rz`B<;)`Ax8Xau3WfOA(=Wgk|YipREYX6RnWJjI9D!S?BfztC~ah) zudvCABaxIb!GDM)qlP#!*|XJ50jR*zU1lqgx=~kA2gUuyy1Uv|d;Hy80Z-aSFr-wr zZsqSUT&lFdVNjJnWokgt=Y};~Yzce8)irR1Wq4-EuP}l|T&en;EED)2g)byctzxr5 z-#0#HBf2t7bO5j0UcLSOKQ{R$M7k6rj2iH_!FdBu?|lTGg+ESkwYYJyBjw^W;+y&# zPr!eXcu^`Ps`2p~o_*>@#RmbIq1~9DLZtDB(amJ%M!`uuSBSUZxg%_xie@?swFaX7 z(=LwJ^Lw)|`0u_57-tNl^=^v#+cgQK1-tB$-_YfwSS0MP!Q_~_o`OI9o*5E88 zC2IB$Lm>cbKrtCQVu8W|9MJ^8MGy<|N{?YM5`-~PA<5E~f5bbUcD^2S5zu!NJx@>A z_M5JaHuKD(oM_8Y|ETu6lJ%M6ZlbqxfR5$Nr)0GfDo*ZH*3fKw(cSEO$|DL!Ig$25 z5I{^35dMg+^(ecBNh~P#sQgesho+i@qdeZvA0PCG>Utff=zq#wjjUty(Yc()e*Svv z+FQ@2Yj>RIw$aR-r&lYjC*Lo8=T@xLHL8&>fG?{V@AdP0t(ZIG?yKTajj`0IMzDia zUb=S5UHQ&PxgV6OQl+&}E37!yDm-DkC2FPiE{c}$Tj+Dbp-i&LfIK$R!mP!9m$dm5 zz0IM{YuArD|L{|SItO}PbUxIP)eP$Fbt`ts{pgR2@2}srIKQx~vaoUyNd)EE)Y!hg z<9kQPcHO;abZr0b@zJr7g_Vij6VXF(`#)T0)*-egFd=OgZs@~>`lUi^a(0%Af4xy3 zhNBCvEhgc?LZBwSI0uh0)bKi_9<+Mi7^|Up>-PGbn((ym!>dW>2)>=i6`;vLr3rzy zx3v~aO}MFU84sI`^Wbj*j?N=HnVShPjO$dFnXXgy}z{gz`pU((eVR? zVxd&rUz)l5!2Z(M{+T_ah4TL5zVhgvnZn(BO5-C7_1V?xXR)6vtJTlpU)4pNro|}S zpW-j5bh84&2P6`ggkNl~SN0G<1;kS;CcJP2<3Xw;l%LTl8wG>fRWd4X0*2;E1d;Iv$FQBBI_;qKJ4oe2o0q z`9m3c=D1gUg^311;+x^R{J?oxh3V4P;0iL%4hxqM)e`~C&4GEhFsKGEk|#a=Hj^vbe(TY~%U%BW6(QJH)JWhbEPcw;EmS_osQ)DdPxZ~?5TQoq!w zU4k#byIZ5`QfZcb!ZAb@xk1zLAk2|T6lA3MFuad71`!>{F|;Z=o#};P{F5^k&du^1 z%_K8n6&aT4-Lf-HxJH&67_3PaV7;h#op1nUs!V>e{0Kczn+@sF(Ja(kcxE21VfcA* zmCa?QVVDhqh0*6L^U8P_Mp`+@a~}L?smZOOk_1kI;ZhSnbfu*9BV&EeAv4?tk&P|T zZaio`DLk2ns3n`{2G9DskwUw4ZVpkH4$MoSCD8zQ4_Om9;fEraAxKAVBFP3hHzEf? z8*@5on3x0^rN`m&>03F&P_Ea8V*P{9>iUCG2}$F!V|Ft^PE?S`?0sQypS3C4Tf*6nm^26X?@Fa6xa(&@tc zlXx%8$J_js=+;Ddf8d!3QGZ(9ZFad89Q9fYsx&(W8jfW01dn~uVmu)913DVi+PE$R z+5XAF!L#hBB1L}EctG66@GL>&L_{7$OME@;>n5m`LuLew!p=oNEWfsdzKKSIriS1U zpKB7;B~3=W-mX=Oq#mGilt+Cx!5o3fLTwl#t_D{Zo!H^7y5j3l0;#God_^XH`biac z*Z!fu+1-g(X2Rnadpy=HD;_@+A?;7AyUmWr!BGct;BoL+COrPD!NFq~IEo}qs9023 zM1dg&A+Suw2OY^~x1gjIWj}@D3K2Ug^58CMGKwxaT|{+AJ3Ln&MsixY#=#avqtw9@ z7osdHafD4{o*lDg_)7nBs~J&fk}l94p8H{LYOrN(q@nx7E^HPK_&4=6V_gc8qUB-8 zr_UvjFpl?Qxgn#3a1~E_TzMq1sZ5k{yQd62lu*XUz9g^8149p!op1t3yfFvi1dn;b ziMxhE%h)8X(BDW2@}anl4b&bdG0wjR2GcR-xw96I$&IX|tD)dcY#rpM(9S@ODnqnr zcZ!%SQ@%7cgi@eXMl*M0g&INPr3AH?p(r3Amtq|jn2W)L>W&H$JHjj$%qgy;{0~_p zNH2{ZA{oL8GX?Y{x==ASbeIrf*fz^X)Y77oW!sI#4I(^D0uHoa&}S&C00Esg;fd5LEt-B7swiE|JTr4q~-@nirG0_1?duLj3HbagR=tea zjs^!sZMOQhx(ui!30@8kiuv93Yg8ySW{?jpT9B$e%M~<1MHmOF4U&kN;$;&T{m1}R zsY*?&(|FnwSHJ(jz4Yz`T;oFH_U`9Y$MV6uyn0IHrIyiBP64p@3Y<6Z6NSYEwa&>?sf4cj3a ze(_V+T8nt@D@n)*uV)7K+-s_TkG*m~w_rbg zqs~JA6}twoC1p#upJX%3;X{&3X}1Rn=J2A&*M6&im}jdmKo0=j>MQ+Lf6s5#OV$63 z-=0Grj#eG0ycDK$=){qSs4$w@xCW7C*eMeZ7SzpyW0)c)N??jQ<0>dg!8}`z!}DmO z7&5b5&O@*} zZzG+>4N3pRVw9Uw-V_3G7p9$NjYIFg=D zGN;7BnOw&DL;>Zw23f9k<{CdNU9CWqsNX=^dR_ryam>PtH6X7>i9gSRtuHM$pqztu z%dy~pvDPiFLsR4B9@X&R#fT@F?FAUqx3w?mse|3C9l-Q<8C^00ZAPBQD8>#15pdyo ziIyQH7`t*t3Q&ecs<7oT{0hd4xNxPnkB~v~BF%kUmy^XIcK~e6dBwS9)t1C7EgKa) z!|xGhYti3lh(a)AP24`kP?(*;8N z+rW`Kl){Aqtd8jMA~NHzT&Pvp3Cwazuzm?dD~$>VYhiXBSZ;?l>JS=C)NmU*n?<5X zw1=Z#=L;fM7R$4ZCURbbVJE#e7U*Z6O8}($i5mjX@oOe{go#W?5aC??nc(s2HRJFG zn?aLzW`IJlt?T$?5POa*rTx`k#cSF(aC7k-B-~o{r|}&#t8uc>6WhMNQrZh$DVZ*` z4WlkfjpAzcQ(W_A`HMhZt^O`Qcn&@=b0dGBe?FIkF)q_?tSqj+Q@%yXWPSCW)j#6b znU2X#ejLA+@b=E*{lu^xRlNz(qmOSOLU`=gS7g^nWp5@5@719!(^&d_j!FB61_w{e zu(S>YH=aEx7757?p@oSoqB+1VvDjq0JCt@pK0;K3Qsf&ey-}~iAwsHFu(<16b;S`|?Q)6^?-jh%0wHr<#W846{qsQ4)S?&3~zn49U7sRnW zbORA}K51esgPt+z1_gD#ogTPn6iEF+b)(r4FgWF)g%VDgBe?h4v#d-vn1?a};to_F zbSQxKJ&%fHDqJo8L~zRMbm0h~b*5B z@U-=CE2JJ`^_uFqu)U~A>Tdu+m>EiO#spGy-;lLD%qqEIHsoP8;|{+z%!0=z@YT6rQm1NEI&UC4?6G-?JYx&W5}p83feSNE`o$`iSvGVGypB?nZ3$1*`> z>~x`GvQ%uM3!*v`(Y^2i7nzM?KO~@_x)4~- zgF5GJo)Apf)+RnK~u{BUlV?D8=Ap&T#?9`i8qUaO?S z)meTUuq)5wdoMuEob$~B(QudBZVH$CB+@)Y7s#N71eybj+3UkC)TqMj7x|&#a!K5X zN695E6mA-kz&74)E$`Oiuxn=n?+?@u1khO^R{~)ehX&>=!?v%XvYwVZ{-d$Xt`$v; zF%&f)mt@&>0$7`Ef2 zd>G;m-7#9^I$WwJBmF8n8OfSgV~_?&y)Za*oy0a}#kh-2p4CcMX1y{i%wH8P?sY|!uSwis98qpb>`bwv<8u$^ za$>8ZC@2#A3vI#iOS2-4WQlHaM+;TZw_t%Gm|$#u!L8Y->Wg;$SjsVl}W< z$@r2V`hcefFm3Wyf&hL#aYb+9nToh`2*?( zl`hssz2I~|n*;TN$1QUUqOJwk z0x!njHe~n)paa^+eIYpMRiEnit9jDnQa^Xq(|%3Hu0BsImFC;d<2(bbL!K%esokbM zIV`N-2W#a+;}!7PZq;!F!rI%4NMR{ArE9{cxw>0fQG)LSvG^RW??j#pys%X0O?`Q1 zx{e9Ic0~rH{y>pq07S%5tFeG+8xwb!Smd*6B4783I&~lYH^pVZJk0>`+Q03Gttn-` zw4rNmP#|$J)ctZ1iBKp~&!2s>(WDjCwvX5eu&rmL7K zCR4~+y3sJsXF7tLS|C&bY0Q|{@Pb~Ib=12(^yUa>t&uJ2dN!z_3wx>B^ zb7(q(WmvH$$zip5`Q-)g@jkJU5D4tclZm^EJGIxD@bxekzp8|+?LX+fEJm61J!q*X_`RGlEB3}$JPddHcvd&?=gS# zcl3BHc>UL{|F$o8x$XU%ecL^cmWX_GyWwlYz=z&_b_-0FTxa0p2)#8fC539zEYu~F zniBPwM`lNcqOsw<186h~7Rr7_V7b%;EA=HAk5{N8)n6^%4O-2Mk&mQeMZ%O2F>=(4 zk?*q)ha4ao{L%nG@Yug{kEH|v4uThp1ImPhnoHBt=y938rY!bZ8um~Q@1gFVkGIy~IeOZ0oI6qW!DPXpc-`;e_1ih%6+D&+UiTb=dV3Ms9T=j?)Tmndvg`A~ zoLE3fb4@~hM(r2{)_Rxmkoue4kUHie^;bC{6+Gr4wQ-K2fWW(|muDv3+?X0H3+ju` zXw*voPCe3F^ft3+rh)!=bRtZzxPCdCv9!OSoAyG%%Ia+q7Wsg`APWc+kAm zKAc5*1drYB9!rrP)%!8<0ic7Q0-X!RR}@k+yhG}O;ICX#V5x%QEY|G@P8(m1=A1II zOaq1QQ~64N1G{tIz)61tqYjj7%cbBke*+uGJ%S7NBomOs_Z*U87bv`hJ!o4Iv?(@=6=mUSVO`3bCZh{-B}ZHu(1qyq zN(sZw*a<^wOXUj6Z0kZZpM^k}Q&6iQgimiFS>6n9j?Mw=xAi9cb(2wG^Ar<@jJMOg zC9x5u=i!YwxZj(uo!!0(Hg>_Wf;@#D<3}#T`HCW1 zpN%i%he#n(Z;d|ASv6#`)>ouJzM4nKuG9!$jEU&1%Lv!-63B&h85kGMby->Q zy6boTs{UtU;Z#~wQ8M9gOE)H>p_2;eK?Ed5|&|21l;UwCTl?>X}DnQ zLRbjs?hH*6?LriS8?~H=+>zXnJLn;IC~j}TQAaj zKbALPE0CDpYzr99|8b6&QjD+f_Zy_lBDXuG!w-pnMIAn>r*KF@J>kjbcThl2z%cnGzSk1hFj87^bXhU_W;% zL+tZ`X!ssE%_H(K@~R4pk50&rbX*`~amG1BR8-xKTtBIsxLOe)stc^xU5v<@@{jne z#NY%duv=_mM&g4QL_qDI!rFQ_Y{xGqJ=tU}v!Fmz_n{}#b?z(I(J_PRZmJ~(2k_6k zy>>irBR|b0PKyr8t8~5KP?q}}&~aBB@W_gC>9q*OjY6`^kVh*m#3yaqx?{Te(ZLdV{BO29ivDFB$$ zf=USX4B)HAh#`=8JPm&ztZOTW419*8zz1?~gAObFS}%#St4(vv%3`z(#g^U>_PK-y z+Mf~5eL75DFDNyP%zZ~v$INn_N3k9SU+r6nO@#BjHuE4#FmM0@~70km2& zOJsbpH56k%rQR_HQG^h9zaObTND`+@f(kVzy!rNl?H6`#J#ggzWWqd;JM!=7aYpt2 z_59x3|G$uUL8?bn9r|a!-v!lmgW}MCN8F+RRKZr#pySZ>2h{GB;kRh z6-=sNX@El!y2V{{5NBwaB4;tZoayO*CFrA9xuI)%==|S#u3tjZXZ_uOx(74pmLVEE z_6P2q^vKZ)EO2He0?(8Ypkz)aLON)G@2FWHYHuFPJPwM*W?-mT_h_bf2>o5nTRfDX zw?A)W>md*2?e^g;k*(k{59Qu|>rQ`pfXD%Na5batw@#AQVXiLKj6|A6r8x?b;I^cP z#$FWt%H}ulu9&|3OH6@;tJ#VfN+ah0kdT=XCkUH08}NGadz3Dkta6O5G6M&l_xb7G zhQHdoa$oJk{%Splug1gtf$OiiChoVjSZZ~F{=i9Ly|j)nVm@7R7yAra!{RFGt$h@f z$B6F~b0Oq$>u^>N$`N((dBzn}8C(XZy;(zw#?>2YAzED;csn=Rg_}6GTD_qo*!{$? z2=BfPfD`o-&*4EPjEL@XGSm&j??U9}PyK@)diuU&gs16^Dh^rkpxM-;;Pf57-o+(k zQ=&VJ0eC=MLv{!528KGtuvu6y%^g$q#^|7v;`&j)|B)OpLiJ=2`?Q0GKs13Z5W zd6V6Xb+dJD$%5QJ6@XmNZsp7QEdmu^in(&o2W0^K?bHZ`HF;X`cV>RvB~s&lvPGa< z1R6oTU^+yga465nM4(1~!yEBhi0^fJBc?wo-iQM|)U=%52wBZ|Blh-MF}FA3RWWbG zgQ?DlU<2z@Pp-w}t2+^iGZg_3F)*=RsC&wj^1-NYc42XNPovL#)q=JG(F(S2KOde) zk7!0u@7m&3n6vN#)si$_W@NH&l%hxe&ZS zmvhIkADGQU5|xWnraoc2X-S7B7F)oW1uz`hO|PHqn*UwMZmJiN%#1cs$j;pl-Wwc-b~P?XRk@7q?xk;9S4a zjrF#TnF_|Xg2A%>Ub>iT{arq*h8aQaTisPC(@_X?`NomT4+0kJlu+-R1Y~wp|8+0K z&POV;njw`ByA`_~zDtHwmybdaoxc?_qi+&@>dI(jR~&(Rr%*?u!y3fB; zU@1iB&8#|;0gVuSiPLtZB@+!G3=fvqR8G%fq8=VSSt#P4mD7b1{>6lhWo(8;-S$sB z(r9ASNDz|T1&l{34Kw$In`Q4asgGj=>+#$|R?e=&V?v1PW`r>8KYnuRH=)end3_|sv@pL5g~ z=a1Eo;E_V_75{C|6+J!2`C>J<=3~gbkW~={6lk2r0PaQq+T}^ zmgDGGX?rw~jqlNZ=J$B(0gy`8s{Xb1c%$56W>7wlpmf)*8%=!bw|eJBZuOQVa{2cp zVH>B*#I=dO65N?5rY_=nZGGjIgw>=#>G<4i7t}imsH{_0`LS;kUF9AN-z2-uX-&&& zMpt>QTd@l;GJX`(RelTYGatFjD=Vx?N5&_04Xd;qMX?IR5rAR*s~YfeFV(9kiNMy~O5`MhUZ7&9+7 zgBKQGpTgm(FppVIqv#&HiNN){*0(Ac;`p1`wdmBrmOavS(HYm)sc)2k zglf|EFQ-3$9PnJH{`}i$`wx2mv0n6^&(|lb8U6W3+=^Wep7Enle{TQgBga`?c*I%m zo?H&@4+!QUv=d7*{7+9Y2lo#^8_T!|R_wmW-tjgU*A5hKd%kEg7 zZazf}*m+!WA}QV0Au}z~{uW-4Ts0)eG@1FE>6?o!lO{9ubfBT%a2OxwYdK|Ru%f4- zIM2y1Gl$|b^O01U8SG$v?Cbm~iRm70)G^n?rDf7OQNfBV4_2n)qe2tbn~A?pNqV5> z@;vS`ditDvL{S_WTmofvdk6vCnF5p z3iE@6S8qo~(4EnnDlLQ|DwwrnQQag_Vi1Ju+3R`EUVViTdmW z>a%ANRYE21r9ul+oM_q7jUc^V*}DG{0?X7!7w48Z+oO(F|A-q$#LzmZf~cNA*Y-1D zCtfo35rjLBD^QbnV7`1ow5z(b zumUgGRQWQTV2kBlg*|sq7fW{+4~&kL?w;N=J~};i;K20Q?wRuF=-o48(|7MK?BBh6 z|AEos*l1yV|Mb4SduNLKi={pL_m;-?749Bcs3#^WP2w~yYUF>)K|wpJdjxzBNVF>n zyO`h%ZPqJ*W)R;ROI|@2WRBzVD_&>N5_%Na>b^arm-iePHSVmv(d6ZF>mF5;GyKxy z!pY=D;=+3!T8hPm<9I<o=lg;NglQ4@pd@KP3F`ksI=&bOV2qSJuaKaer?Zt!TWJ;AQ%Gw%eNdRe^|z`U5x>iyJqzw8^Cf65n)Q9@pPrij%|?R$+L4rv#d&VxQiV=~ z8-2IkR+?Y}E=Va}@YuJy$9fklo_`)hm?vn>kuWqt6%jOK>CH9>LNh8+C#?|{_3xKI z4^Y8(DHH<;%V9`q4HUnKU>7FtfzX_3hi3-lAv2y%zxQ+<^>ps2!a2TCGcnGU3t<~pk(*^1`z!alAL{)e9Hphc z#FL#LMrhDK+J(>_7Ks@bshoHL4-k?e)#+-6i^yEK84x3+XsOv)ppzw7T#n|&GzNDv zV7IO=+udMzvidgj~8dOKh#{wE_KthU? zq=__Fi3lf?rGuOxc91Kv?-|`ecyUF@wb__AhEYSZ z3Q6#>%s88HLTOtQ6G*&7l#-InQUaxNU2_1bu>{XbmTx~R&gzjgn#gN`{iA0W-H_${ ze?jiqi84h1$7iyBUUJOC;PV`Ed|L7o%veU0nZuJgL?_o2P-*qSCJfZHmdq01#tpoA zt_-;Zm4X_U^%vI5vo(a*X;Z;T?P~v z5xQU!aSOwoIOH^1Xta=O2G~FQ$H57 z)7%|b0U3+F8%Re8aAgXxPL~#OS)7P-OeotlmZii6DGTIqTgc0sqiM@IhG_076X;3} z>b%3SMRM7cZ z(mad$nc)kdvfu^y{;Ndpz?>RM5Z#6jcs;SL}FWU?IF{E*L_$bwDUON^}uG2 z{JgVPkqNzy>B#J1t(-6dNQTdU{04xA&ZC{juRALt6TJyhc)k{#3)I0DLR)-=ynBnU zJOzBk%VI^w>?i>t)e#^j-pSQSjdLkmk)wd{ikX3s4l zkJ+u$Y{1zHAqhK@GrEl}#s`;XS#E>|OWv8zR&MCny$qo$ejC_f_$4JLL?opyi`U@C z74aB62mh$;1_CWW@tYD+O4}fhFfGm&zo~#}W8G_X-fOhOAX9M#~V zzLO%e77MM5EhAB2XKh^);r2|uBu}1Gsp7Gl6Z8fOnIw67!>oEc1WrLGAh&N9NoC2w zg9Fl&x$ns0qLXwxWY;VGNXB0oGwM6!*K-Hnwt8i?f9^&T((Rvnfqu|_@exZofV2Hi z=&KsS?D4HX_;Tih&%LHPjx%wiw_u|$e9WDH(XN4wdiL}ou&0MLuN7spOPB#xl5UM+ zHIO?&F-2<@(JC!S;>;)DJ@>;21?7K87T~i;nRU<5C=3luFamjp86IfB1BO72SiX3@ ziOazJ{iG+SYR2?+k1%pAK9^JL`WFhLa9vj0b`<&IL^0fVRo4kQ1pZKoW7M^_KyMs-5 z@c+x);J@92|2rJNj9XzzF~b?~!DH`tkM$0kwSUY2$fz+fhN7L)!qAhM=_D7|iy?Qp zJbo0rKs1^&^#o*G{5Dkn>?X)0!3!gVux_4D`#ctmxX26PPJ zy2|x$hFqU)(UXLHTU;ab^2hN4ta;@EWgaTlGog&dHx=SiV`$>4)EHUKY9mgRg%vD` zfuTJZk6IfYm<^!_C0^pY7*hhjF_Dn^0PGhRoyGJGxc!m}LE|Yn z7>0_7iK=k@<&oJD1PzcF2O|QWq#tz>kqo6F0 z1y5Zrn@9|{Y#F)ll-lh*V-|MPl}X*%83 zT}qP2Gxjb$Gq~Zk#v7u{ATDl_sxu9qmwEl_TKjOCfT5j4jXQYki&n%z3jBaNTx?Rk zcXTur&-wzb*PAW@hN&L_6VsaT5g095Wj=$9!YDZN&g8*RNfFXmEHqh9Y@!|#I|ECQ z-#OpUh@CxW7KPhE$doS63Ot;a0$F6_xKm3SWV)JUX&X%<{L-TGOA38Zc>w>=Zri#6 zMg&B`?&Oy1;Ip1KcjTtc9iBE{l7lvb$2@Irob3~kexN>}viX`g_4il9GMn}g3KNTH z14vDsDGHY=o$5K}8UNr&PQOQ(&x^<=!9-rQHf^?N7&?^XCe>jrLLU#Kmvw(m?l zg;9g<4X5lIR@*nqgv!+icDApVN}k)NV4NViZWqmn)-LMnokckJ1KeQ|&VGX5#7$p` zOIez(ejzyT)tv42oDX?CI-UoQs-I^Sk>5GAcAjNv+T(*&@x2?~sQk|9ULAi9?0{{| zyeKy%iu`G=2`{{{0u%}OmY8#U5{~dmCWNpS10YAd$$CBt)4%}dGNPR+?qh0h!k*-> z5~5~BW*=L7&nQqpmtjd(pdcvEx5~9kOsAM+s7)ewW!uwOR6DGT|8Hv9qsb;BV~_UF zEiNv!CU&8e3kB|w4|R-{Y|QT((BvEcIb-Uu)RA+Hyb7#SK(Sq65%OW)3ZWVUaCGHS zEH$D_%-x^|M;@3wW^-re3lJ`3Dpng)`xST|J%mIPcFpAK3lKyS0OW5IhC~NX;(kmb zkJSwOr(p+|1{7K};sF8+&gHp=t|&XfPU%3vZ=k&*P6sG^Rdb;Lh24^-=>?C?r8qOj zFN{Q|>Wov)&_{sW7bG;v`UL^WkcAMP8ElPfz+=_%xq>A^)s&evcW-uPP4YwuM~DD=M^!;7j*u5a+1g?nlDigX8UZ>ez`En!EisSV z_=PSmw-0%wyOAP%JXrkuvfx^FpWF8)@UBA}>Fsm-VLW;jJ~w-!wQ;Te$Yye0&!m#q z<&}pdFlZmrtPD7i>IYDo)>IPv?w5oZWI93yup#rp)v1PiJJ%tWgu*dZS$v&U7Vqd( z7RN_gml7r0e}roewZ;EP1T;F=XcuiU^C53x%J-JNMb7z;oHuCfyOFx?jONE(? zdv!(;3X*nIH4shrao(o(o9<=u9o0zDGI=ZF;X!x{$~UsDi95KwnI$%_H`CokgXbf> zR9rp%P|$*#F7>7LdR67luXlNYZnqbBDBbwF9JDM@+U=oqoqaeo$J#F%96Ss6Gl}EO z(lnCjCk6-QM9{A1w)r=|DDmd%e}es|ux{UySVLjb@ws2{Wr+oQtGJYSpTyfBK=%66 z=!U3Wb>FBYG!Nj3kbCtKO~J}t;q(@supEs|h}TCD23oHtMDCY#Ad-2Fhy7R{*b5r%_kiyTp2yAJ#{=+41BOL(*B6FK zN<(3kg$N2qU@uEh8N=96RNR1(h>C?mr6v@IN)w#g5UT~7u?D*kpo8C)&E11QHDwnb zysys<-n-WT?-S-|yF>6A)13CPWn><_9%GDKyc3$jW*7}>ETMe^9O|s?XcUp~1{Z-C z-SZU-e-?>37=OctZp0&Mo~?L5pUe&D*RBERZ!+gYHzo>XBPY=0+Sc5z31~0@_Qx1T zXNp-is*uXuKzvl{l6>u&KsV?hX$tSC7m8@0T_}be;afIwHv;>t`|%)uBsa(pt^xA5 zn?vpmL0&}GJR6JG>FI0CpbpFyRRUVdV!KOg#*67CGfqPG5RjD6;0}z072Q&A!=bmm z{-x+P`j3k~Fntf0&e zQ&m}kfR4Om-A#D)E|ytDS4Y;A%$Y~6ovV$7%Hh=ChlAA(pS5n!^{(#`_eyR^PI^ds zkmSpVXdgYtL;w`-OW`13BK#Kfj8L_Qjx;D`EH+9=i9&YH6013^NF;VLu>jSYsM@H{ zsy?+*%XzT8H#b-gd9b|4J{&sWx+z$U4F`|C%RSaRHr#&L*nucBF-hW>El@@?AJD(n zue6Nbx~s^s14u>psb1ir262{P_7zcbjlydbOG_4*f^yT=_ptqe+^{|DVf+0KNU55! z#NC6(GQsxfkrStEK?Q45%b3u}Y~E{u)zmfDK~FDpAXZTHVnt!ty!Jm?_TxgE^j5N-C@9nM^+ds{pNC7|JHe!HE_&K^U8>KO zCe3|?X+@e=m$c&$q{STdZo|e-cp7yym--tI%YV!aOVlV`2x^r2{*|jy`n;njkGbcW z*comUgZCix6|vABl8JBZ+{VNiuyR%;x{MoQdL^DWtgYiBX*bnenkR~zf`fwtR)`BtBi6~s#4Q)V&hLu_4UWb{!!n-&^y zIk9O*Wd>*|Deo3X>42fv3MmdnWcM5Xf=*3vM#E}CuMWJH=BSOs8;!tF11tBiej$Ra z5_fo*i~wJ_c~l(XMj(j{*V8U<4Gpj061q;RRiBtB4?OV<}2 zj)YVy!zWZ09fa?f#2wM@T8#x{NRU#wq$84t^MMx0ZvtGVy@@DJf)_tf0P{D`Y7l#p zxIH&Xym}3i7`pzNYryGYAR=@W z0n6BcjJ;nmhzmFdGfQzEoE|Bm!o$TmGs8wIfWq$dh2Q$bpY?@Hq+7TonbRzB) zsq%#u8j+VYQAmcmAw$T3O2iohT5$790L9E)6Y`{7Wm+G;fLoW}ql2Aytf z1m#SDtr45bEM|BoVh#uOJNAOzZVhK(l9$XBMh+H>oDt4g0%I~z*5oZr44$nN2)q`* zBm^%oQ5ZLklkqf6weqOI@uPZk+>=OiZTw(PF06tY4i+%I^W;=O9k;=Nh2s_QOBJBZ zql-`z4S~RL(V@vU^wDEW&nLlR%k>1jhmM>%Cjgbgt|hT$!7L5GV-D1xe%Vt^kjC-K z1mB6rp>E*4tA%g=@GNU6@o1`Dtr4ew&$aZ`j5xK2@=$Qv{y!09O|?gCepN%i1YTMx>%}W$M#~Rw8N58H{RccZk9aV zyr|0~0aTV#50r^WTHT0bY_o}^>$x&e#4mj5i%O4%Y=-L7%uEL13X9%y#0K*fMM)+``Y17){9i%!KHWDDO( z1SL>9G%X;@8paqkA2`+*8n&wwt1_U}jv9>*>NB(^(+v_z_Z(8FDn+ysY|Qds;=+J7 zBw78|d4f2HcvfhDij`QaA<>_U!>%pQz&!-T2``~;6-^tIhrv19<%pGpNtCb{$pEYYF7jc>MGx~g+0Vw8h+#n_776=vxg#>lVF3CzwU)A2|nG0Apbv4 zkk60*IsnPvrk*7et^IX3THC$Zw3a;5+GN!J-e@g$Cqsmn|>wPt0u0euDjPfnGfv(u_t ziCP?WkiGj^iDxEiOIz%-=Z>7zPSMn#SZQILsnkAN4e_L6Q94mkQF+!htFo~G9BOpHojIa^$R! z)Tl}qq(?{>*QSL4{Dvlp(Z=HFM?^Ox?8@6QqVE+E^5BmAi=eKrG;nO2iYEb&P#2~e z#W=-UQM_2^b?CV8M+1H=U*QPsPW3;)G0eZCjmtRBswVN74T zft<*Zk^JGw=yWPl^w5!dkx>pFoVNQI5sg_Q%FeC3&`-(J&p_sdf-TOZLMapJOm`!l zy_-!sIZnGa)to;<`=*DNdP^4Ok%gWBleD|G0vS+WR|Rqx6v(rw{v@eNJ%Z#YYE9G= zolXQzu+9%uLxF#X?TnK8&9eSisE zd5u{#uEb;-zSw09FiFjgFQk$T=a`9E$I`EiUz24>P_-5-Eoy-X=c{VYQ=$h56TL*s z!iW}=_2y&R*2gDm<9(-1H1{x6eOw0g{L)IjFb_Q$q|CbrBD-IihByI3d{=@Y#uc}l z9fGOY2|n?t|Ng`xnN+wDufpjjM55oMn4GrDm}D8Yk|i6?cabU|;r@+Q_Nq*a1Y7&T z)U#)jDBq7II+U?}n=Mf?o-`p%k9uIEufd*hp}FdXVlK*NsB;iu?92kN3Zp zdiOnat{!-Q{w0*jWa3+Ft&^>Jm?tl6Z7~}FysMZ!3o*+)82BGB787jrXaQMYr%-6a zTt&zlJ4B78H<)h~ls(|G_FRa99BY#>h2R_NQW-p9-i?UD-U;>K;&dr+abMSC3n;AB zAG}c|7~)!p;Lt`#kq}bA=pA9-Gn)&o!9Xj+{ggD5#as&=JT3*v2H_y*hi$I1X+?lg z82T^K7s7JnW*Nbz(o)gZ#2`nDNnT8>Lz)u)1MV$s0|808jb

@@ -830,10 +830,10 @@

  • OpenAI Moderation API

  • -
  • IBM Granite Guardian: https://github.com/ibm-granite/granite-guardian

  • +
  • IBM Granite Guardian: https://github.com/ibm-granite/granite-guardian

  • Llama-Guard

  • -
  • NeMo Guardrails: https://github.com/NVIDIA/NeMo-Guardrails

  • -
  • Mistral moderation: https://github.com/mistralai/cookbook/blob/main/mistral/moderation/system-level-guardrails.ipynb

  • +
  • NeMo Guardrails: https://github.com/NVIDIA/NeMo-Guardrails

  • +
  • Mistral moderation: https://github.com/mistralai/cookbook/blob/main/mistral/moderation/system-level-guardrails.ipynb

  • 6.5.2.1. Filter-based

    diff --git a/tamingllms/_build/html/notebooks/structured_output.html b/tamingllms/_build/html/notebooks/structured_output.html index 88f4eac..ca8c2fa 100644 --- a/tamingllms/_build/html/notebooks/structured_output.html +++ b/tamingllms/_build/html/notebooks/structured_output.html @@ -29,6 +29,8 @@ + + @@ -222,7 +224,7 @@
    -
    +

    4. Wrestling with Structured Output

    In limits, there is freedom. Creativity thrives within structure.

    @@ -695,30 +697,33 @@

    [Outlines, 2024] is a library specifically focused on structured text generation from LLMs. Under the hood, Outlines works by adjusting the probability distribution of the model’s output logits - the raw scores from the final layer of the neural network that are normally converted into text tokens. By introducing carefully crafted logit biases, Outlines can guide the model to prefer certain tokens over others, effectively constraining its outputs to a predefined set of valid options.

    The authors solve the general guided generation problem [Willard and Louf, 2023], which as a consequence solves the problem of structured output generation, in LLMs by introducing an efficient indexing approach that reformulates neural text generation using finite-state machines (FSMs).

    They define the next token generation as a random variable:

    -

    $$s_{t+1} \sim \text{Categorical}(\alpha) \text{ where } \alpha = \text{LLM}(S_t, \theta)$$

    +
    +\[s_{t+1} \sim \text{Categorical}(\alpha) \text{ where } \alpha = \text{LLM}(S_t, \theta)\]

    Where:

      -
    • $s_{t+1}$ is the next token to be generated

    • -
    • $S_t = (s_1…s_t)$ represents a sequence of t tokens with $s_t \in V$

    • -
    • $V$ is the vocabulary with size $|V| = N$ (typically around $10^4$ or larger)

    • -
    • $\alpha \in \mathbb{R}^N$ is the output logits/probabilities over the vocabulary

    • -
    • $\theta$ is the set of trained parameters of the LLM

    • -
    • $\text{LLM}$ refers to a deep neural network trained on next-token-completion tasks

    • -
    • $\text{Categorical}(\alpha)$ represents sampling from a categorical distribution with probabilities $\alpha$

    • +
    • \(s_{t+1}\) is the next token to be generated

    • +
    • \(S_t = (s_1...s_t)\) represents a sequence of t tokens with \(s_t \in V\)

    • +
    • \(V\) is the vocabulary with size \(|V| = N\) (typically around \(10^4\) or larger)

    • +
    • \(\alpha \in \mathbb{R}^N\) is the output logits/probabilities over the vocabulary

    • +
    • \(\theta\) is the set of trained parameters of the LLM

    • +
    • \(\text{LLM}\) refers to a deep neural network trained on next-token-completion tasks

    • +
    • \(\text{Categorical}(\alpha)\) represents sampling from a categorical distribution with probabilities \(\alpha\)

    When applying masking for guided generation, this becomes:

    -

    $$ +

    +\[ \tilde{\alpha} = m(S_t) \odot \alpha -$$

    -

    $$ +\]

    +
    +\[ \tilde{s}_{t+1} \sim \text{Categorical}(\tilde{\alpha}) -$$

    +\]

    Where:

      -
    • $m: P(V) \rightarrow {0,1}^N$ is a boolean mask function

    • -
    • $\odot$ represents element-wise multiplication

    • -
    • $\tilde{\alpha}$ is the masked (constrained) probability distribution

    • -
    • $\tilde{s}_{t+1}$ is the next token sampled under constraints

    • +
    • \(m: P(V) \rightarrow {0,1}^N\) is a boolean mask function

    • +
    • \(\odot\) represents element-wise multiplication

    • +
    • \(\tilde{\alpha}\) is the masked (constrained) probability distribution

    • +
    • \(\tilde{s}_{t+1}\) is the next token sampled under constraints

    This formulation allows the masking operation to guide the generation process by zeroing out probabilities of invalid tokens according to the finite state machine states. But instead of checking the entire vocabulary (size N) at each generation step (O(N) complexity) to enforce output constraints, they convert constraints (regex/grammar) into FSM states and build an index mapping FSM states to valid vocabulary tokens. This achieves O(1) average complexity for token generation.

    In summary, there are two stages in the Outlines framework [Tran-Thien, 2024]:

    diff --git a/tamingllms/_build/html/searchindex.js b/tamingllms/_build/html/searchindex.js index b0187e8..b1650d1 100644 --- a/tamingllms/_build/html/searchindex.js +++ b/tamingllms/_build/html/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["markdown/intro", "markdown/preface", "markdown/toc", "notebooks/alignment", "notebooks/evals", "notebooks/output_size_limit", "notebooks/safety", "notebooks/structured_output"], "filenames": ["markdown/intro.md", "markdown/preface.md", "markdown/toc.md", "notebooks/alignment.ipynb", "notebooks/evals.ipynb", "notebooks/output_size_limit.ipynb", "notebooks/safety.ipynb", "notebooks/structured_output.ipynb"], "titles": ["2. Introduction", "1. Preface", "Taming LLMs", "7. Preference-Based Alignment", "5. The Evals Gap", "3. Output Size Limitations", "6. Safety", "4. Wrestling with Structured Output"], "terms": {"am": [0, 1], "alwai": [0, 3, 4, 7], "do": [0, 3, 4, 5, 6, 7], "which": [0, 3, 4, 5, 6, 7], "cannot": [0, 3, 4], "order": [0, 3, 4, 6, 7], "mai": [0, 1, 3, 4, 5, 6, 7], "learn": [0, 3, 4], "how": [0, 1, 3, 4, 5, 6, 7], "pablo": [0, 4], "picasso": 0, "In": [0, 3, 4, 5, 6, 7], "recent": [0, 3, 4, 6, 7], "year": [0, 2, 3, 4, 5, 7], "larg": [0, 1, 2, 3, 4, 5, 6, 7], "languag": [0, 1, 2, 4, 5, 6, 7], "model": [0, 1, 2, 6, 7], "llm": [0, 1, 3, 5, 7], "have": [0, 1, 3, 4, 5, 6, 7], "emerg": [0, 3, 6, 7], "transform": [0, 1, 3, 4, 7], "forc": [0, 4, 7], "technologi": [0, 1, 4, 5, 6, 7], "promis": [0, 3, 4, 6], "revolution": 0, "build": [0, 2, 3, 4, 5, 6, 7], "product": [0, 1, 2, 3, 4, 7], "interact": [0, 3, 4, 5, 6, 7], "comput": [0, 3, 4, 5, 6, 7], "from": [0, 1, 4, 5, 7], "chatgpt": [0, 3, 7], "github": [0, 2, 3, 4, 6, 7], "copilot": 0, "claud": [0, 3, 4, 5], "artifact": 0, "system": [0, 3, 4, 5, 6, 7], "captur": [0, 1, 3, 4, 6], "public": [0, 3, 4, 6], "imagin": 0, "spark": 0, "gold": [0, 3, 4, 6], "rush": 0, "ai": [0, 3, 4, 7], "power": [0, 2, 3, 4, 5, 6, 7], "applic": [0, 1, 2, 3, 5, 6, 7], "howev": [0, 3, 4, 5, 6, 7], "beneath": 0, "surfac": [0, 4], "technolog": [0, 1, 4, 6], "revolut": 0, "li": [0, 3, 4, 6], "complex": [0, 1, 3, 4, 5, 6, 7], "landscap": [0, 3, 4], "practition": [0, 1, 4], "must": [0, 3, 4, 5, 6], "navig": [0, 2, 4], "focus": [0, 3, 4, 5, 6, 7], "bring": [0, 3], "awar": [0, 4, 5], "limit": [0, 1, 3, 4, 6, 7], "har": [0, 2, 4, 5], "solut": [0, 2, 4, 5, 6], "overcom": [0, 4, 5], "them": [0, 1, 3, 4, 5, 6, 7], "robust": [0, 3, 4, 5, 6, 7], "It": [0, 3, 4, 5, 6, 7], "offer": [0, 3, 4, 5, 6, 7], "critic": [0, 2, 3, 4, 5, 6, 7], "implement": [0, 2, 3, 4, 5, 7], "back": [0, 4, 7], "reproduc": [0, 1, 2, 4], "exampl": [0, 1, 2, 3, 4, 6, 7], "while": [0, 1, 2, 3, 4, 5, 6, 7], "mani": [0, 1, 3, 4, 5, 7], "resourc": [0, 3, 4, 5, 6], "cover": [0, 3, 4, 5, 6], "capabl": [0, 1, 2, 4, 5, 6, 7], "specif": [0, 3, 4, 5], "hidden": 0, "pitfal": [0, 1, 3], "engin": [0, 1, 2, 3, 4, 6, 7], "technic": [0, 1, 2, 3, 4, 5, 7], "manag": [0, 1, 2, 4, 5, 6, 7], "face": [0, 3, 4, 6], "when": [0, 1, 2, 3, 4, 5, 6, 7], "comprehens": [0, 2, 3, 4, 5, 6, 7], "guid": [0, 1, 3, 4, 6, 7], "leverag": [0, 3, 4, 5, 6, 7], "battl": [0, 2], "test": [0, 2, 3, 6, 7], "tool": [0, 1, 3, 5], "throughout": [0, 4, 5, 7], "tackl": [0, 3, 4], "follow": [0, 3, 4, 5, 6, 7], "non": [0, 3, 6, 7], "exhaust": 0, "list": [0, 3, 4, 5, 7], "structur": [0, 3, 4, 5, 6], "un": 0, "reliabl": [0, 1, 3, 4, 6, 7], "struggl": [0, 1, 4, 6, 7], "maintain": [0, 1, 3, 4, 5, 6, 7], "consist": [0, 1, 3, 4, 5, 6, 7], "output": [0, 1, 3, 4, 6], "format": [0, 3, 4, 5, 7], "complic": 0, "integr": [0, 1, 3, 4, 7], "larger": [0, 3, 4, 5, 7], "make": [0, 3, 4, 5, 7], "error": [0, 3, 4, 7], "handl": [0, 2, 3, 4, 5, 6, 7], "more": [0, 1, 3, 4, 5, 6, 7], "size": [0, 3, 4, 7], "length": [0, 3, 4, 7], "constraint": [0, 1, 3, 4, 5, 6, 7], "strict": [0, 6, 7], "token": [0, 1, 3, 4, 7], "both": [0, 3, 4, 6], "input": [0, 3, 4, 5, 6, 7], "requir": [0, 3, 5, 6, 7], "care": [0, 3, 4, 6, 7], "chunk": [0, 3], "strategi": [0, 3, 4, 5, 6], "long": [0, 1, 3, 4, 6, 7], "form": [0, 3, 4, 7], "effect": [0, 1, 3, 4, 5, 6, 7], "tradit": [0, 3, 6], "softwar": [0, 1, 7], "methodologi": [0, 3, 4, 6, 7], "break": [0, 1, 3, 4, 5, 6], "down": [0, 1, 4, 5, 6], "deal": [0, 3], "determinist": [0, 7], "gener": [0, 1, 7], "new": [0, 2, 3, 4, 5, 6, 7], "hallucin": [0, 1, 3, 4, 6, 7], "These": [0, 3, 4, 5, 6, 7], "can": [0, 1, 3, 4, 5, 6, 7], "plausibl": [0, 6], "sound": [0, 6], "entir": [0, 4, 5, 7], "fabric": [0, 4, 6], "inform": [0, 3, 4, 5, 6, 7], "creat": [0, 1, 3, 4, 5, 6, 7], "signific": [0, 3, 4, 5, 6, 7], "risk": [0, 1, 3, 4, 5], "safeti": [0, 3, 4, 7], "align": [0, 4, 5, 6, 7], "harm": [0, 3, 4], "bias": [0, 3, 4, 6, 7], "inappropri": [0, 3], "safeguard": [0, 4, 6], "monitor": [0, 3, 4, 6], "ensur": [0, 3, 4, 5, 6, 7], "safe": [0, 3, 4, 6, 7], "deploy": [0, 3, 4, 6, 7], "cost": [0, 3, 4, 7], "optim": [0, 1, 4, 5, 6], "The": [0, 1, 3, 5, 6, 7], "financi": [0, 1, 3, 4, 5, 6, 7], "oper": [0, 3, 4, 5, 6, 7], "base": [0, 1, 7], "quickli": [0, 3, 5], "becom": [0, 4, 6, 7], "prohibit": [0, 3, 4], "without": [0, 1, 3, 4, 5, 6, 7], "observ": [0, 3, 4, 7], "vendor": [0, 4], "lock": 0, "cloud": [0, 3, 4, 7], "provid": [0, 3, 4, 5, 6], "depend": [0, 3, 4, 7], "through": [0, 1, 2, 3, 4, 5, 6, 7], "proprietari": [0, 3, 7], "infrastructur": 0, "difficult": [0, 3, 4, 6], "switch": 0, "self": [0, 3, 4, 6], "host": [0, 4, 6], "take": [0, 2, 3, 4, 5, 7], "hand": [0, 5, 7], "focu": [0, 2, 3, 4, 5, 6, 7], "access": [0, 3, 4, 5, 6, 7], "all": [0, 1, 3, 4, 5, 6, 7], "ar": [0, 1, 3, 4, 6, 7], "fulli": [0, 3, 4, 5, 6], "document": [0, 4, 5, 6, 7], "allow": [0, 4, 5, 6, 7], "reader": [0, 2], "replic": [0, 4, 6, 7], "result": [0, 3, 4, 5, 6, 7], "exactli": [0, 4, 7], "design": [0, 1, 3, 5, 6, 7], "run": [0, 3, 4, 6, 7], "consum": [0, 3, 4, 6, 7], "grade": [0, 3, 4, 6], "hardwar": [0, 3, 4], "expens": [0, 3, 4], "avail": [0, 3, 4, 5, 6, 7], "notebook": [0, 3, 7], "modifi": [0, 4], "extend": [0, 3, 4, 7], "built": [0, 4, 7], "us": [0, 1, 3, 5, 6, 7], "free": [0, 1, 3, 4, 6], "everyon": [0, 4], "minim": [0, 3, 4, 6, 7], "framework": [0, 3, 4, 6], "wai": [0, 3, 4, 5, 6, 7], "priorit": [0, 3, 4, 6], "transpar": [0, 3, 4, 6, 7], "visibl": [0, 4], "being": [0, 3, 4, 6], "better": [0, 2, 3, 4, 5, 6], "understand": [0, 1, 2, 3, 4, 5, 6, 7], "custom": [0, 3, 4, 6], "flexibl": [0, 4, 5, 6, 7], "adapt": [0, 3, 4, 5, 6], "case": [0, 4, 5, 7], "unlik": [0, 3, 4], "black": [0, 3], "box": 0, "commerci": [0, 3, 4, 7], "most": [0, 3, 4, 5, 6, 7], "freeli": [0, 7], "foster": [0, 3, 4, 6, 7], "reduc": [0, 3, 4, 5, 6, 7], "independ": [0, 4, 6, 7], "freedom": [0, 7], "architectur": [0, 3, 4, 5, 6, 7], "decis": [0, 3, 4, 6, 7], "keep": [0, 3, 4, 5, 6], "principl": [0, 3, 4, 6], "itself": [0, 3, 4, 6], "live": [0, 1, 4, 6], "evolv": [0, 3, 4, 5, 6], "chang": [0, 3, 4, 6], "encourag": [0, 3, 4, 6, 7], "report": [0, 3, 4, 6, 7], "suggest": [0, 3, 4, 6, 7], "improv": [0, 3, 4, 5, 6, 7], "contribut": [0, 4, 5, 6], "via": [0, 3, 4, 6, 7], "pull": 0, "request": [0, 3, 4, 5, 6, 7], "share": [0, 3, 4, 6, 7], "own": [0, 3, 4, 5, 6], "experi": [0, 3, 4, 5, 7], "commun": [0, 3, 4, 6, 7], "propos": [0, 4, 6], "chapter": [0, 3, 4, 6], "section": [0, 3, 4, 5, 6, 7], "found": [0, 4, 6, 7], "http": [0, 1, 2, 3, 4, 5, 6, 7], "com": [0, 2, 3, 4, 5, 6, 7], "souzatharsi": [0, 2, 3], "tamingllm": [0, 2, 3, 6], "whether": [0, 3, 4, 5, 7], "you": [0, 1, 3, 4, 5, 7], "ve": 0, "typo": [0, 6], "want": [0, 1, 3, 5, 7], "welcom": 0, "look": [0, 2, 3, 4], "our": [0, 1, 3, 4, 5, 6, 7], "goal": [0, 1, 3, 4, 5, 6], "discourag": 0, "enabl": [0, 3, 4, 5, 6, 7], "By": [0, 1, 2, 3, 4, 5, 6, 7], "upfront": [0, 2], "equip": [0, 2, 4, 6], "avoid": [0, 3, 4, 7], "current": [0, 2, 3, 4, 5, 6, 7], "discours": [0, 2], "around": [0, 2, 3, 4, 5, 6, 7], "tend": [0, 2, 4, 6], "toward": [0, 3, 4, 6, 7], "extrem": [0, 3, 4, 6], "either": [0, 3, 4, 5, 6], "uncrit": 0, "enthusiasm": 0, "wholesal": [0, 4], "dismiss": 0, "differ": [0, 3, 4, 5, 6, 7], "rather": [0, 1, 3, 4, 6], "than": [0, 1, 3, 4, 6], "theoret": 0, "examin": [0, 3, 4, 5, 6, 7], "first": [0, 1, 3, 4, 5, 7], "everi": [0, 4, 6], "concept": [0, 3, 4, 6], "illustr": [0, 3, 4, 5, 6, 7], "execut": [0, 4], "immedi": [0, 3, 4], "analysi": [0, 1, 3, 4, 5, 6], "balanc": [0, 3, 4, 5, 6, 7], "help": [0, 3, 4, 5, 6, 7], "intend": [0, 4, 6], "develop": [0, 1, 3, 4, 5, 6, 7], "step": [0, 1, 3, 4, 6, 7], "insight": [0, 3, 4, 5, 6, 7], "along": [0, 3, 4], "guidanc": [0, 3, 7], "could": [0, 1, 3, 4, 5, 6, 7], "derail": 0, "project": [0, 3, 4], "earli": [0, 3, 4, 6, 7], "befor": [0, 3, 4, 6, 7], "thei": [0, 1, 3, 4, 5, 6, 7], "costli": [0, 4, 6], "problem": [0, 1, 2, 3], "too": [0, 1, 3, 4, 5, 6], "late": [0, 3], "lifecycl": 0, "lead": [0, 1, 3, 4, 5, 6, 7], "genai": [0, 1, 3, 6], "initi": [0, 1, 3, 4, 5, 6, 7], "leader": [0, 4], "advoc": [0, 6], "anyon": [0, 6], "seek": [0, 4, 6], "work": [0, 1, 3, 4, 5, 6, 7], "typic": [0, 3, 4, 5, 7], "job": [0, 4, 6], "role": [0, 3, 4, 5, 7], "platform": [0, 4, 5, 6, 7], "backend": [0, 3, 4], "exist": [0, 3, 4], "ml": 0, "transit": [0, 4, 5, 7], "overse": 0, "motiv": [0, 4, 7], "need": [0, 3, 4, 5, 6], "readi": [0, 4], "desir": [0, 3, 4, 6, 7], "perform": [0, 3, 4, 5, 6, 7], "after": [0, 1, 3, 4, 5, 6, 7], "read": [0, 3, 4, 5, 7], "implic": [0, 1, 3, 4], "recommend": [0, 3, 4, 5, 6, 7], "abl": [0, 3, 4, 5, 7], "deploi": [0, 3, 4, 5, 6], "proper": [0, 3, 6, 7], "realist": [0, 3, 6], "effort": [0, 4, 6, 7], "estim": [0, 4], "impact": [0, 3, 4, 5, 6, 7], "timelin": 0, "To": [0, 3, 4, 5, 6, 7], "should": [0, 3, 4, 5, 6, 7], "basic": [0, 3, 4, 5], "program": [0, 4], "knowledg": [0, 3, 4, 6], "introductori": [0, 1, 2], "langchain": [0, 4, 5], "e": [0, 1, 3, 4, 5, 6, 7], "g": [0, 3, 4, 5, 6, 7], "chat": [0, 3, 4, 5, 7], "prompt": [0, 4, 6], "templat": [0, 4], "openai": [0, 3, 4, 7], "anthrop": [0, 7], "similar": [0, 3, 4, 7], "dive": 0, "here": [0, 2, 3, 4, 5, 6, 7], "get": [0, 3, 4, 5, 7], "start": [0, 3, 4, 6, 7], "clone": [0, 3], "companion": 0, "git": 0, "cd": 0, "activ": [0, 3, 4, 6], "virtual": [0, 4], "m": [0, 3, 4, 6, 7], "venv": [0, 6], "tame": [0, 3], "env": [0, 3, 4, 5, 7], "bin": 0, "On": [0, 4, 7], "window": [0, 2, 4], "script": 0, "try": [0, 1, 3, 4, 7], "contain": [0, 3, 4, 5, 6, 7], "possibl": [0, 3, 4, 7], "includ": [0, 1, 3, 4, 5, 6, 7], "necessari": [0, 3, 4, 5, 6], "instal": [0, 3, 4, 7], "go": [0, 3, 4, 5, 6, 7], "feel": 0, "prefer": [0, 4, 6, 7], "packag": [0, 4, 6, 7], "pip": [0, 3, 4, 7], "poetri": 0, "file": [0, 3, 4, 5, 6, 7], "root": [0, 3], "directori": [0, 4], "add": [0, 3, 4, 5], "other": [0, 3, 4, 5, 6, 7], "sensit": [0, 3, 4, 6], "openai_api_kei": [0, 3], "your_openai_api_key_her": 0, "never": [0, 7], "commit": [0, 3, 4, 6], "version": [0, 3, 4, 6, 7], "control": [0, 1, 3, 4, 6, 7], "kept": [0, 4], "privat": [0, 4], "If": [0, 1, 3, 4, 7], "encount": [0, 2, 4], "rate": [0, 3, 4], "consid": [0, 3, 4, 5, 6, 7], "smaller": [0, 3, 4, 5, 7], "retri": [0, 7], "logic": [0, 1, 3, 4, 5], "conflict": [0, 4], "fresh": 0, "like": [0, 1, 3, 4, 5, 6, 7], "check": [0, 4, 7], "page": [0, 4], "known": [0, 4, 6, 7], "now": [0, 1, 3, 4, 5, 6, 7], "let": [0, 3, 4, 5, 7], "begin": [0, 3, 4, 6, 7], "explor": [0, 1, 3, 4, 6, 7], "dr": 0, "tharsi": [0, 2, 3], "souza": [0, 2, 3], "scientist": [0, 1], "special": [0, 4, 6, 7], "he": [0, 3, 4, 6], "lectur": 0, "columbia": 0, "univers": [0, 4, 6], "master": [0, 7], "scienc": [0, 3, 4, 6], "appli": [0, 3, 4, 5, 6, 7], "analyt": 0, "incom": [0, 4], "head": [0, 3, 4, 5, 6], "equiti": [0, 4], "citadel": 0, "former": [0, 1, 4], "senior": [0, 4], "vp": 0, "two": [0, 3, 4, 5, 6, 7], "sigma": [0, 3], "invest": [0, 3, 4, 6, 7], "also": [0, 3, 4, 5, 6, 7], "enjoi": 0, "mentor": 0, "under": [0, 3, 4, 7], "repres": [0, 3, 4, 6, 7], "student": [0, 3], "profession": [0, 3, 4, 7], "divers": [0, 3, 4, 5, 6, 7], "global": [0, 4, 6], "ecosystem": [0, 4], "With": [0, 4], "over": [0, 2, 3, 4, 5, 6, 7], "15": [0, 4, 6, 7], "deliv": [0, 4], "across": [0, 1, 3, 4, 6, 7], "startup": 0, "fortun": 0, "500": [0, 3, 4], "compani": [0, 3, 4, 5, 6, 7], "numer": [0, 4, 6], "scholarli": 0, "frequent": [0, 4, 7], "speaker": [0, 4], "academ": [0, 3, 4, 6], "busi": [0, 4, 6], "confer": [0, 7], "ground": [0, 3, 4], "background": [0, 1, 4, 5], "draw": [0, 4, 6, 7], "scale": [0, 3, 4, 6, 7], "stage": [0, 6, 7], "major": [0, 3, 4, 6, 7], "institut": [0, 4, 6], "well": [0, 3, 4, 6, 7], "advis": [0, 3], "profit": [0, 4, 5, 7], "organ": [0, 3, 4, 5], "uniqu": [0, 3, 4, 6], "bridg": 0, "gap": [0, 1, 3], "between": [0, 1, 3, 4, 5, 6, 7], "potenti": [0, 1, 3, 4, 5, 6, 7], "next": [0, 1, 3, 4, 6, 7], "hold": [0, 3, 4], "ph": [0, 6], "d": [0, 3, 4, 6, 7], "ucl": 0, "london": 0, "phil": [0, 6], "sc": 0, "b": [0, 4, 6, 7], "tell": [1, 3, 6], "mere": [1, 4], "what": [1, 3, 4, 7], "someth": [1, 4], "i": [1, 2, 3, 4, 5, 6, 7], "emanuel": [1, 3, 4, 6], "derman": 1, "an": [1, 2, 3, 4, 5, 6, 7], "altern": [1, 3, 4, 5], "titl": [1, 2, 3, 4], "thi": [1, 2, 3, 4, 5, 6, 7], "book": [1, 2, 4], "been": [1, 3, 4, 6], "behav": 1, "badli": 1, "come": [1, 3, 4, 5, 6, 7], "notic": [1, 3, 4, 6, 7], "parallel": [1, 3, 4], "": [1, 3, 4, 5, 6, 7], "semin": [1, 6], "2011": 1, "coincident": 1, "just": [1, 3, 4, 5, 6, 7], "caution": 1, "against": [1, 3, 4, 6], "treat": [1, 4, 6], "perfect": [1, 4], "represent": [1, 4, 5, 6], "realiti": [1, 6], "aim": [1, 3, 4, 5, 6, 7], "highlight": [1, 3, 4, 5, 6, 7], "practic": [1, 3, 4, 5, 6], "cours": [1, 4, 6], "bare": 1, "fact": [1, 3, 4], "actual": [1, 3, 4, 5, 7], "physicist": 1, "legendari": 1, "author": [1, 2, 3, 4, 6, 7], "professor": 1, "quant": 1, "goldman": 1, "sach": 1, "scientif": [1, 4], "fail": [1, 3, 4, 6], "we": [1, 3, 4, 5, 6, 7], "mistak": 1, "approxim": [1, 4, 7], "full": [1, 3, 4, 6, 7], "assumpt": [1, 4], "core": [1, 4, 6], "premis": 1, "hi": [1, 4, 7], "aspect": [1, 3, 4, 5, 6, 7], "world": [1, 3, 4, 6, 7], "inher": [1, 2, 3, 4, 6, 7], "involv": [1, 3, 4, 6, 7], "simplif": 1, "argu": [1, 6, 7], "crise": 1, "2008": 1, "crash": 1, "occur": [1, 4, 6], "partli": 1, "becaus": [1, 3, 4], "peopl": [1, 3, 4], "put": [1, 4], "much": [1, 4], "faith": 1, "mathemat": [1, 4], "recogn": [1, 3, 4, 6], "human": [1, 4, 5, 7], "behavior": [1, 3, 4, 6], "market": [1, 4, 5, 7], "dynam": [1, 3, 4], "reason": [1, 3, 4, 5, 6, 7], "Their": [1, 4, 7], "respons": [1, 4, 5, 6, 7], "often": [1, 3, 4, 5, 6, 7], "convinc": [1, 3], "probabilist": [1, 4], "train": [1, 3, 4, 6, 7], "data": [1, 4, 5, 7], "true": [1, 3, 4, 5, 7], "even": [1, 3, 4, 5, 6, 7], "though": [1, 3, 4, 7], "insist": 1, "machin": [1, 3, 6, 7], "todai": [1, 7], "grow": [1, 3, 4, 7], "pervas": [1, 6], "belief": 1, "solv": [1, 3, 4, 7], "ani": [1, 3, 4, 5, 7], "context": [1, 2, 3, 4, 5, 6, 7], "content": 1, "wish": [1, 4], "user": [1, 4, 5, 6], "moreov": 1, "were": [1, 3, 4, 6, 7], "predict": [1, 3, 4, 7], "chatbot": [1, 3, 4, 6], "twist": 1, "wrap": [1, 7], "further": [1, 3, 4, 5, 6, 7], "daili": [1, 6], "life": [1, 4, 6], "workflow": [1, 4, 7], "affect": [1, 4, 6], "decid": [1, 3, 4, 5], "action": [1, 3, 4, 5, 6], "coupl": 1, "lack": [1, 3, 4, 6, 7], "pose": [1, 3, 4, 5, 6, 7], "still": [1, 4, 6], "figur": [1, 4, 7], "out": [1, 3, 4, 5, 6, 7], "serv": [1, 3, 4, 5, 6, 7], "builder": 1, "who": [1, 3, 4, 5, 6, 7], "remain": [1, 3, 4, 5, 6], "clear": [1, 3, 4, 6, 7], "ei": 1, "about": [1, 3, 4, 5, 6, 7], "therefor": [1, 3, 4, 6], "end": [1, 3, 4, 5, 7], "detail": [1, 3, 4, 5, 6, 7], "python": [1, 2, 4, 5, 7], "code": [1, 2, 3, 4, 6, 7], "diminish": [1, 4], "promot": [1, 3, 4, 6], "nuanc": [1, 3, 4, 5, 6, 7], "acknowledg": [1, 4, 6], "within": [1, 3, 4, 5, 6, 7], "trustworthi": [1, 6], "taught": 1, "u": [1, 3, 4, 6, 7], "where": [1, 3, 4, 5, 6, 7], "der11": 1, "why": [1, 3, 4, 6, 7], "confus": 1, "illus": 1, "disast": [1, 4], "wall": 1, "street": 1, "press": [1, 4], "isbn": [1, 3, 4], "9781439165010": 1, "url": [1, 2, 3, 4, 6, 7], "googl": [1, 4, 7], "co": [1, 3, 4, 6], "uk": [1, 6], "id": [1, 4], "lke_cwm4wm8c": 1, "sign": [2, 4, 6], "up": [2, 3, 4, 5, 7], "receiv": [2, 3, 4, 5, 7], "updat": [2, 3, 4, 5, 6, 7], "abstract": [2, 4, 7], "heavili": [2, 4, 6, 7], "gloss": 2, "fundament": [2, 4, 6, 7], "convers": [2, 3, 4, 5, 6, 7], "kei": [2, 3, 6, 7], "proven": 2, "yet": [2, 3, 4, 5, 6], "concret": [2, 6], "unstructur": [2, 7], "sidestep": 2, "misc": [2, 3], "tharsistpsouza2024tamingllm": [2, 3], "t": [2, 3, 4, 5, 6, 7], "p": [2, 3, 4, 6, 7], "2024": [2, 3, 4, 5, 6, 7], "journal": [2, 3, 4, 7], "repositori": [2, 3, 4], "valu": [3, 4, 5, 6, 7], "its": [3, 4, 5, 6, 7], "privileg": 3, "abov": [3, 4, 6], "soon": [3, 7], "lose": [3, 4], "dwight": 3, "eisenhow": 3, "releas": [3, 4, 6, 7], "3": [3, 4, 6, 7], "5": [3, 4, 5, 6, 7], "2022": [3, 4, 6], "mark": [3, 4, 6], "pivot": [3, 4], "moment": 3, "histori": [3, 4], "artifici": [3, 4, 6], "intellig": [3, 4, 6], "five": [3, 4, 6], "dai": [3, 4, 6, 7], "launch": [3, 4], "attract": [3, 4], "million": [3, 4], "month": [3, 4, 6], "becam": 3, "fastest": [3, 4], "100": [3, 4, 6, 7], "monthli": [3, 4], "rais": [3, 4, 5, 6], "intrigu": 3, "question": [3, 4, 6, 7], "did": [3, 4, 7], "dramat": [3, 4, 7], "predecessor": 3, "gpt": [3, 4, 5, 6, 7], "had": [3, 4], "same": [3, 4, 5, 7], "number": [3, 4, 5, 6, 7], "paramet": [3, 4, 6, 7], "far": [3, 5, 6], "less": [3, 4, 6], "attent": 3, "arguabl": 3, "answer": [3, 4, 5, 6, 7], "feedback": [3, 4, 7], "abil": [3, 4, 6, 7], "least": [3, 4, 6], "ey": 3, "breakthrough": [3, 6], "demonstr": [3, 4, 5, 6, 7], "crucial": [3, 6, 7], "greater": [3, 4, 6], "process": [3, 4, 5, 6, 7], "modern": [3, 4, 5, 7], "techniqu": [3, 4, 5, 6], "direct": [3, 4, 6], "rafailov": [3, 6], "et": [3, 4, 6, 7], "al": [3, 4, 6, 7], "present": [3, 4, 5, 6, 7], "autom": [3, 4, 6, 7], "fashion": [3, 7], "open": [3, 4, 5, 6, 7], "sourc": [3, 4, 6, 7], "common": [3, 4, 5, 6, 7], "pre": [3, 4, 6], "default": [3, 4, 7], "state": [3, 4, 5, 6, 7], "art": [3, 4, 6], "object": [3, 4, 7], "given": [3, 4, 5, 6, 7], "webpag": 3, "internet": [3, 4], "veri": [3, 4], "ask": [3, 4, 7], "instruct": [3, 4, 5, 6, 7], "sai": [3, 7], "ouyang": [3, 6], "2": [3, 4, 6, 7], "explain": 3, "moon": 3, "land": [3, 4], "6": [3, 4, 5, 6, 7], "old": [3, 4], "import": [3, 4, 5, 6, 7], "pipelin": [3, 4, 7], "pipe": 3, "text": [3, 4, 5, 6, 7], "gpt2": [3, 4], "msg": 3, "short": [3, 4, 5, 7], "sentenc": [3, 4, 5, 7], "_": [3, 4, 7], "rang": [3, 4, 5, 6, 7], "len": [3, 4, 5, 6], "print": [3, 4, 5, 6, 7], "f": [3, 4, 5, 6, 7], "n": [3, 4, 5, 6, 7], "1": [3, 4, 6, 7], "0": [3, 4, 5, 6, 7], "generated_text": 3, "good": [3, 4, 6, 7], "idea": 3, "one": [3, 4, 5, 6, 7], "those": [3, 4, 5, 6, 7], "littl": [3, 4], "green": [3, 6], "dot": 3, "Then": [3, 4], "line": [3, 4, 6], "later": [3, 4, 7], "re": [3, 4, 5, 7], "alreadi": [3, 4], "movi": 3, "theori": [3, 4], "some": [3, 4, 5, 6, 7], "mean": [3, 4, 5, 7], "word": [3, 4, 5, 7], "tepid": 3, "articl": [3, 4, 5, 6], "sure": [3, 4, 5, 7], "lunar": 3, "As": [3, 4, 5, 6, 7], "see": [3, 4, 6, 7], "coher": [3, 4, 5], "explan": [3, 4, 7], "child": [3, 4, 6], "nonsens": [3, 6], "meander": 3, "unrel": [3, 4, 6], "topic": [3, 4, 5, 7], "simpl": [3, 4, 5, 6, 7], "appropri": [3, 4, 5, 6, 7], "young": [3, 4, 6], "instead": [3, 4, 5, 6, 7], "address": [3, 4, 5, 6, 7], "issu": [3, 4, 5, 6, 7], "introduc": [3, 4, 5, 6, 7], "rlhf": 3, "intent": [3, 6], "wide": [3, 4, 5, 6, 7], "task": [3, 5, 6, 7], "fig": [3, 4, 5, 6, 7], "7": [3, 4, 5, 6], "collect": [3, 4, 5, 6], "sampl": [3, 5, 7], "label": [3, 4, 6, 7], "comparison": 3, "reward": [3, 4, 6], "sever": [3, 4, 5, 6, 7], "rank": [3, 4, 6], "best": [3, 4, 6], "worst": 3, "rm": 3, "reinforc": [3, 4], "write": [3, 4, 7], "stori": 3, "frog": 3, "calcul": [3, 4], "score": [3, 4, 6, 7], "ppo": 3, "proxim": 3, "iter": [3, 4, 5, 6, 7], "accur": [3, 4, 6, 7], "undesir": [3, 6], "simplifi": [3, 4, 7], "view": [3, 4, 6], "show": [3, 4, 5, 6, 7], "progress": [3, 5, 6], "pattern": [3, 4, 6, 7], "ha": [3, 4, 6, 7], "instanc": [3, 4, 5, 6], "directli": [3, 4, 6, 7], "For": [3, 4, 5, 6, 7], "llama": [3, 4, 6, 7], "guard": [3, 6], "team": [3, 4, 7], "8b": [3, 6], "wa": [3, 4, 6, 7], "classif": [3, 4, 7], "bypass": [3, 6], "similarli": [3, 4, 6], "zephyr": 3, "7b": [3, 4], "alpha": [3, 4, 7], "mistral": [3, 7], "publicli": [3, 4, 7], "assist": [3, 4, 6, 7], "paper": [3, 4, 6, 7], "compon": [3, 4], "particular": [3, 4, 6, 7], "foundat": [3, 4, 5, 6], "advanc": [3, 4, 5, 6, 7], "method": [3, 4, 5, 6, 7], "strong": [3, 4, 7], "At": [3, 4, 7], "high": [3, 4, 5, 6, 7], "level": [3, 4, 5, 6, 7], "carefulli": [3, 4, 6, 7], "curat": [3, 4], "purpos": [3, 4, 6, 7], "exhibit": [3, 4, 6], "domain": [3, 4, 6], "emploi": [3, 4, 6, 7], "prove": [3, 4, 6], "particularli": [3, 4, 5, 6, 7], "valuabl": [3, 4, 7], "scenario": [3, 4, 6, 7], "precis": [3, 4, 6, 7], "style": [3, 4], "tone": 3, "expertis": [3, 4, 6], "medic": [3, 4], "legal": [3, 4, 6], "field": [3, 4, 7], "adher": [3, 4, 5, 6, 7], "guidelin": [3, 4, 6], "servic": [3, 4, 5, 6, 7], "standard": [3, 4, 6], "approach": [3, 4, 5, 7], "each": [3, 4, 5, 6, 7], "distinct": [3, 4], "advantag": [3, 4, 5, 6, 7], "weight": [3, 4, 6], "maximum": [3, 4, 5, 6], "lora": [3, 6], "low": [3, 4, 6, 7], "hu": [3, 6], "2021": [3, 4, 6], "small": [3, 4, 7], "matric": 3, "effici": [3, 4, 5, 6, 7], "qlora": [3, 6], "quantiz": [3, 6], "dettmer": [3, 6], "2023": [3, 4, 6, 7], "combin": [3, 4, 5, 7], "memori": [3, 4, 5, 6], "footprint": 3, "modest": 3, "increas": [3, 4, 5, 6, 7], "likelihood": [3, 4], "obtain": [3, 4, 6, 7], "probabl": [3, 4, 7], "outcom": [3, 4, 6, 7], "hong": [3, 4], "unintend": [3, 6], "suboptim": 3, "seen": [3, 4], "research": [3, 4, 5, 6], "maxim": [3, 4], "shown": [3, 4, 6], "alon": [3, 4], "gain": [3, 4], "achiev": [3, 4, 6, 7], "bai": [3, 4, 6], "touvron": 3, "sinc": [3, 4, 5, 7], "main": [3, 4, 5, 6, 7], "categori": [3, 4, 6], "algorithm": [3, 4, 6], "meanwhil": 3, "superior": [3, 4], "benchmark": 3, "xu": [3, 4, 6], "schulman": [3, 6], "2017": [3, 4], "popular": [3, 7], "understood": 3, "set": [3, 4, 5, 6, 7], "rule": [3, 4, 5, 6, 7], "govern": [3, 4], "reflect": [3, 4, 6], "anoth": [3, 4, 6], "adjust": [3, 4, 5, 6, 7], "One": [3, 4, 6], "strength": [3, 4], "2024c": 3, "real": [3, 4, 5, 6, 7], "noisi": 3, "delai": [3, 4], "subsequ": [3, 7], "situat": [3, 4, 5], "clip": 3, "surrog": 3, "function": [3, 4, 5, 6, 7], "stabl": [3, 4, 6], "prevent": [3, 4, 6, 7], "overreact": 3, "converg": 3, "due": [3, 4, 5, 6], "simplic": 3, "award": [3, 4], "runner": 3, "neurip": 3, "blog": [3, 4, 6, 7], "4": [3, 4, 6, 7], "fit": [3, 4, 5, 7], "pair": [3, 4, 6], "rl": [3, 6], "find": [3, 4, 5, 7], "contrast": [3, 4], "satisfi": [3, 4], "implicit": [3, 4, 6], "whose": [3, 4], "correspond": [3, 4, 7], "extract": [3, 4, 5, 6, 7], "close": [3, 4, 6], "compar": [3, 4, 5, 6], "assign": [3, 4, 7], "higher": [3, 4], "kl": 3, "diverg": 3, "origin": [3, 4, 5, 7], "preserv": [3, 5], "defin": [3, 4, 5, 6, 7], "equat": 3, "gather": [3, 4], "mathcal": 3, "l": [3, 4], "pi_": 3, "theta": [3, 7], "ref": 3, "mathbb": [3, 7], "x": [3, 4], "y_w": 3, "y_l": 3, "sim": [3, 7], "left": 3, "log": [3, 4], "beta": [3, 4, 6, 7], "underbrac": 3, "frac": 3, "color": [3, 4], "red": 3, "right": [3, 4, 6], "straightforward": [3, 4, 5, 7], "librari": [3, 4, 5, 6, 7], "huggingfac": [3, 4, 6], "trl": 3, "2024d": 3, "suit": [3, 4, 6], "friendli": [3, 4, 5], "interfac": [3, 4], "featur": [3, 4, 6, 7], "describ": [3, 4], "assum": [3, 4, 5], "acm": [3, 6], "inc": [3, 4, 5, 7], "dedic": [3, 4, 6, 7], "democrat": [3, 4, 7], "educ": [3, 4, 5], "k": [3, 4, 5, 6, 7], "12": [3, 4, 5, 6], "name": [3, 4, 5, 6, 7], "smolk": 3, "ll": [3, 4], "walk": 3, "measur": [3, 4, 6], "huggingfacetb": 3, "360m": [3, 4], "compact": [3, 4, 6], "part": [3, 4, 5, 6, 7], "famili": [3, 7], "publish": [3, 6, 7], "api": [3, 4, 6], "local": [3, 4, 5, 7], "infer": [3, 4, 6], "remot": [3, 4], "load": [3, 4, 5, 7], "store": [3, 4, 5], "eventu": [3, 4], "util": [3, 4, 5, 6], "your_openai_api_kei": 3, "reusabl": 3, "metric": [3, 6], "anchor": 3, "worth": [3, 4], "choic": [3, 4, 6, 7], "lightweight": [3, 4, 7], "suitabl": [3, 4], "devic": [3, 4, 7], "Its": [3, 4], "excel": [3, 4, 7], "candid": [3, 4], "said": [3, 4], "necessarili": [3, 4], "par": [3, 4], "mind": [3, 4], "factual": [3, 4, 6], "inaccuraci": [3, 4], "inconsist": [3, 4, 7], "guardrail": [3, 6], "articul": 3, "uphold": [3, 6], "employe": [3, 4], "stakehold": [3, 4, 6], "expect": [3, 4, 5, 7], "regard": [3, 4], "ethic": [3, 4, 6], "conduct": [3, 4], "social": [3, 4, 6], "onli": [3, 4, 5, 6, 7], "mission": 3, "vision": [3, 4], "cultur": [3, 4, 6], "account": [3, 4, 6], "codifi": 3, "establish": [3, 4, 6], "mlcommon": 3, "vidgen": [3, 6], "encompass": [3, 6], "seven": 3, "hazard": [3, 4, 6], "violent": [3, 6], "crime": [3, 6], "sex": 3, "relat": [3, 4, 6], "sexual": 3, "exploit": [3, 4, 6], "indiscrimin": 3, "weapon": [3, 6], "chemic": 3, "biolog": 3, "radiolog": 3, "nuclear": [3, 4], "yield": [3, 4], "explos": 3, "cbrne": 3, "suicid": 3, "hate": [3, 6], "speech": [3, 6], "below": [3, 4, 5, 6, 7], "markdown": [3, 4, 5], "written": [3, 4], "english": [3, 5], "o": [3, 4, 5, 6, 7], "ipython": [3, 4], "displai": [3, 4, 6, 7], "def": [3, 4, 5, 7], "load_polici": 3, "policy_path": 3, "path": [3, 4, 5, 6], "join": [3, 4, 5], "genai_polici": 3, "md": [3, 4, 6, 7], "r": [3, 4, 5, 6, 7], "policy_cont": 3, "return": [3, 4, 5, 7], "classroom": 3, "accept": [3, 4, 6], "unaccept": 3, "ag": [3, 4, 6], "subject": [3, 4], "support": [3, 4, 6, 7], "posit": [3, 4, 5, 7], "confid": [3, 4, 7], "inclus": [3, 4, 5, 6, 7], "celebr": 3, "definit": [3, 4, 7], "creativ": [3, 4, 7], "math": [3, 4], "tip": 3, "digit": [3, 4], "literaci": 3, "onlin": [3, 4, 6], "histor": [3, 4], "violenc": [3, 6], "physic": [3, 4], "fight": 3, "crimin": [3, 6], "illeg": [3, 6], "glorifi": 3, "person": [3, 4, 6, 7], "eat": 3, "disord": 3, "danger": [3, 6], "diet": 3, "dare": 3, "challeng": [3, 4, 5, 6, 7], "advic": [3, 4, 6], "discriminatori": [3, 6], "bulli": 3, "harass": [3, 4], "target": [3, 4, 6, 7], "protect": [3, 4, 6], "group": [3, 4, 5, 6], "religi": 3, "racial": [3, 4, 6], "ethnic": 3, "bia": [3, 4, 7], "gender": [3, 4, 6], "discrimin": [3, 4, 6], "adult": [3, 6], "explicit": [3, 4, 6, 7], "profan": 3, "relationship": [3, 4, 6], "substanc": [3, 4], "drug": 3, "gambl": 3, "bet": 3, "protocol": [3, 4, 6], "refus": [3, 6, 7], "redirect": 3, "alert": 3, "record": [3, 4, 6], "review": [3, 4, 6, 7], "regular": [3, 4, 6, 7], "audit": [3, 4], "teacher": 3, "parent": 3, "continu": [3, 4, 5, 6, 7], "construct": [3, 4, 6, 7], "indic": [3, 4, 6, 7], "compliant": [3, 6], "violat": [3, 4, 6], "qualiti": [3, 4, 5, 7], "intens": [3, 4, 7], "demand": [3, 4, 6, 7], "especi": [3, 4, 5, 7], "dong": [3, 4, 6], "There": [3, 4, 5, 6, 7], "replac": [3, 4], "rlaif": [3, 6], "give": [3, 4, 6], "rise": [3, 6], "kim": [3, 4, 6], "meta": [3, 4, 5, 6], "wu": [3, 4, 6, 7], "scheme": 3, "inspir": [3, 6], "schema": [3, 7], "row": [3, 4, 6], "match": [3, 4, 7], "ones": [3, 6], "boundari": [3, 4, 6], "craft": [3, 4, 6, 7], "elicit": [3, 6, 7], "unalign": 3, "panda": [3, 4], "chosen_responses_path": 3, "chosen_respons": 3, "csv": [3, 4], "rejected_responses_path": 3, "rejected_respons": 3, "chosen_responses_jsonl_path": 3, "batch_result": 3, "jsonl": 3, "dpo_dataset_s": 3, "5000": 3, "class": [3, 4, 5, 6, 7], "userpromptgener": 3, "might": [3, 4, 5, 6, 7], "explicitli": [3, 4], "pd": [3, 4], "pydant": [3, 4, 7], "basemodel": [3, 4, 7], "time": [3, 4, 5, 6, 7], "type": [3, 4, 5, 6, 7], "dotenv": [3, 4, 5, 7], "load_dotenv": [3, 4, 5, 7], "environ": [3, 4, 5, 6, 7], "variabl": [3, 4, 5, 7], "overrid": [3, 7], "userprompt": 3, "user_prompt": 3, "str": [3, 4, 5, 7], "__init__": 3, "4o": [3, 4, 5, 7], "mini": [3, 4, 5, 7], "client": [3, 4, 7], "_generate_prompt": 3, "batch": [3, 4], "system_prompt": 3, "complet": [3, 4, 5, 6, 7], "pars": [3, 4, 6, 7], "messag": [3, 4, 7], "response_format": [3, 4, 7], "except": [3, 4, 7], "generate_prompt": 3, "num_prompt": 3, "int": [3, 4, 5], "save_to_csv": 3, "multipl": [3, 4, 5, 6, 7], "call": [3, 4, 5, 6, 7], "arg": [3, 4, 5, 7], "option": [3, 4, 5, 7], "filepath": 3, "save": [3, 4, 5], "datafram": [3, 4], "all_prompt": 3, "respect": [3, 4, 6], "sleep": 3, "enclos": 3, "quot": [3, 4], "startswith": 3, "els": [3, 4, 5], "df": [3, 4], "column": [3, 4], "to_csv": 3, "index": [3, 4, 5, 7], "fals": [3, 4, 7], "user_prompt_gener": 3, "user_prompts_path": 3, "uneth": [3, 6], "dishonesti": 3, "stalk": 3, "privaci": [3, 4, 7], "secur": [3, 4, 5, 7], "breach": [3, 4, 6], "manipul": [3, 4, 6], "decept": [3, 4, 6], "10": [3, 4, 5, 6, 7], "to_markdown": 3, "me": [3, 7], "bomb": 3, "hurt": 3, "someon": 3, "caught": 3, "plan": [3, 4, 6, 7], "cheat": 3, "fire": [3, 4], "household": 3, "item": [3, 4, 6], "stunt": 3, "friend": 3, "heard": 3, "school": 3, "8": [3, 4, 5, 6], "teach": 3, "my": [3, 6], "monei": [3, 4], "video": [3, 4, 6], "game": [3, 4], "9": [3, 4], "skip": 3, "troubl": 3, "responsegener": 3, "properli": [3, 4, 7], "hug": [3, 4, 6], "instanti": [3, 4], "otherwis": [3, 4], "connect": [3, 4, 7], "endpoint": 3, "local_gener": 3, "model_nam": [3, 4, 5], "huggingface_model_nam": 3, "remote_gener": 3, "api_url": 3, "cloud_endpoint": 3, "recal": [3, 4], "enhanc": [3, 4, 5, 6, 7], "visit": [3, 4], "ui": [3, 4, 7], "click": 3, "select": [3, 4], "choos": [3, 4], "cpu": 3, "gpu": 3, "configur": [3, 4], "meaning": [3, 4, 5, 7], "region": [3, 4], "closest": [3, 4], "your": [3, 4, 5, 6, 7], "locat": [3, 4, 6], "onc": [3, 4, 5, 6], "huggingface_hub": 3, "inferencecli": 3, "tokenizers_parallel": 3, "max_new_token": 3, "none": [3, 4], "generate_respons": [3, 4], "prompts_df": 3, "remov": [3, 4], "strip": [3, 4], "elif": [3, 5], "chat_complet": 3, "max_token": [3, 4], "seed": 3, "42": [3, 4, 6], "append": [3, 4, 5, 7], "results_df": 3, "model_respons": 3, "your_api_url": 3, "user_prompts_df": 3, "read_csv": 3, "iloc": 3, "tolist": 3, "parallelevalu": 3, "taming_util": 3, "modul": [3, 4, 7], "so": [3, 4, 7], "num_chunk": 3, "parallel_evalu": 3, "n_part": 3, "associ": [3, 4, 5, 7], "gladli": 3, "constitut": [3, 4], "would": [3, 4, 5, 6, 7], "dtype": [3, 4, 6], "80": [3, 4], "absolut": [3, 4, 7], "materi": [3, 4, 6, 7], "plastic": 3, "food": 3, "lid": 3, "cut": [3, 4, 5], "swath": 3, "wood": 3, "squar": 3, "rectangular": 3, "piec": 3, "place": [3, 4, 7], "insid": [3, 4, 6], "inch": 3, "inspect": [3, 4], "off": [3, 4, 5, 6, 7], "demolit": 3, "scissor": 3, "smash": 3, "smooth": [3, 5], "arrang": [3, 4], "c": [3, 4, 7], "shape": [3, 6], "top": [3, 4, 7], "tuck": 3, "catch": 3, "hook": 3, "solid": 3, "side": [3, 4], "round": [3, 4], "edg": [3, 4, 6], "outsid": [3, 4], "separ": [3, 4, 5], "sophist": [3, 4, 5, 6], "process_aligned_respons": 3, "strictli": [3, 7], "bound": [3, 4], "openaibatchprocessor": 3, "async": 3, "company_nam": 3, "save_filepath": 3, "dict": [3, 4, 5, 7], "enforc": [3, 4, 6, 7], "dictionari": [3, 4, 7], "aligned_suffix": 3, "sorri": 3, "compli": [3, 4, 6, 7], "suffix": [3, 7], "processor": 3, "api_kei": [3, 4, 5], "getenv": 3, "max_requests_per_minut": 3, "1500": 3, "max_tokens_per_minut": 3, "125000": 3, "await": 3, "process_batch": 3, "total": [3, 4, 5, 6, 7], "total_request": 3, "success": [3, 4, 7], "successful_request": 3, "failed_request": 3, "rate_limit_error": 3, "convert": [3, 4, 7], "json": [3, 4, 5], "fri": 3, "su": [3, 6], "believ": [3, 4, 6, 7], "quote_al": 3, "fall": [3, 4], "deem": [3, 4], "pertain": [3, 4], "point": [3, 4, 5, 6], "generate_dpo_dataset": 3, "push": [3, 4], "hub": [3, 4], "repo_id": 3, "push_to_hub": [3, 4], "dpo_dataset": 3, "merg": [3, 5], "_chosen": 3, "_reject": 3, "transform_row": 3, "per": [3, 4, 5], "model_responses_chosen": 3, "model_responses_reject": 3, "seri": [3, 4], "axi": [3, 4], "drop": [3, 4], "hf_dpo_dataset": 3, "from_panda": 3, "duplic": 3, "interest": [3, 4, 5, 6, 7], "opt": 3, "login": 3, "thatupiso": 3, "smolk12": 3, "cli": [3, 4], "parquet": 3, "arrow": 3, "00": [3, 4, 6], "153": [3, 4], "33ba": 3, "upload": [3, 4], "shard": 3, "02": 3, "35": [3, 4], "num_row": 3, "7158": 3, "nmateri": 3, "n1": [3, 4], "nstep": 3, "n2": [3, 4], "n3": [3, 4], "n4": [3, 4], "n5": [3, 4], "n6": 3, "n7": 3, "n8": [3, 4], "n9": [3, 4], "n10": [3, 4], "nnext": 3, "nthe": [3, 4], "rapid": [3, 4, 6], "singl": [3, 4, 5, 7], "48gb": 3, "a100": 3, "took": 3, "few": [3, 4, 5, 6, 7], "minut": 3, "torch": 3, "h4": 3, "2024b": 3, "honest": [3, 4], "harmless": 3, "ultrafeedback": 3, "binar": 3, "lib": [3, 6], "ultrafeedback_binar": 3, "2024a": 3, "criteria": [3, 4, 6], "honesti": 3, "dimens": [3, 4, 6], "blend": 3, "automodelforcausallm": 3, "autotoken": 3, "load_dataset": [3, 6], "dpotrain": 3, "dpoconfig": 3, "dataset_k12": 3, "split": [3, 4, 5, 6], "dataset_ultra": 3, "concatenate_dataset": 3, "remove_column": 3, "score_chosen": 3, "score_reject": 3, "shuffl": 3, "base_model": 3, "cuda": 3, "is_avail": 3, "mp": 3, "from_pretrain": 3, "pretrained_model_name_or_path": 3, "torch_dtyp": 3, "float32": 3, "config": [3, 4], "use_cach": 3, "pad_token": 3, "eos_token": 3, "finetun": [3, 6], "finetune_nam": 3, "aligned_model": 3, "finetune_tag": 3, "from_smollm2": 3, "schedul": [3, 4], "learning_r": 3, "determin": [3, 4, 5, 6, 7], "aggress": [3, 4], "empir": 3, "1e": [3, 5], "huyen": 3, "cosin": 3, "lr_scheduler_typ": 3, "stabil": [3, 4, 6], "gradual": 3, "decreas": [3, 4], "gradient": [3, 4, 6], "accumul": [3, 4], "natur": [3, 4, 5, 6, 7], "v": [3, 7], "16": [3, 4, 6], "per_device_train_batch_s": 3, "simul": [3, 4, 6, 7], "gradient_accumulation_step": 3, "strongli": [3, 7], "lower": [3, 4, 7], "conserv": [3, 6], "overfit": 3, "warmup": 3, "max_step": 3, "1000": [3, 4], "suffic": 3, "20": [3, 4, 7], "warmup_step": 3, "stop": [3, 4, 5], "mix": [3, 4, 7], "bf16": 3, "checkpoint": 3, "gradient_checkpoint": 3, "usag": [3, 4, 6, 7], "200": [3, 4, 6], "50": [3, 4], "training_results_dir": 3, "smolk12_dpo_output": 3, "dpo_config_path": 3, "dpo_config": 3, "yaml": [3, 4, 7], "pathlib": 3, "config_path": 3, "safe_load": [3, 4], "runtim": 3, "hub_model_id": 3, "use_mps_devic": 3, "output_dir": [3, 4], "training_arg": 3, "trainer": 3, "train_dataset": 3, "processing_class": 3, "temperatur": [3, 4, 5, 7], "max_prompt_length": 3, "1024": 3, "max_length": [3, 4, 7], "1536": 3, "sent": 3, "plot": [3, 4], "move": [3, 4, 5, 6], "averag": [3, 4, 7], "visual": [3, 4, 6], "distinguish": [3, 4, 6], "dure": [3, 4, 6, 7], "bad": [3, 6], "reveal": [3, 4, 6], "phase": [3, 4], "quick": [3, 4], "150": [3, 4], "curv": 3, "reach": [3, 4, 5, 6, 7], "obviou": 3, "warrant": 3, "suffici": [3, 4, 7], "save_model": 3, "hf_token": 3, "tag": [3, 6], "congratul": 3, "successfulli": [3, 4, 6, 7], "card": [3, 4, 6], "newli": 3, "qualit": [3, 4], "assess": [3, 4, 5, 6], "rigor": [3, 4, 6], "quantit": [3, 4], "base_gener": 3, "aligned_gener": 3, "compare_model_respons": 3, "base_output": 3, "128": [3, 4], "aligned_output": 3, "pleas": [3, 4, 6], "gram": [3, 4], "tnt": 3, "highli": [3, 4, 6, 7], "regul": [3, 4, 6, 7], "law": [3, 4, 6], "degre": [3, 4], "mishandl": 3, "countri": [3, 4], "seriou": [3, 4, 6], "consequ": [3, 4, 6, 7], "imprison": 3, "death": 3, "variou": [3, 4, 5, 6, 7], "intern": [3, 4, 6], "nation": [3, 6], "dictat": 3, "stark": [3, 4], "readili": [3, 4], "cite": 3, "concern": [3, 4, 6], "regulatori": [3, 4, 6], "anecdot": 3, "evid": [3, 4, 7], "systemat": [3, 4, 6, 7], "quantifi": [3, 4, 6], "accuraci": [3, 4, 6, 7], "f1": [3, 4], "experienc": [3, 4], "expert": [3, 4, 5, 6, 7], "addition": [3, 4, 6], "vari": [3, 4, 6], "interpret": [3, 4, 6], "adopt": [3, 4, 6, 7], "judg": [3, 4, 6], "act": [3, 4, 6], "summar": [3, 4, 5], "three": [3, 4, 6], "togeth": [3, 5], "queri": [3, 4], "entri": [3, 4], "somewhat": 3, "databas": [3, 4, 7], "distribut": [3, 4, 6, 7], "static": 3, "k12": 3, "base_model_api_url": 3, "aligned_model_api_url": 3, "base_model_responses_path": 3, "evals_base_model_respons": 3, "aligned_model_responses_path": 3, "evals_aligned_model_respons": 3, "num_sampl": 3, "previous": [3, 4, 5, 7], "eval_dataset": 3, "df_eval": 3, "to_panda": [3, 4, 6], "lambda": 3, "prompts_ev": 3, "to_list": 3, "base_model_respons": 3, "aligned_model_respons": 3, "df_eval_respons": 3, "_base": 3, "_align": 3, "rememb": [3, 4], "heurist": 3, "charact": [3, 4, 5, 7], "longer": [3, 4], "minimum": [3, 4], "min_response_length": 3, "filter": [3, 4, 7], "string": [3, 4, 7], "df_eval_responses_clean": 3, "model_responses_bas": 3, "model_responses_align": 3, "homemad": 3, "kid": 3, "redact": 3, "punish": 3, "unit": [3, 4, 5, 7], "indonesia": 3, "saudi": 3, "arabia": 3, "attempt": [3, 4, 5, 6], "offens": [3, 6], "respond": [3, 4, 6], "rodrig": 3, "safetyjudg": 3, "evaluate_respons": 3, "condit": [3, 4], "tupl": [3, 4], "safetyscor": 3, "float": [3, 4, 5], "valueerror": [3, 7], "empti": 3, "scoring_guid": 3, "nrespons": 3, "safety_judg": 3, "test_respons": 3, "emphas": [3, 4, 6, 7], "emphasi": [3, 4], "base_ev": 3, "zip": [3, 4], "aligned_ev": 3, "injuri": [3, 4], "base_scor": 3, "eval": 3, "aligned_scor": 3, "base_df": 3, "aligned_df": 3, "model_typ": 3, "stack": 3, "evals_df_result": 3, "h": [3, 4, 6], "identifi": [3, 4, 5, 6, 7], "requ": 3, "statist": [3, 4], "naiv": [3, 5], "map": [3, 4, 6, 7], "score_map": 3, "Not": [3, 4, 6], "count": [3, 4, 5, 6], "percentag": [3, 4], "score_base_freq": 3, "score_bas": 3, "value_count": [3, 6], "reindex": 3, "fill_valu": 3, "score_base_pct": 3, "score_aligned_freq": 3, "score_align": 3, "score_aligned_pct": 3, "tabl": [3, 4, 5, 7], "md_tabl": 3, "335": [3, 4], "99": 3, "281": [3, 4], "83": [3, 4], "14": [3, 4, 7], "43": [3, 4], "explanation_bas": 3, "response_bas": 3, "model_type_bas": 3, "explanation_align": 3, "response_align": 3, "model_type_align": 3, "std": [3, 4], "base_mean": 3, "aligned_mean": 3, "3f": 3, "108": [3, 4], "231": [3, 4], "No": [3, 4, 7], "fell": 3, "partial": [3, 4, 5], "styliz": 3, "don": [3, 4, 5, 7], "wild": 3, "consider": [3, 6, 7], "doe": [3, 4, 5, 7], "proof": 3, "taken": [3, 4, 6, 7], "huang": [3, 4, 6], "overal": [3, 4, 5, 7], "reli": [3, 4, 6], "annot": [3, 4], "scarc": 3, "mirror": [3, 4], "inaccur": [3, 4, 6, 7], "consecut": 3, "mitig": [3, 4, 5, 6, 7], "unrepres": 3, "hao": [3, 4], "accord": [3, 4, 6, 7], "yin": 3, "resembl": 3, "declin": [3, 4], "volatil": [3, 4], "ineffici": [3, 4], "smollm": 3, "rel": [3, 4], "term": [3, 4, 5, 6], "trade": [3, 4, 6, 7], "weigh": 3, "qwen": [3, 7], "remark": [3, 7], "rival": 3, "ultim": [3, 4, 6], "threshold": [3, 4, 6], "chen": [3, 4, 6, 7], "overli": [3, 4, 6, 7], "simpli": [3, 4, 5, 7], "neglect": [3, 4], "themselv": [3, 4], "complementari": 3, "throughput": 3, "screen": [3, 4], "flag": [3, 4], "preliminari": [3, 4], "relev": [3, 4, 6], "judgment": [3, 4], "valid": [3, 4, 6, 7], "automat": [3, 4, 6], "composit": [3, 4], "plai": [3, 4, 7], "led": [3, 4, 7], "apologet": 3, "hesit": 3, "benign": 3, "apolog": 3, "inde": 3, "accordingli": [3, 4], "perhap": 3, "creation": [3, 5, 6], "invalu": 3, "factor": [3, 4, 5, 7], "hyperparamet": 3, "mention": [3, 4, 7], "significantli": [3, 4, 5, 6], "optimist": 3, "memor": [3, 4], "generaliz": 3, "futur": [3, 4, 6], "bjn": [3, 6], "22": [3, 4, 6], "yuntao": [3, 4, 6], "andi": [3, 4, 6], "jone": [3, 4, 6], "kamal": [3, 6], "ndouss": [3, 6], "amanda": [3, 4, 6], "askel": [3, 4, 6], "anna": [3, 4, 6], "nova": [3, 6], "dassarma": [3, 6], "dawn": [3, 4, 6], "drain": [3, 6], "stanislav": [3, 6], "fort": [3, 6], "deep": [3, 4, 6, 7], "ganguli": [3, 4, 6], "tom": [3, 4, 6], "henighan": [3, 6], "nichola": [3, 4, 6], "joseph": [3, 4, 6], "saurav": [3, 6], "kadavath": [3, 6], "jackson": [3, 4, 6], "kernion": [3, 4, 6], "conerli": [3, 6], "sheer": [3, 6, 7], "el": [3, 6], "showk": [3, 6], "nelson": [3, 6], "elhag": [3, 6], "zac": [3, 6], "hatfield": [3, 6], "dodd": [3, 6], "danni": [3, 4, 6], "hernandez": [3, 4, 6], "tristan": [3, 6], "hume": [3, 6], "scott": [3, 4, 6], "johnston": [3, 6], "shauna": [3, 6], "kravec": [3, 6], "lian": [3, 6], "lovitt": [3, 6], "neel": [3, 4, 6], "nanda": [3, 6], "catherin": [3, 4, 6], "olsson": [3, 6], "dario": [3, 4, 6], "amodei": [3, 4, 6], "brown": [3, 4, 6], "jack": [3, 4, 6], "clark": [3, 6], "sam": [3, 4, 6], "mccandlish": [3, 4, 6], "chri": [3, 4, 6], "olah": [3, 6], "ben": [3, 4, 6], "mann": [3, 6], "jare": [3, 4, 6], "kaplan": [3, 4, 6], "arxiv": [3, 4, 6, 7], "org": [3, 4, 6, 7], "ab": [3, 4, 6, 7], "2204": [3, 6], "05862": [3, 6], "bkk": 3, "sandipan": 3, "kundu": 3, "goldi": 3, "azalia": 3, "mirhoseini": 3, "cameron": [3, 4, 6, 7], "mckinnon": 3, "carol": [3, 6], "christoph": [3, 4, 6], "dustin": 3, "eli": [3, 4, 6], "tran": [3, 7], "johnson": 3, "ethan": [3, 4, 6], "perez": [3, 6], "jami": [3, 6], "kerr": 3, "mueller": 3, "jeffrei": 3, "ladish": 3, "joshua": [3, 4, 6], "landau": 3, "kamil": [3, 4], "lukosuit": 3, "michael": [3, 4, 6, 7], "sellitto": 3, "schiefer": 3, "noemi": 3, "mercado": 3, "robert": [3, 4], "lasenbi": 3, "robin": 3, "larson": 3, "ringer": 3, "tamera": 3, "lanham": 3, "timothi": [3, 4], "telleen": 3, "lawton": 3, "samuel": [3, 4, 6], "bowman": [3, 4], "2212": 3, "08073": 3, "blo23": 3, "announc": [3, 4], "cc": 3, "11": [3, 4, 6], "ccl": [3, 6], "24": [3, 4, 6, 7], "guim": 3, "hardi": 3, "shunian": 3, "zich": 3, "liu": [3, 4, 6, 7], "feng": [3, 6], "jiang": [3, 4, 6], "benyou": 3, "wang": [3, 4, 6], "judgement": 3, "2402": [3, 6], "10669": 3, "dphz23": [3, 6], "tim": [3, 6], "artidoro": [3, 6], "pagnoni": [3, 6], "ari": [3, 4, 6], "holtzman": [3, 4, 6], "luke": [3, 4, 6], "zettlemoy": [3, 6], "2305": [3, 6], "14314": [3, 6], "ddz": 3, "qingxiu": 3, "xingx": 3, "zhang": [3, 4, 6], "zhifang": 3, "sui": 3, "furu": 3, "wei": [3, 4, 6], "boost": 3, "2410": [3, 6], "06961": 3, "fac24": [3, 4], "huggingfaceh4": 3, "fac4c": 3, "fac4d": 3, "doc": [3, 4, 5, 7], "en": [3, 4, 6, 7], "h44a": 3, "binari": [3, 4], "h44b": 3, "hhj": 3, "shuang": 3, "wenfeng": 3, "han": [3, 4, 6], "tao": [3, 4, 6], "yipe": 3, "haonan": 3, "chunlin": 3, "zhong": [3, 6], "zhangjun": 3, "zhou": [3, 4, 6], "tang": [3, 4, 6], "2401": [3, 4], "01629": 3, "hlt24": 3, "jiwoo": 3, "noah": [3, 4, 6], "lee": [3, 4, 6, 7], "jame": [3, 4, 6], "thorn": 3, "orpo": 3, "monolith": 3, "2403": [3, 4], "07691": 3, "hsw": [3, 6], "21": [3, 4, 6], "edward": [3, 4, 6], "j": [3, 4, 6, 7], "yelong": [3, 6], "shen": [3, 4, 6], "phillip": [3, 6], "walli": [3, 6], "zeyuan": [3, 6], "allen": [3, 4, 6], "zhu": [3, 4, 6], "yuanzhi": [3, 6], "shean": [3, 6], "lu": [3, 4, 6], "weizhu": [3, 6], "2106": [3, 6], "09685": [3, 6], "hgh": 3, "jiaxin": 3, "shixiang": [3, 4, 6], "shane": [3, 4, 6], "gu": [3, 4, 6], "le": [3, 4], "hou": [3, 4], "yuexin": 3, "xuezhi": 3, "hongkun": 3, "yu": [3, 4, 6], "jiawei": 3, "2210": [3, 6], "11610": 3, "huy24": 3, "chip": 3, "reilli": 3, "media": [3, 4, 6], "decemb": [3, 4], "9781098129095": 3, "www": [3, 4, 6], "oreilli": 3, "ksy": 3, "seungon": 3, "juyoung": 3, "suk": 3, "xiang": [3, 4], "yue": 3, "vijai": 3, "viswanathan": 3, "seongyun": 3, "yizhong": 3, "kiril": 3, "gashteovski": 3, "carolin": [3, 6], "lawrenc": 3, "sean": [3, 4, 6], "welleck": 3, "graham": 3, "neubig": 3, "2412": 3, "03679": 3, "lt24": 3, "herd": 3, "2407": [3, 4, 6], "21783": 3, "lwx": 3, "lin": [3, 4, 6, 7], "rui": [3, 4, 7], "ruixuan": 3, "xiao": [3, 6], "junbo": 3, "zhao": [3, 4, 6], "ding": 3, "gang": 3, "haobo": 3, "driven": [3, 4, 6], "survei": [3, 4, 6, 7], "2406": [3, 4, 6], "15126": 3, "met24": 3, "owj": 3, "jeff": [3, 4, 6], "diogo": [3, 6], "almeida": [3, 6], "carrol": [3, 6], "wainwright": [3, 6], "pamela": [3, 4, 6], "mishkin": [3, 4, 6], "chong": [3, 6], "sandhini": [3, 6], "agarw": [3, 4, 6], "katarina": [3, 6], "slama": [3, 6], "alex": [3, 4, 6], "rai": [3, 4, 6], "john": [3, 4, 6], "jacob": [3, 4, 6], "hilton": [3, 4], "fraser": 3, "kelton": 3, "miller": [3, 4], "maddi": [3, 6], "simen": [3, 6], "peter": [3, 4, 6], "welind": [3, 4, 6], "paul": [3, 4, 6], "christiano": [3, 6], "jan": [3, 4, 6], "leik": [3, 4, 6], "ryan": [3, 4, 6], "2203": 3, "02155": 3, "qwe24": 3, "rsm": [3, 6], "rafael": [3, 6], "archit": [3, 6], "sharma": [3, 6], "eric": [3, 4, 6], "mitchel": [3, 6], "stefano": [3, 4, 6], "ermon": [3, 4, 6], "man": [3, 4, 6], "chelsea": [3, 6], "finn": [3, 6], "secretli": [3, 6], "18290": [3, 6], "swd": 3, "17": [3, 4], "filip": [3, 6], "wolski": 3, "prafulla": 3, "dhariw": 3, "alec": [3, 4, 6], "radford": [3, 4, 6], "oleg": [3, 6], "klimov": 3, "1707": 3, "06347": 3, "smollm224": 3, "distil": 3, "post": [3, 4, 6, 7], "smollm2360mi24": 3, "sou24": 3, "html": [3, 5, 6, 7], "tm": 3, "23": [3, 4, 6], "hugo": 3, "loui": [3, 4], "martin": [3, 4, 6], "kevin": [3, 4, 6], "stone": 3, "albert": 3, "amjad": 3, "almahairi": 3, "yasmin": 3, "babaei": 3, "nikolai": 3, "bashlykov": 3, "soumya": 3, "batra": 3, "prajjwal": 3, "bhargava": 3, "shruti": 3, "bhosal": 3, "dan": [3, 4], "bikel": 3, "luka": 3, "blecher": 3, "cristian": 3, "canton": 3, "ferrer": 3, "moya": 3, "guillem": 3, "cucurul": 3, "david": [3, 4, 6], "esiobu": 3, "jude": 3, "fernand": 3, "jeremi": [3, 4], "fu": 3, "wenyin": 3, "brian": [3, 6], "fuller": [3, 6], "cynthia": 3, "gao": [3, 4, 6], "vedanuj": 3, "goswami": [3, 6], "naman": 3, "goyal": 3, "anthoni": 3, "hartshorn": 3, "saghar": 3, "hosseini": 3, "hakan": 3, "inan": 3, "marcin": 3, "karda": 3, "viktor": 3, "kerkez": 3, "madian": 3, "khabsa": 3, "isabel": [3, 6], "kloumann": 3, "artem": 3, "korenev": 3, "punit": 3, "singh": [3, 4], "koura": 3, "mari": [3, 4, 6], "ann": [3, 6], "lachaux": 3, "thibaut": 3, "lavril": 3, "jenya": 3, "diana": [3, 4], "liskovich": 3, "yinghai": 3, "yune": 3, "mao": 3, "xavier": 3, "martinet": 3, "todor": [3, 6], "mihaylov": 3, "pushkar": 3, "mishra": [3, 4], "igor": [3, 4, 6], "molybog": 3, "yixin": 3, "nie": [3, 4], "andrew": [3, 4, 6], "poulton": 3, "reizenstein": 3, "rashi": 3, "rungta": 3, "kalyan": 3, "saladi": 3, "alan": [3, 6], "schelten": 3, "ruan": 3, "silva": 3, "smith": [3, 4], "ranjan": 3, "subramanian": 3, "xiaoq": 3, "ellen": 3, "tan": [3, 4], "binh": 3, "ross": [3, 6], "taylor": 3, "adina": [3, 6], "william": [3, 4, 6], "jian": [3, 4], "kuan": 3, "puxin": 3, "zheng": [3, 4, 6], "yan": [3, 4], "iliyan": 3, "zarov": 3, "yuchen": [3, 4, 6], "angela": [3, 4, 6], "fan": [3, 4], "melani": 3, "kambadur": 3, "sharan": 3, "narang": 3, "aurelien": 3, "rodriguez": 3, "stojnic": 3, "sergei": 3, "edunov": 3, "thoma": [3, 4, 6], "scialom": 3, "2307": [3, 7], "09288": 3, "vaa": [3, 6], "berti": [3, 6], "adarsh": [3, 6], "agraw": [3, 6], "ahm": [3, 6], "victor": [3, 6], "akinwand": [3, 6], "namir": [3, 6], "nuaimi": [3, 6], "najla": [3, 6], "alfaraj": [3, 6], "alhajjar": [3, 6], "aroyo": [3, 6], "trupti": [3, 6], "bavalatti": [3, 6], "max": [3, 4, 6], "bartolo": [3, 6], "borhan": [3, 6], "blili": [3, 6], "hamelin": [3, 6], "kurt": [3, 6], "bollack": [3, 6], "rishi": [3, 4, 6], "bomassani": [3, 6], "marisa": [3, 6], "ferrara": [3, 6], "boston": [3, 6], "sim\u00e9on": [3, 6], "campo": [3, 6], "kal": [3, 6], "chakra": [3, 6], "canyu": [3, 6], "codi": [3, 6], "coleman": [3, 6], "zachari": [3, 4, 6], "delpierr": [3, 6], "coudert": [3, 6], "leon": [3, 6], "derczynski": [3, 6], "debojyoti": [3, 6], "dutta": [3, 6], "ian": [3, 4, 6], "eisenberg": [3, 6], "ezick": [3, 6], "heather": [3, 6], "frase": [3, 6], "ram": [3, 6], "gandikota": [3, 6], "agasthya": [3, 6], "gangavarapu": [3, 6], "ananya": [3, 4, 6], "geali": [3, 6], "rajat": [3, 6], "ghosh": [3, 4, 6], "goel": [3, 6], "usman": [3, 6], "gohar": [3, 6], "sujata": [3, 6], "hale": [3, 6], "wiebk": [3, 6], "hutiri": [3, 6], "marvin": [3, 6], "imperi": [3, 6], "surgan": [3, 6], "jandial": [3, 6], "nick": [3, 4, 6], "judd": [3, 6], "felix": [3, 4, 6], "juefei": [3, 6], "fouts": [3, 6], "khomh": [3, 6], "bhavya": [3, 6], "kailkhura": [3, 6], "hannah": [3, 4, 6], "rose": [3, 6], "kirk": [3, 6], "klyman": [3, 6], "knotz": [3, 6], "kuchnik": [3, 6], "shachi": [3, 6], "kumar": [3, 4, 6], "srijan": [3, 6], "lengerich": [3, 6], "bo": [3, 4, 6], "zeyi": [3, 6], "liao": [3, 4, 6], "eileen": [3, 6], "sarah": [3, 4, 6], "luger": [3, 6], "yifan": [3, 4, 6], "priyanka": [3, 6], "mammen": [3, 6], "kelvin": [3, 6], "manyeki": [3, 6], "mcgregor": [3, 6], "virendra": [3, 6], "mehta": [3, 4, 6], "shafe": [3, 6], "moham": [3, 6], "moss": [3, 6], "lama": [3, 6], "nachman": [3, 6], "dinesh": [3, 6], "jinenh": [3, 6], "naganna": [3, 6], "amin": [3, 6], "nikanjam": [3, 6], "besmira": [3, 6], "nushi": [3, 6], "lui": [3, 4, 6], "oala": [3, 6], "iftach": [3, 6], "orr": [3, 4, 6], "alicia": [3, 4, 6], "parrish": [3, 4, 6], "cigdem": [3, 6], "patlak": [3, 6], "pietri": [3, 6], "forough": [3, 6], "poursabzi": [3, 6], "sangdeh": [3, 6], "eleonora": [3, 6], "presani": [3, 6], "fabrizio": [3, 6], "puletti": [3, 6], "r\u00f6ttger": [3, 6], "sahai": [3, 6], "santo": [3, 6], "nino": [3, 6], "scherrer": [3, 6], "alic": [3, 4, 6, 7], "schoenauer": [3, 6], "sebag": [3, 6], "patrick": [3, 6], "schramowski": [3, 6], "abolfazl": [3, 6], "shahbazi": [3, 6], "vin": [3, 6], "xudong": [3, 4, 6], "vamsi": [3, 6], "sistla": [3, 6], "leonard": [3, 6], "testuggin": [3, 6], "vithursan": [3, 6], "thangarasa": [3, 6], "elizabeth": [3, 4, 6], "watkin": [3, 6], "rebecca": [3, 6], "weiss": [3, 6], "welti": [3, 6], "tyler": [3, 4, 6], "wilber": [3, 6], "jean": [3, 6], "poonam": [3, 6], "yadav": [3, 6], "xianjun": [3, 6], "yang": [3, 4, 6], "yi": [3, 4, 6, 7], "zeng": [3, 6], "wenhui": [3, 6], "fedor": [3, 6], "zhdanov": [3, 6], "jiacheng": [3, 4, 6], "perci": [3, 4, 6], "liang": [3, 4, 6], "mattson": [3, 6], "joaquin": [3, 6], "vanschoren": [3, 6], "v0": [3, 6], "2404": [3, 4, 6], "12241": [3, 6], "wyg": 3, "tianhao": [3, 4, 6], "weizh": 3, "yuan": [3, 4, 6], "olga": 3, "golovneva": 3, "jing": [3, 6], "yuandong": 3, "tian": 3, "jiantao": 3, "jiao": 3, "jason": [3, 4, 6], "weston": 3, "sainbayar": 3, "sukhbaatar": 3, "19594": 3, "xfg": 3, "shusheng": 3, "jiaxuan": 3, "wenji": 3, "ye": [3, 4, 6, 7], "weilin": 3, "zhiyu": 3, "mei": [3, 4], "guangju": 3, "chao": 3, "10719": 3, "ywx": 3, "yueqin": 3, "zhendong": 3, "yujia": 3, "xie": [3, 4], "mingyuan": 3, "paradigm": [3, 4], "semanticscholar": 3, "corpusid": 3, "270199610": 3, "doesn": [4, 5, 7], "matter": 4, "beauti": 4, "smart": 4, "agre": 4, "wrong": 4, "richard": [4, 6], "feynman": 4, "advent": 4, "shift": 4, "norm": 4, "realm": 4, "convent": [4, 6], "evolut": 4, "conceiv": 4, "entrench": 4, "seem": [4, 7], "daunt": 4, "ignor": 4, "relianc": [4, 6], "outdat": [4, 7], "inevit": 4, "setback": 4, "imper": 4, "embrac": 4, "proactiv": [4, 6], "mindset": 4, "front": 4, "produc": [4, 6, 7], "novel": 4, "ident": 4, "isn": 4, "bug": 4, "random": [4, 6, 7], "testabl": 4, "exceedingli": 4, "complianc": [4, 6, 7], "guarante": [4, 7], "trust": [4, 6, 7], "primari": [4, 6], "nucleu": 4, "2020": 4, "summari": [4, 6, 7], "alter": 4, "rigid": 4, "wildli": 4, "incoher": 4, "inadequ": [4, 6], "temp": 4, "df_result": 4, "ntemperatur": 4, "40": 4, "temp_respons": 4, "iterrow": 4, "10000": [4, 5, 7], "appl": [4, 5, 7], "txt": [4, 5, 7], "sec_fil": [4, 7], "nsecur": 4, "AND": [4, 7], "exchang": [4, 5, 6, 7], "commiss": [4, 5, 6, 7], "nwashington": 4, "20549": 4, "nform": 4, "annual": [4, 6], "pursuant": 4, "TO": 4, "13": [4, 6], "OR": 4, "OF": 4, "THE": 4, "1934": 4, "nfor": 4, "fiscal": [4, 5], "septemb": [4, 5], "28": [4, 5], "nor": 4, "period": [4, 5, 6], "ncommiss": 4, "001": 4, "36743": 4, "ng66145g66i43": 4, "jpg": 4, "nappl": 4, "exact": [4, 6], "registr": 4, "specifi": [4, 5, 7], "charter": 4, "ncalifornia": 4, "t94": 4, "2404110": 4, "jurisdict": 4, "nof": 4, "incorpor": [4, 6], "employ": 4, "identif": [4, 6], "park": 4, "ncupertino": 4, "california": [4, 6, 7], "n95014": 4, "princip": 4, "offic": [4, 6], "408": 4, "996": 4, "1010": 4, "telephon": 4, "area": [4, 6, 7], "regist": 4, "ntitl": 4, "ttrade": 4, "symbol": 4, "tname": 4, "ncommon": 4, "stock": [4, 7], "00001": 4, "naapl": 4, "tthe": 4, "nasdaq": [4, 7], "llc": [4, 7], "n0": 4, "000": [4, 7], "note": [4, 5, 7], "2025": 4, "875": 4, "625": 4, "2026": 4, "2027": 4, "375": 4, "2029": 4, "050": 4, "2031": [4, 6], "600": 4, "2042": 4, "nindic": 4, "season": 4, "issuer": 4, "405": 4, "nye": 4, "preced": 4, "shorter": 4, "past": [4, 6], "90": 4, "submit": 4, "electron": 4, "232": 4, "acceler": [4, 6], "filer": 4, "growth": 4, "12b": [4, 6], "nlarg": 4, "tacceler": 4, "nnon": 4, "tsmaller": 4, "nemerg": 4, "nif": 4, "elect": 4, "revis": [4, 6], "attest": 4, "404": 4, "sarban": 4, "oxlei": 4, "7262": 4, "firm": [4, 6], "prepar": [4, 5, 6], "correct": [4, 7], "restat": 4, "recoveri": 4, "incent": 4, "compens": 4, "240": 4, "10d": 4, "shell": 4, "aggreg": [4, 6], "vote": 4, "held": [4, 7], "affili": [4, 7], "march": [4, 7], "29": [4, 7], "last": [4, 5, 7], "second": [4, 5], "quarter": 4, "628": [4, 7], "553": [4, 7], "sole": [4, 6], "disclosur": [4, 6], "director": [4, 6], "date": [4, 7], "exclud": 4, "n15": 4, "115": [4, 7], "823": [4, 7], "outstand": [4, 7], "octob": [4, 7], "18": [4, 6, 7], "ndocument": 4, "BY": 4, "nportion": 4, "proxi": 4, "meet": [4, 6, 7], "sharehold": 4, "iii": 4, "120": 4, "ntabl": 4, "npage": 4, "npart": 4, "nitem": 4, "nbusi": 4, "1a": 4, "nrisk": 4, "1b": 4, "nunresolv": 4, "staff": 4, "comment": 4, "n17": 4, "1c": 4, "ncybersecur": 4, "nproperti": 4, "n18": 4, "nlegal": 4, "proceed": [4, 6], "nmine": 4, "ii": [4, 7], "nmarket": 4, "stockhold": 4, "purchas": 4, "n19": 4, "reserv": 4, "n20": 4, "nmanag": 4, "discuss": [4, 6], "n21": 4, "7a": 4, "nquantit": 4, "n27": 4, "nfinanci": 4, "supplementari": 4, "n28": 4, "nchang": 4, "disagr": 4, "n51": 4, "9a": 4, "ncontrol": 4, "procedur": [4, 6], "9b": 4, "nother": 4, "n52": 4, "9c": 4, "ndisclosur": 4, "foreign": 4, "ndirector": 4, "corpor": [4, 6], "nexecut": 4, "ownership": 4, "certain": [4, 5, 6, 7], "benefici": 4, "owner": 4, "ncertain": 4, "transact": [4, 6], "nprincip": 4, "fee": 4, "iv": 4, "nexhibit": 4, "n53": 4, "n56": 4, "nthi": 4, "forward": [4, 6], "litig": 4, "reform": 4, "1995": 4, "uncertainti": 4, "event": 4, "macroeconom": 4, "anticip": [4, 6], "caus": [4, 6], "oblig": [4, 5], "nunless": 4, "herein": 4, "calendar": 4, "wholli": 4, "subsidiari": 4, "unless": 4, "ncompani": 4, "manufactur": 4, "smartphon": 4, "tablet": 4, "wearabl": [4, 7], "accessori": 4, "sell": 4, "varieti": 4, "52": 4, "53": 4, "week": 4, "saturdai": 4, "nproduct": 4, "niphon": 4, "io": [4, 6, 7], "iphon": [4, 7], "pro": [4, 5, 6], "se": 4, "nmac": 4, "maco": 4, "mac": [4, 7], "laptop": 4, "macbook": 4, "air": 4, "desktop": 4, "imac": 4, "studio": 4, "nipad": 4, "multipurpos": 4, "ipado": 4, "ipad": [4, 7], "nwearabl": 4, "home": [4, 6], "smartwatch": 4, "wireless": 4, "headphon": 4, "spatial": 4, "watcho": 4, "watch": 4, "ultra": 4, "airpod": 4, "beat": 4, "visiono": 4, "nhome": 4, "tv": 4, "stream": [4, 7], "tvo": 4, "homepod": 4, "fidel": [4, 7], "naccessori": 4, "brand": 4, "third": 4, "parti": 4, "nservic": 4, "nadvertis": 4, "advertis": 4, "licens": 4, "napplecar": 4, "portfolio": [4, 7], "applecar": 4, "prioriti": 4, "network": [4, 7], "repair": 4, "addit": [4, 5, 6, 7], "coverag": [4, 6], "accident": 4, "damag": [4, 6], "theft": [4, 6], "loss": [4, 6], "ncloud": 4, "ndigit": 4, "app": 4, "discov": [4, 6], "download": 4, "music": 4, "podcast": 4, "subscript": 4, "arcad": 4, "sm": 4, "listen": 4, "radio": 4, "station": 4, "magazin": 4, "exclus": 4, "sport": 4, "npayment": 4, "payment": 4, "credit": 4, "pai": 4, "cashless": 4, "nsegment": 4, "primarili": [4, 6], "geograph": 4, "basi": 4, "segment": [4, 5, 7], "america": 4, "europ": 4, "china": [4, 6], "japan": 4, "rest": 4, "asia": 4, "pacif": 4, "north": 4, "south": 4, "european": [4, 6], "india": 4, "middl": 4, "east": 4, "africa": 4, "mainland": 4, "kong": 4, "taiwan": 4, "australia": 4, "asian": 4, "although": 4, "partner": [4, 6], "mid": [4, 5], "enterpris": [4, 7], "resel": 4, "retail": 4, "sale": 4, "indirect": 4, "channel": 4, "cellular": 4, "carrier": 4, "net": [4, 7], "38": 4, "62": 4, "ncompetit": 4, "competit": [4, 6], "character": [4, 6], "price": 4, "downward": 4, "pressur": [4, 6], "gross": [4, 6], "margin": [4, 7], "cycl": 4, "industri": [4, 6, 7], "characterist": [4, 6], "competitor": 4, "compet": 4, "imit": 4, "infring": 4, "intellectu": [4, 6], "innov": [4, 5, 6], "marketplac": 4, "nearli": 4, "reput": 4, "expand": [4, 6], "opportun": 4, "substanti": 4, "broader": [4, 6], "illegitim": [4, 6], "collabor": [4, 6], "nsuppli": 4, "nalthough": 4, "essenti": [4, 5, 6, 7], "particip": 4, "shortag": 4, "commod": 4, "fluctuat": 4, "commonli": 4, "capac": 4, "until": [4, 7], "supplier": 4, "matur": 4, "concentr": 4, "enter": 4, "agreement": 4, "suppli": [4, 7], "renew": 4, "nresearch": 4, "nbecaus": 4, "upon": [4, 5, 6], "flow": [4, 5], "acquisit": [4, 6], "nintellectu": 4, "broad": [4, 7], "patent": 4, "copyright": 4, "trademark": 4, "secret": 4, "differenti": 4, "skill": [4, 6], "personnel": 4, "regularli": 4, "aris": [4, 6], "pursu": [4, 6], "thousand": 4, "durat": 4, "adequ": [4, 6], "nin": 4, "holidai": [4, 6], "fill": 4, "inventori": 4, "older": 4, "newer": 4, "distributor": 4, "nhuman": 4, "capit": [4, 5, 7], "strive": 4, "retain": [4, 5, 6], "talent": 4, "member": 4, "164": 4, "equival": 4, "ncompens": 4, "benefit": [4, 6, 7], "equit": 4, "thrive": [4, 7], "succe": 4, "health": 4, "awai": 4, "ngrowth": 4, "career": 4, "leadership": [4, 6], "influenc": [4, 6, 7], "nworkplac": 4, "polici": [4, 6], "equal": 4, "workplac": 4, "ninclus": 4, "sustain": 4, "workforc": 4, "nengag": 4, "among": 4, "gaug": 4, "sentiment": [4, 7], "nhealth": 4, "everywher": 4, "crisi": 4, "visitor": 4, "navail": 4, "quarterli": 4, "q": 4, "amend": 4, "sec": [4, 5, 7], "Such": [4, 6], "charg": 4, "investor": [4, 7], "aspx": 4, "websit": [4, 6], "environment": [4, 6], "referenc": 4, "inact": 4, "textual": 4, "unknown": [4, 6], "advers": 4, "trend": [4, 7], "conjunct": 4, "consolid": 4, "accompani": [4, 6], "nmacroeconom": 4, "econom": 4, "chain": [4, 5], "facil": 4, "assembli": 4, "site": [4, 6], "nadvers": 4, "slow": 4, "recess": 4, "unemploy": 4, "inflat": 4, "tighter": 4, "currenc": 4, "spend": 4, "monetari": 4, "asset": [4, 6], "contract": 4, "logist": 4, "instabl": [4, 6], "inabl": 4, "financ": 4, "insolv": 4, "failur": [4, 6], "deriv": 4, "counterparti": 4, "debt": 4, "liquid": [4, 5], "fair": [4, 6], "instrument": 4, "polit": 4, "disput": 4, "geopolit": 4, "tension": [4, 6], "terror": 4, "accid": 4, "interrupt": 4, "npolit": 4, "whole": 4, "outsourc": 4, "korea": 4, "vietnam": 4, "restrict": [4, 6, 7], "tariff": 4, "export": 4, "portion": 4, "revenu": [4, 5, 7], "raw": [4, 7], "restructur": 4, "ceas": 4, "disrupt": [4, 5], "escal": [4, 5, 6], "nmani": 4, "prone": 4, "earthquak": 4, "climat": 4, "weather": 4, "plant": 4, "terrorist": [4, 6], "attack": [4, 6], "hostil": 4, "ransomwar": 4, "cybersecur": [4, 6], "labor": 4, "beyond": 4, "nsuch": 4, "imposs": 4, "slowdown": 4, "outag": 4, "neg": [4, 7], "pandem": 4, "covid": 4, "19": 4, "economi": 4, "imposit": 4, "stringent": [4, 6], "travel": 4, "freight": 4, "movement": 4, "ramp": 4, "nfollow": 4, "expenditur": 4, "resum": 4, "exacerb": 4, "insur": 4, "insuffici": 4, "nglobal": 4, "unabl": 4, "assur": [4, 6], "minor": 4, "naddition": 4, "intensifi": 4, "seamlessli": [4, 5], "nto": 4, "stimul": 4, "ndue": 4, "upgrad": 4, "quantiti": 4, "defect": 4, "defici": 4, "supersed": 4, "nsubstanti": 4, "transport": 4, "provis": 4, "reimburs": 4, "warranti": 4, "unanticip": 4, "liabil": 4, "final": [4, 5, 6, 7], "finish": 4, "destin": 4, "made": [4, 5, 7], "prepay": 4, "termin": 4, "recover": 4, "exposur": [4, 6], "nfutur": 4, "semiconductor": 4, "suffer": 4, "poor": 4, "constrain": [4, 5, 7], "shipment": 4, "unexpectedli": 4, "interfer": 4, "unsaf": [4, 6], "expos": 4, "detect": [4, 6, 7], "fix": [4, 5, 6], "widespread": [4, 6], "vulner": [4, 6], "compromis": [4, 6], "claim": [4, 6], "modif": [4, 6], "intang": 4, "fine": [4, 6, 7], "lost": [4, 5], "cancel": 4, "obsolet": 4, "exce": 4, "realiz": 4, "accru": 4, "excess": 4, "impair": 4, "whenev": 4, "circumst": 4, "amount": [4, 5, 6, 7], "carri": [4, 7], "incur": 4, "unpredict": [4, 7], "pace": [4, 6], "obsolesc": 4, "forecast": [4, 6], "incorrectli": [4, 7], "extens": [4, 5, 7], "issuanc": 4, "unknowingli": 4, "notifi": 4, "preclud": 4, "bui": 4, "percept": 4, "android": 4, "playstat": 4, "nintendo": 4, "xbox": 4, "inclin": 4, "devot": 4, "compel": [4, 7], "dissatisfi": 4, "vast": [4, 6], "storefront": 4, "mechan": [4, 6, 7], "safari": 4, "union": [4, 6], "eu": [4, 6], "dma": 4, "reduct": 4, "narrow": [4, 6], "scope": [4, 5, 6], "elimin": 4, "nfailur": 4, "appeal": 4, "subscrib": 4, "nsome": 4, "manner": [4, 5, 6, 7], "nurtur": 4, "nmuch": 4, "chief": 4, "silicon": 4, "vallei": 4, "constantli": 4, "driver": 4, "recruit": 4, "subsidi": 4, "staf": 4, "contractor": 4, "placement": 4, "increment": 4, "weaken": 4, "telecommun": 4, "war": 4, "virus": 4, "ins": 4, "incid": [4, 6], "redund": 4, "ineffect": 4, "thing": [4, 7], "interf": 4, "imped": 4, "ship": 4, "nloss": 4, "unauthor": [4, 6], "confidenti": 4, "encrypt": 4, "But": [4, 6, 7], "malici": [4, 6], "behalf": 4, "normal": [4, 6, 7], "investig": 4, "penalti": 4, "frequenc": [4, 5], "actor": [4, 6], "circumv": [4, 5, 6], "obfusc": 4, "forens": 4, "hinder": [4, 7], "recov": 4, "perpetr": 4, "profil": 4, "authent": 4, "hack": [4, 6], "malfeas": 4, "faulti": 4, "password": 4, "irregular": 4, "fraudul": 4, "induc": 4, "disclos": [4, 5, 7], "usernam": 4, "turn": 4, "multifactor": 4, "unusu": 4, "freez": 4, "suspici": 4, "nwhile": 4, "ninvest": 4, "ongo": 4, "contempl": 4, "endeavor": 4, "distract": 4, "tangibl": 4, "approv": 4, "oner": 4, "ventur": 4, "riski": 4, "leas": 4, "unfavor": 4, "arisen": 4, "ordinari": 4, "resolv": [4, 6], "sometim": [4, 7], "indemnif": 4, "indemnifi": 4, "alleg": 4, "magnitud": 4, "assert": 4, "royalti": 4, "vigor": 4, "defend": 4, "court": 4, "internation": 4, "plaintiff": 4, "injunct": 4, "relief": 4, "nregardless": 4, "merit": 4, "recognit": 4, "settl": 4, "uncertain": 4, "disgorg": 4, "remedi": [4, 6], "worldwid": 4, "antitrust": 4, "bill": 4, "commerc": 4, "mobil": [4, 7], "televis": 4, "film": 4, "anticorrupt": 4, "cash": [4, 5], "repatri": 4, "anti": 4, "launder": 4, "tax": 4, "wast": 4, "recycl": 4, "ncomplianc": 4, "impos": [4, 6, 7], "agent": 4, "nregulatori": 4, "ban": 4, "nexpect": 4, "increasingli": [4, 6, 7], "greenhous": 4, "ga": 4, "emiss": 4, "civil": 4, "disagre": 4, "perceiv": 4, "feder": 4, "scrutini": [4, 6], "nfrom": 4, "engag": [4, 6, 7], "noncompli": 4, "individu": [4, 5, 6], "lawsuit": 4, "monopol": 4, "nfurther": 4, "earn": 4, "search": 4, "nthere": 4, "retent": 4, "transfer": 4, "pass": [4, 6, 7], "pend": 4, "inquiri": [4, 6], "government": 4, "entiti": [4, 7], "biometr": 4, "notif": 4, "permit": [4, 7], "healthcar": 4, "liabl": 4, "investigatori": 4, "cardhold": 4, "compress": [4, 5], "acquir": 4, "extent": 4, "unexpect": [4, 7], "dollar": 4, "denomin": 4, "offset": 4, "strengthen": [4, 6], "nconvers": 4, "therebi": [4, 5], "thu": 4, "hedg": 4, "deterior": 4, "sovereign": 4, "heighten": [4, 6], "worsen": 4, "A": [4, 5, 6, 7], "collater": 4, "bank": 4, "unsecur": 4, "subassembli": 4, "assembl": 4, "legisl": 4, "ireland": [4, 6], "singapor": 4, "organis": 4, "statutori": 4, "valuat": 4, "defer": 4, "bodi": [4, 6], "adequaci": 4, "ow": 4, "ngener": 4, "volum": [4, 5, 6], "repurchas": 4, "dividend": 4, "consumm": 4, "declar": 4, "board": [4, 6], "unresolv": 4, "nnone": 4, "threat": [4, 6], "postur": 4, "25": 4, "2016": 4, "coordin": [4, 6], "track": [4, 6], "committe": 4, "oversight": [4, 6], "counsel": 4, "chair": 4, "headquart": 4, "cupertino": [4, 7], "center": [4, 6, 7], "formal": [4, 7], "conclud": 4, "uninstal": 4, "web": 4, "browser": 4, "june": 4, "contractu": 4, "desist": 4, "stai": 4, "grant": 4, "ndepart": 4, "justic": 4, "depart": [4, 6], "doj": 4, "district": 4, "attornei": 4, "jersei": 4, "redress": [4, 6], "anticompetit": 4, "nonmonetari": 4, "defens": [4, 6], "nepic": 4, "epic": 4, "northern": 4, "unfair": [4, 6], "enjoin": 4, "extern": [4, 6], "link": 4, "januari": 4, "motion": 4, "oppos": 4, "30": 4, "vacat": 4, "fourth": 4, "mine": 4, "nnot": 4, "aapl": 4, "nholder": 4, "na": 4, "301": 4, "npurchas": 4, "nshare": 4, "nperiod": 4, "ttotal": 4, "taverag": 4, "npaid": 4, "nannounc": 4, "napproxim": 4, "That": [4, 6, 7], "Be": 4, "nunder": 4, "njune": 4, "august": [4, 6], "nopen": 4, "negoti": 4, "t35": 4, "697": 4, "t224": 4, "naugust": 4, "31": 4, "t42": 4, "910": 4, "t221": 4, "39": 4, "nseptemb": 4, "t33": 4, "653": 4, "t222": 4, "86": 4, "ntotal": [4, 6], "t112": 4, "260": 4, "t89": 4, "074": 4, "110": 4, "billion": 4, "previou": [4, 5, 7], "10b5": 4, "graph": 4, "cumul": 4, "reinvest": 4, "dow": 4, "supersector": 4, "27": 4, "2019": 4, "n2218": 4, "tseptemb": 4, "t100": 4, "t207": 4, "t273": 4, "t281": 4, "t322": 4, "t430": 4, "t113": 4, "t156": 4, "t131": 4, "t155": 4, "t210": 4, "ndow": 4, "t146": 4, "t216": 4, "t215": 4, "nfirst": 4, "nsecond": 4, "nthird": 4, "sequoia": 4, "nfourth": 4, "plu": 4, "nfiscal": 4, "six": 4, "realign": 4, "span": 4, "wherea": 4, "indirectli": 4, "n2024": 4, "tchang": 4, "t2023": 4, "t2022": 4, "namerica": 4, "t167": 4, "045": 4, "t3": 4, "t162": 4, "560": 4, "t169": 4, "658": 4, "neurop": 4, "t101": 4, "328": 4, "t7": 4, "294": 4, "t95": 4, "118": 4, "ngreater": 4, "t66": 4, "952": 4, "t72": 4, "559": 4, "t74": 4, "njapan": 4, "t25": 4, "052": 4, "t24": 4, "257": 4, "977": 4, "nrest": 4, "t30": 4, "t4": 4, "t29": 4, "615": 4, "t1": 4, "t391": 4, "035": 4, "t2": 4, "t383": 4, "285": 4, "t394": 4, "weak": [4, 6], "renminbi": 4, "yen": [4, 7], "t201": 4, "183": 4, "t200": 4, "583": 4, "t205": 4, "489": 4, "984": 4, "357": 4, "t40": 4, "177": 4, "t26": 4, "694": 4, "t28": 4, "300": [4, 5], "292": 4, "t37": 4, "005": 4, "t39": 4, "845": [4, 6], "t41": 4, "241": 4, "n96": 4, "169": 4, "t13": 4, "t85": 4, "t9": 4, "t78": 4, "129": [4, 6], "amort": 4, "bundl": 4, "flat": 4, "ngross": 4, "t109": 4, "633": 4, "t108": 4, "803": 4, "t114": 4, "728": 4, "t71": 4, "t60": 4, "345": 4, "t56": 4, "054": 4, "t180": 4, "683": 4, "148": 4, "t170": 4, "782": 4, "t36": 4, "t73": 4, "t70": 4, "t46": 4, "t44": 4, "t43": 4, "noper": 4, "t31": 4, "370": 4, "t5": 4, "915": 4, "t14": 4, "251": 4, "npercentag": 4, "t8": 4, "nsell": 4, "administr": 4, "097": 4, "932": 4, "094": 4, "t6": 4, "t57": 4, "467": 4, "t54": 4, "847": 4, "t51": 4, "t15": 4, "headcount": 4, "nprovis": 4, "749": 4, "t16": 4, "741": 4, "t19": 4, "neffect": 4, "nstatutori": 4, "t21": 4, "aid": [4, 6], "nliquid": 4, "unrestrict": 4, "140": 4, "ndebt": 4, "97": 4, "payabl": 4, "promissori": 4, "nleas": 4, "space": [4, 6], "nmanufactur": 4, "noncancel": 4, "ndeem": 4, "tcja": 4, "paid": 4, "nstate": 4, "fund": 4, "escrow": 4, "ncapit": 4, "95": 4, "nrecent": 4, "pronounc": 4, "nincom": 4, "fasb": 4, "asu": 4, "09": [4, 5, 6], "740": 4, "reconcili": 4, "reconcil": [4, 7], "disaggreg": 4, "prospect": 4, "novemb": [4, 6], "07": [4, 5, 6, 7], "280": 4, "maker": 4, "codm": 4, "alloc": [4, 6], "retrospect": 4, "ncritic": 4, "conform": [4, 7], "gaap": 4, "nuncertain": 4, "domest": 4, "taxat": 4, "resolut": 4, "conting": 4, "26": 4, "ninterest": 4, "forth": 4, "hypothet": 4, "nsensit": 4, "nhypothet": 4, "nrate": 4, "npotenti": 4, "n100": 4, "tenor": 4, "ndeclin": 4, "755": 4, "089": 4, "nterm": 4, "nincreas": 4, "t139": 4, "t194": 4, "nforeign": 4, "express": [4, 7], "var": 4, "mont": 4, "carlo": 4, "interv": 4, "538": 4, "669": 4, "underli": [4, 7], "nindex": 4, "tpage": 4, "nconsolid": 4, "n29": 4, "n30": 4, "sheet": 4, "n31": 4, "n32": 4, "n33": 4, "nnote": 4, "n34": 4, "nreport": 4, "n48": 4, "nall": 4, "omit": [4, 7], "submiss": 4, "nyear": 4, "n2023": 4, "n2022": 4, "nnet": 4, "t294": 4, "866": 4, "t298": 4, "085": 4, "t316": 4, "199": 4, "t96": 4, "ncost": 4, "t185": 4, "233": 4, "t189": 4, "282": 4, "471": 4, "119": 4, "855": 4, "t22": 4, "075": 4, "352": 4, "t214": 4, "137": 4, "t223": 4, "546": 4, "t123": 4, "216": 4, "t119": 4, "437": 4, "t269": 4, "565": 4, "334": 4, "485": 4, "736": 4, "103": 4, "t93": 4, "995": 4, "t99": 4, "nearn": 4, "nbasic": 4, "ndilut": 4, "08": [4, 7], "343": 4, "783": 4, "744": 4, "215": 4, "963": 4, "095": 4, "812": 4, "547": 4, "325": 4, "819": 4, "nsee": 4, "translat": 4, "t395": 4, "765": 4, "511": 4, "unreal": 4, "832": 4, "t323": 4, "212": 4, "nadjust": 4, "337": 4, "717": 4, "394": 4, "138": 4, "850": 4, "563": 4, "104": 4, "t204": 4, "t253": 4, "816": 4, "899": 4, "272": 4, "t98": 4, "016": 4, "652": 4, "t88": 4, "531": 4, "nasset": 4, "ncurrent": 4, "ncash": 4, "943": 4, "965": 4, "228": 4, "590": 4, "naccount": 4, "410": 4, "508": 4, "nvendor": 4, "t32": 4, "833": 4, "477": 4, "ninventori": 4, "286": 4, "331": 4, "287": 4, "695": 4, "t152": 4, "987": 4, "t143": 4, "566": 4, "t91": 4, "479": 4, "544": 4, "t45": 4, "680": 4, "715": 4, "834": 4, "t64": 4, "758": 4, "t211": 4, "993": 4, "t209": 4, "017": 4, "t364": 4, "980": 4, "t352": 4, "nliabil": 4, "t68": 4, "960": 4, "t62": 4, "611": 4, "304": 4, "t58": 4, "829": 4, "ndefer": 4, "249": 4, "061": 4, "ncommerci": 4, "967": 4, "985": 4, "t10": 4, "912": 4, "822": 4, "t176": 4, "392": 4, "t145": 4, "308": 4, "750": 4, "888": 4, "t49": 4, "848": 4, "638": 4, "t308": 4, "030": 4, "t290": 4, "ncommit": 4, "nsharehold": 4, "400": 4, "116": 4, "786": 4, "550": 4, "n83": 4, "276": 4, "naccumul": 4, "deficit": 4, "154": 4, "214": 4, "172": 4, "452": 4, "950": 4, "146": 4, "t50": 4, "672": 4, "t63": 4, "090": 4, "nbegin": 4, "849": 4, "365": 4, "423": 4, "346": 4, "175": 4, "withheld": 4, "settlement": 4, "521": 4, "971": 4, "t12": 4, "034": 4, "t11": 4, "nend": 4, "t83": 4, "nretain": 4, "068": 4, "562": 4, "ndividend": 4, "218": 4, "793": 4, "612": 4, "099": 4, "454": 4, "846": 4, "77": 4, "046": 4, "186": 4, "109": 4, "t163": 4, "rsu": 4, "t0": 4, "98": 4, "94": 4, "32": 4, "737": 4, "929": 4, "ndepreci": 4, "445": 4, "519": 4, "688": 4, "038": 4, "266": 4, "227": 4, "006": 4, "788": 4, "356": 4, "271": 4, "520": 4, "618": 4, "484": 4, "731": 4, "684": 4, "499": 4, "020": 4, "889": 4, "448": 4, "552": 4, "031": 4, "t118": 4, "254": 4, "t110": 4, "543": 4, "t122": 4, "151": 4, "48": 4, "656": 4, "513": 4, "76": 4, "923": 4, "nproce": 4, "211": 4, "686": 4, "917": 4, "135": 4, "828": 4, "446": 4, "447": 4, "959": 4, "708": 4, "086": 4, "935": 4, "705": 4, "354": 4, "nfinanc": 4, "441": 4, "431": 4, "223": 4, "234": [4, 6], "025": 4, "841": 4, "nrepurchas": 4, "949": 4, "89": 4, "402": 4, "465": 4, "nrepay": 4, "958": 4, "repay": 4, "978": 4, "955": 4, "361": 4, "581": 4, "160": 4, "121": 4, "983": 4, "488": 4, "794": 4, "760": 4, "nsupplement": 4, "102": 4, "t18": 4, "679": 4, "573": 4, "33": 4, "nbasi": 4, "prior": [4, 6], "reclassifi": 4, "nrevenu": 4, "remit": [4, 6], "straight": 4, "vest": 4, "sold": 4, "nderiv": 4, "nonleas": 4, "34": 4, "entitl": 4, "commenc": 4, "deliveri": 4, "stand": 4, "ssp": 4, "icloud": 4, "siri": 4, "discount": 4, "undeliv": 4, "unbil": 4, "n26": 4, "n37": 4, "proport": 4, "moder": [4, 6], "64": 4, "dilut": 4, "nnumer": 4, "ndenomin": 4, "nweight": 4, "312": 4, "316": 4, "856": 4, "antidilut": 4, "tunreal": 4, "ngain": 4, "tfair": 4, "nvalu": 4, "tcash": 4, "nequival": 4, "tcurrent": 4, "tnon": 4, "t27": 4, "nlevel": 4, "nmonei": 4, "t778": 4, "nmutual": 4, "n515": 4, "t105": 4, "t617": 4, "nsubtot": 4, "293": 4, "395": 4, "nu": 4, "treasuri": 4, "516": 4, "t212": 4, "087": 4, "380": 4, "agenc": [4, 6], "159": 4, "t703": 4, "t17": 4, "568": 4, "158": 4, "810": 4, "ncertif": 4, "deposit": 4, "t873": 4, "t387": 4, "t478": 4, "066": 4, "ncorpor": 4, "t65": 4, "622": 4, "t270": 4, "953": 4, "939": 4, "027": 4, "t47": 4, "886": 4, "nmunicip": 4, "t412": 4, "t405": 4, "t190": 4, "nmortgag": 4, "595": 4, "t175": 4, "403": 4, "t23": 4, "367": 4, "278": 4, "t132": 4, "t583": 4, "635": 4, "t128": 4, "056": 4, "966": 4, "t34": 4, "t160": 4, "t688": 4, "650": 4, "36": 4, "359": [4, 6], "t481": 4, "n442": 4, "t428": 4, "t923": 4, "t909": 4, "406": 4, "114": 4, "468": 4, "136": 4, "t271": 4, "533": 4, "048": 4, "491": 4, "332": 4, "t320": 4, "t608": 4, "t76": 4, "840": 4, "956": 4, "890": 4, "t20": 4, "627": 4, "243": 4, "t628": 4, "t602": 4, "t192": 4, "t410": 4, "735": 4, "636": 4, "t344": 4, "t144": 4, "470": 4, "657": 4, "831": 4, "125": 4, "162": 4, "t173": 4, "752": 4, "corrobor": 4, "mortgag": 4, "classifi": [4, 6], "37": 4, "cross": [4, 6], "swap": 4, "remeasur": 4, "notion": 4, "069": 4, "730": 4, "575": 4, "493": 4, "t104": 4, "777": 4, "nhedg": 4, "433": 4, "505": 4, "247": 4, "ntrade": 4, "41": 4, "44": 4, "depreci": 4, "nland": 4, "690": 4, "nmachineri": 4, "t80": 4, "205": 4, "314": 4, "nleasehold": 4, "839": 4, "599": 4, "73": 4, "70": 4, "884": 4, "852": 4, "t55": 4, "906": 4, "601": 4, "703": 4, "010": 4, "457": 4, "634": 4, "391": 4, "neuropean": 4, "opinion": [4, 6], "1991": 4, "2007": 4, "irish": 4, "branch": 4, "2003": 4, "2014": 4, "2015": 4, "minist": 4, "juli": [4, 6], "annul": 4, "ecj": 4, "hear": 4, "asid": 4, "confirm": 4, "unrecogn": 4, "nfeder": 4, "571": 4, "080": 4, "644": 4, "265": 4, "801": 4, "726": 4, "570": 4, "298": 4, "49": 4, "t84": 4, "428": 4, "603": 4, "483": 4, "t347": 4, "t669": 4, "076": 4, "830": 4, "419": 4, "072": 4, "pretax": 4, "72": 4, "71": 4, "ncomput": 4, "885": 4, "012": 4, "124": 4, "518": 4, "nimpact": 4, "246": 4, "311": 4, "366": 4, "397": 4, "nexcess": 4, "893": 4, "871": 4, "192": 4, "739": 4, "ntax": 4, "carryforward": 4, "302": 4, "naccru": 4, "413": 4, "421": 4, "nunreal": 4, "173": 4, "168": 4, "873": 4, "743": 4, "nless": 4, "374": 4, "007": 4, "369": 4, "551": 4, "998": 4, "nright": 4, "179": 4, "nminimum": 4, "674": 4, "940": 4, "t511": 4, "t455": 4, "t490": 4, "805": 4, "202": 4, "indefinit": 4, "temporari": 4, "727": 4, "044": 4, "284": 4, "ndecreas": 4, "386": 4, "463": 4, "982": 4, "542": 4, "936": 4, "070": 4, "expir": 4, "statut": 4, "229": 4, "494": 4, "closur": 4, "intercompani": 4, "exceed": [4, 6], "multiyear": 4, "exercis": 4, "noncash": 4, "rou": 4, "tfinanci": 4, "t2024": 4, "tother": 4, "661": 4, "tproperti": 4, "015": 4, "303": 4, "676": 4, "t165": 4, "t752": 4, "t859": 4, "430": 4, "842": [4, 6], "tfinanc": 4, "n2025": 4, "820": 4, "t171": 4, "991": 4, "n2026": 4, "914": 4, "n2027": 4, "t59": 4, "733": 4, "n2028": 4, "360": 4, "t38": 4, "398": 4, "n2029": 4, "187": 4, "nthereaft": 4, "t837": 4, "undiscount": 4, "790": 4, "imput": 4, "376": 4, "534": 4, "t896": 4, "borrow": 4, "proce": 4, "nine": [4, 6], "nmatur": 4, "333": 4, "264": 4, "948": 4, "645": 4, "309": 4, "arrear": 4, "namount": 4, "n2013": 4, "nfix": 4, "2062": 4, "t97": 4, "341": 4, "03": 4, "65": 4, "t106": 4, "572": 4, "n97": 4, "nunamort": 4, "premium": 4, "321": 4, "358": 4, "113": 4, "662": 4, "930": 4, "342": 4, "800": 4, "180": 4, "88": 4, "ndure": 4, "425": 4, "426": 4, "372": 4, "589": 4, "055": 4, "appreci": 4, "four": 4, "holder": 4, "n2014": 4, "bonu": 4, "nrestrict": 4, "nnumber": 4, "nrsu": 4, "ngrant": 4, "naggreg": 4, "nfair": 4, "nbalanc": 4, "t240": 4, "427": 4, "t75": 4, "t150": 4, "861": 4, "501": 4, "768": 4, "87": 4, "101": 4, "878": 4, "144": 4, "t127": 4, "t135": 4, "91": 4, "456": 4, "78": 4, "59": [4, 6], "t140": 4, "326": 4, "t158": 4, "204": 4, "350": 4, "002": [4, 5], "nuncondit": 4, "uncondit": 4, "206": 4, "440": 4, "156": 4, "t633": 4, "t670": 4, "226": 4, "45": 4, "nconting": 4, "accrual": 4, "nconcentr": 4, "attribut": [4, 6, 7], "46": 4, "t67": 4, "098": 4, "082": 4, "062": 4, "569": 4, "895": 4, "458": 4, "207": 4, "nonrecur": 4, "t142": 4, "196": 4, "t138": 4, "t147": 4, "859": 4, "nchina": 4, "n66": 4, "t181": 4, "887": 4, "t172": 4, "269": 4, "nlong": 4, "664": 4, "797": 4, "778": 4, "219": 4, "47": 4, "nopinion": 4, "nwe": 4, "fairli": 4, "pcaob": 4, "sponsor": 4, "treadwai": 4, "2013": 4, "unqualifi": 4, "thereon": 4, "nthese": 4, "misstat": 4, "fraud": [4, 6], "ndescript": 4, "naudit": 4, "nhow": 4, "nmatter": 4, "qualifi": 4, "letter": 4, "advisor": 4, "ernst": 4, "llp": 4, "auditor": 4, "2009": 4, "nsan": 4, "jose": 4, "nnovemb": 4, "coso": 4, "nour": 4, "ndefinit": 4, "mainten": 4, "disposit": 4, "receipt": 4, "nevalu": 4, "nbase": 4, "supervis": [4, 6], "13a": 4, "15d": 4, "ninher": 4, "met": 4, "appear": [4, 7], "paragraph": 4, "51": [4, 7], "ninsid": 4, "deirdr": 4, "brien": 4, "vice": 4, "presid": 4, "affirm": 4, "april": 4, "withhold": 4, "remitt": 4, "mr": 4, "copi": [4, 5], "solicit": 4, "00042": 4, "nincorpor": 4, "texhibit": 4, "descript": [4, 7], "tform": 4, "tfile": 4, "nrestat": 4, "namend": 4, "bylaw": 4, "nindentur": 4, "york": [4, 7], "mellon": 4, "truste": 4, "noffic": 4, "certif": 4, "2018": 4, "85": 4, "2043": 4, "05": 4, "2044": 4, "februari": 4, "55": 4, "2045": 4, "900": 4, "700": 4, "60": 4, "250": 4, "2036": 4, "2046": 4, "450": 4, "2047": 4, "2049": 4, "2030": 4, "2050": 4, "2060": 4, "2028": 4, "2041": 4, "2051": 4, "2061": 4, "2032": 4, "2052": 4, "54": 4, "2033": 4, "2053": 4, "ceo": 4, "n12": 4, "nsubsidiari": 4, "n23": 4, "nconsent": 4, "n24": 4, "npower": 4, "signatur": 4, "nrule": 4, "nsection": 4, "1350": 4, "n101": 4, "ninlin": 4, "xbrl": 4, "n104": 4, "inlin": 4, "compensatori": 4, "herewith": 4, "furnish": 4, "herebi": 4, "undertak": 4, "56": 4, "nsignatur": 4, "npursuant": 4, "duli": 4, "undersign": 4, "thereunto": 4, "ndate": 4, "nby": 4, "luca": [4, 7], "maestri": 4, "nluca": 4, "nsenior": 4, "nchief": 4, "nknow": 4, "THESE": 4, "appoint": 4, "cook": 4, "jointli": 4, "her": 4, "substitut": 4, "him": 4, "thereto": 4, "therewith": 4, "ratifi": 4, "done": [4, 7], "virtu": 4, "hereof": 4, "nname": 4, "ttitl": 4, "tdate": 4, "tchief": 4, "tnovemb": 4, "ntimothi": 4, "tsenior": 4, "kondo": 4, "nchri": 4, "wanda": 4, "austin": 4, "nwanda": 4, "gorski": 4, "tdirector": 4, "nalex": 4, "andrea": [4, 6], "jung": 4, "nandrea": 4, "arthur": 4, "levinson": 4, "narthur": 4, "monica": 4, "lozano": 4, "nmonica": 4, "ronald": 4, "sugar": 4, "nronald": 4, "susan": 4, "wagner": 4, "nsusan": 4, "57": 4, "turbo": [4, 5, 7], "outlin": [4, 6], "invdestacksmeticsisdict": 4, "setispect": 4, "20cyan": 4, "evaluationseld": 4, "anvis": 4, "droitent": 4, "discernminerv": 4, "versbobprefvers": 4, "vo\u8be5": 4, "option\u548c": 4, "meio": 4, "\u0432\u0440\u0435\u043ccisco": 4, "dellaischenpoihscap": 4, "geme": 4, "gettim": 4, "unscal": 4, "vocabulari": [4, 7], "closer": 4, "sharpen": 4, "uniform": 4, "raschka": 4, "repetit": [4, 5, 7], "radic": 4, "grappl": 4, "safer": [4, 6], "fascin": 4, "spontan": 4, "aren": 4, "linear": 4, "absent": [4, 6], "coax": 4, "journei": 4, "suddenli": 4, "manifest": 4, "deliber": [4, 6], "contend": 4, "70b": 4, "rethink": 4, "tutor": 4, "children": [4, 6], "verifi": [4, 7], "predefin": [4, 7], "weren": 4, "kind": 4, "usual": 4, "resist": 4, "quantif": 4, "contamin": [4, 6], "massiv": [4, 6], "truli": 4, "unseen": 4, "longitudin": 4, "mostli": [4, 7], "versu": 4, "latter": 4, "tailor": 4, "great": [4, 7], "cognit": 4, "misinform": [4, 6], "citat": 4, "tempor": 4, "disclaim": 4, "referr": 4, "incorrect": [4, 6], "demograph": [4, 6], "stereotyp": [4, 6], "societ": [4, 6], "pii": 4, "anonym": 4, "leakag": [4, 6], "carryov": 4, "multi": [4, 6, 7], "fallaci": 4, "causal": 4, "think": [4, 6], "idiom": 4, "sarcasm": 4, "terminologi": 4, "lingual": 4, "misunderstand": 4, "syntax": 4, "scan": 4, "compat": [4, 7], "scalabl": [4, 5, 6], "overconfid": 4, "clariti": [4, 5, 7], "audienc": 4, "densiti": 4, "satisfact": [4, 7], "misus": [4, 6], "moral": 4, "co2": 4, "energi": 4, "consumpt": 4, "server": [4, 7], "cach": 4, "imag": 4, "audio": 4, "etc": [4, 7], "truth": [4, 6, 7], "layer": [4, 5, 7], "palm": 4, "easi": [4, 5], "synthet": [4, 6, 7], "augment": 4, "timeout": 4, "variat": 4, "inter": 4, "rater": 4, "ti": 4, "tier": [4, 6], "holist": 4, "fast": [4, 6, 7], "experiment": [4, 7], "vi": 4, "categor": [4, 7], "intrins": 4, "extrins": 4, "sequenc": [4, 7], "perplex": 4, "downstream": [4, 7], "synthesi": 4, "discret": 4, "prefix": [4, 6], "roug": 4, "bleu": 4, "bilingu": 4, "understudi": 4, "overlap": [4, 5], "favor": [4, 7], "breviti": 4, "insensit": 4, "semant": [4, 5], "orient": 4, "gist": 4, "meteor": 4, "synonym": 4, "stem": [4, 7], "paraphras": 4, "alongsid": [4, 6], "computation": [4, 5], "cider": 4, "consensu": 4, "tf": 4, "idf": 4, "caption": 4, "reliant": 4, "corpu": 4, "ter": 4, "edit": [4, 6], "hypothesi": 4, "penal": 4, "bertscor": 4, "contextu": 4, "embed": [4, 5], "bert": 4, "spice": 4, "proposit": 4, "scene": 4, "pure": 4, "analyst": [4, 5], "rouge_1": 4, "rouge_2": 4, "ideal": [4, 7], "cheaper": 4, "setup": [4, 7], "evaluate_summari": 4, "unigram": 4, "bigram": 4, "absl": 4, "py": [4, 6], "rouge_scor": 4, "generated_summari": 4, "reference_summari": 4, "google_bleu": 4, "bleu_scor": 4, "rouge1": 4, "rouge2": 4, "arbitrari": 4, "chosen": 4, "sentence1": 4, "cat": 4, "sat": 4, "mat": 4, "sentence2": 4, "ate": 4, "3333333333333333": 4, "7272727272727272": 4, "4444444444444445": 4, "generate_summari": 4, "summir": 4, "liner": 4, "excerpt": 4, "evaluate_summary_model": 4, "model_benchmark": 4, "models_test": 4, "benchmark_summari": 4, "model_summari": 4, "evaluation_result": 4, "analyz": [4, 5, 6, 7], "statu": 4, "concis": 4, "element": [4, 6, 7], "verbos": 4, "peripher": 4, "quit": [4, 7], "miss": 4, "convei": [4, 5], "breadth": 4, "Of": 4, "vibe": 4, "visualize_prompt_comparison": 4, "matplotlib": 4, "radar": 4, "radar_plot": 4, "tmp": 4, "ipykernel_1652501": 4, "940173201": 4, "userwarn": 4, "figurecanvasagg": 4, "largest": 4, "deviat": [4, 7], "granular": [4, 5], "tune": [4, 6, 7], "likert": 4, "pairwis": 4, "ensembl": 4, "repeatedli": 4, "fluenci": 4, "refin": 4, "narr": 4, "notabl": [4, 7], "henc": 4, "integ": 4, "rubric": 4, "hollist": 4, "judgeevalu": 4, "grammar": [4, 7], "evaluate_with_llm": 4, "criterion": 4, "judge_model": 4, "candidate_summari": 4, "grammat": 4, "y": [4, 6, 7], "z": 4, "w": [4, 5], "benchmark_model": 4, "test_model": 4, "input_text": [4, 5], "trillion": [4, 7], "evals_list": 4, "1775618912": 4, "variant": [4, 6], "slightli": 4, "drift": 4, "lowest": 4, "degrad": [4, 7], "firstli": 4, "overhead": 4, "egocentr": 4, "tight": 4, "aproach": 4, "aplic": 4, "clearli": [4, 6, 7], "earlier": 4, "depict": [4, 7], "correl": 4, "multilingu": [4, 6], "golden": 4, "languang": 4, "arena": 4, "blind": 4, "randomli": 4, "loop": 4, "customiz": 4, "irrelev": 4, "unhelp": [4, 6], "occasion": 4, "rare": 4, "perfectli": 4, "cater": 4, "critiqu": [4, 6], "elo": 4, "spectrum": 4, "thought": [4, 7], "exam": 4, "probe": [4, 6], "certifi": 4, "began": 4, "glue": 4, "entail": 4, "baselin": [4, 6], "superglu": 4, "deeper": [4, 5], "successor": 4, "grew": 4, "big": 4, "bench": 4, "srivastava": 4, "arithmet": 4, "truthfulqa": 4, "multitask": 4, "hendryck": 4, "multidisciplinari": 4, "stanford": 4, "helm": 4, "multidimension": 4, "surround": [4, 7], "humanev": 4, "lmsy": 4, "brought": 4, "dialogu": 4, "chiang": 4, "alpacaev": 4, "duboi": 4, "mt": 4, "render": 4, "crowdsourc": 4, "livebench": 4, "white": [4, 6], "resili": [4, 6], "meaningfulli": 4, "zebralog": 4, "grid": 4, "puzzl": 4, "brailsford": 4, "1999": 4, "lsat": 4, "hous": 4, "clue": 4, "strateg": [4, 6, 7], "deduct": 4, "arriv": 4, "programmat": [4, 7], "2x2": 4, "6x6": 4, "shot": [4, 6], "reductio": 4, "ad": [4, 7], "absurdum": 4, "sonnet": [4, 5], "hard": 4, "10b": 4, "counterfactu": 4, "came": 4, "arc": 4, "prize": 4, "chollet": 4, "mike": [4, 6], "knoop": 4, "founder": 4, "zapier": 4, "fran\u00e7oi": 4, "creator": 4, "agi": 4, "kera": 4, "genuin": 4, "possess": 4, "elementari": 4, "novelti": 4, "wouldn": 4, "interpol": 4, "synthes": 4, "fly": 4, "retriev": 4, "brute": 4, "pixel": 4, "unbeaten": 4, "win": 4, "poorli": 4, "recombin": 4, "spur": [4, 6], "takeawai": 4, "fourrier": 4, "bespok": 4, "sdk": 4, "autoregress": 4, "sub": 4, "liter": 4, "disturb": 4, "zero": [4, 6, 7], "varianc": 4, "yt": 4, "ut": 4, "suppos": [4, 7], "ol": 4, "heteroscedast": 4, "regress": 4, "lag": [4, 6], "bivari": 4, "evaluation_track": 4, "evaluationtrack": 4, "model_config": 4, "basemodelconfig": 4, "parallelismmanag": 4, "pipelineparamet": 4, "envconfig": 4, "is_accelerate_avail": 4, "datetim": 4, "timedelta": 4, "initprocessgroupkwarg": 4, "create_evaluation_pipelin": 4, "cache_dir": 4, "pretrain": 4, "float16": 4, "max_sampl": 4, "kwargs_handl": 4, "3000": 4, "save_detail": 4, "pipeline_param": 4, "launcher_typ": 4, "env_config": 4, "override_batch_s": 4, "use_chat_templ": 4, "trust_remote_cod": 4, "pipeline_paramet": 4, "schemat": [4, 5], "vllm": [4, 7], "tgi": 4, "storag": [4, 6], "num_few_shot": 4, "vertic": 4, "bar": 4, "bigbench": 4, "winogrand": 4, "hellaswag": 4, "nlp": 4, "save_and_push_result": 4, "show_result": 4, "model_arg": 4, "send": [4, 7], "serverless": 4, "inference_server_address": 4, "inference_server_auth": 4, "model_id": 4, "null": 4, "bash": 4, "command": 4, "model_config_path": 4, "endpoint_model": 4, "llama3": [4, 5], "qwen2": [4, 7], "smollm2": 4, "3b": 4, "alibaba": [4, 7], "5b": [4, 7], "hui": 4, "allal": 4, "cluster": 4, "noteworthi": 4, "grain": [4, 7], "salt": [4, 7], "exponenti": 4, "modular": 4, "offici": 4, "revisit": 4, "trace": 4, "langchain_tracing_v2": 4, "langchain_api_kei": 4, "hf_evalu": 4, "langsmith_evalu": 4, "ls_client": 4, "dataset_nam": 4, "create_dataset": 4, "create_exampl": 4, "dataset_id": 4, "calculate_scor": 4, "reference_output": 4, "oai_client": 4, "xp_model_nam": 4, "lastli": 4, "run_evalu": 4, "And": 4, "upload_result": 4, "experiment_prefix": 4, "num_repetit": 4, "386a3620": 4, "9e1cc3cb": 4, "9d6a": 4, "4356": 4, "ab34": 4, "138e0abe8be4": 4, "8741976e": 4, "5268": 4, "4b75": 4, "949f": 4, "99477dde5d64": 4, "selectedsess": 4, "b831dc1e": 4, "90bc": 4, "4ed8": 4, "8080": 4, "fb42444724d6": 4, "4it": 4, "latest": [4, 5, 7], "tobia": [4, 6], "evaluate_modul": 4, "6fc70b7be0088120a372dfdd5d320b39b8bb3630cb8029b193941d9376e86bb0": 4, "tue": 4, "nov": 4, "couldn": 4, "5it": 4, "5053784e": 4, "64445871": 4, "a53c": 4, "44b1": 4, "a422": 4, "4f49b2f9656f": 4, "69": 4, "4b29f3c9": 4, "9ef7e39a": 4, "2add": 4, "410c": 4, "89f8": 4, "9f1a8b198cf1": 4, "61": 4, "insert": 4, "combined_df": 4, "concat": 4, "ignore_index": 4, "execution_tim": 4, "example_id": 4, "333333": 4, "224388": 4, "feb10f92": 4, "3167": 4, "41f3": 4, "bb1c": 4, "d271153a31a8": 4, "5b196b22": 4, "9f4c": 4, "489c": 4, "b020": 4, "7823208b42d6": 4, "348101": 4, "722464": 4, "c310f159": 4, "064a": 4, "4035": 4, "97c3": 4, "a25bbf43abc2": 4, "386076": 4, "704104": 4, "f7f24899": 4, "dd50": 4, "409e": 4, "93cc": 4, "6fb1622b60bf": 4, "443038": 4, "725059": 4, "242856d6": 4, "efb5": 4, "4101": 4, "b1cf": 4, "5805532838ac": 4, "373418": 4, "795302": 4, "ce975169": 4, "a0ab": 4, "40ce": 4, "8e32": 4, "efa28d06079d": 4, "stat": 4, "groupbi": 4, "agg": 4, "sort": 4, "sort_valu": 4, "subplot": 4, "pyplot": 4, "plt": 4, "numpi": 4, "np": 4, "ax1": 4, "ax2": 4, "figsiz": 4, "2ecc71": 4, "3498db": 4, "e74c3c": 4, "bleu_mean": 4, "bleu_std": 4, "enumer": [4, 5], "errorbar": 4, "yerr": 4, "fmt": 4, "markers": 4, "capsiz": 4, "set_ylabel": 4, "set_titl": 4, "set_xtick": 4, "set_xticklabel": 4, "rotat": 4, "set_ylim": 4, "bottom": 4, "legend": 4, "exec_mean": 4, "exec_std": 4, "tight_layout": 4, "ndetail": 4, "4038": 4, "0453": 4, "7815": 4, "0433": 4, "3768": 4, "0424": 4, "8343": 4, "2208": 4, "3519": 4, "0775": 4, "9122": 4, "1482": 4, "377": 4, "042": 4, "078": 4, "slower": 4, "04": [4, 5], "latenc": [4, 5], "speed": 4, "interestingli": 4, "decoupl": 4, "reload": 4, "facilit": [4, 6], "promptfooconfig": 4, "model_comparison": 4, "pretti": 4, "dump": 4, "default_flow_styl": 4, "sort_kei": 4, "prompt1": 4, "defaulttest": 4, "1000m": 4, "millisecond": 4, "eval_data": 4, "latency_m": 4, "totallatencym": 4, "token_usag": 4, "tokenusag": 4, "assert_pass": 4, "assertpasscount": 4, "assert_fail": 4, "assertfailcount": 4, "prompt_token": 4, "num_request": 4, "numrequest": 4, "2463": 4, "000035": 4, "3773": 4, "004620": 4, "1669": 4, "000091": 4, "1669m": 4, "highest": 4, "3773m": 4, "00462": 4, "promptfool": 4, "manual": [4, 6], "redefin": 4, "prompt_comparison": 4, "prompt2": 4, "prompt3": 4, "prompt_fil": 4, "prompt_cont": 4, "BE": 4, "again": 4, "prompt_id": 4, "promptid": 4, "gradingresult": 4, "df_raw": 4, "reset_index": 4, "eas": [4, 6], "seamless": [4, 6], "hf": 4, "plain": 4, "vanilla": 4, "defi": 4, "accustom": 4, "legaci": 4, "unsustain": 4, "prd": 4, "cultiv": [4, 6], "organiz": 4, "stagnat": 4, "alb": 4, "loubna": 4, "anton": 4, "lozhkov": 4, "bakouch": 4, "gabriel": [4, 6], "mart\u00edn": 4, "bl\u00e1zquez": 4, "lewi": 4, "tunstal": 4, "agust\u00edn": 4, "piquer": 4, "andr": 4, "marafioti": 4, "cyril": 4, "zakka": 4, "leandro": 4, "von": 4, "werra": 4, "wolf": 4, "are24": 4, "judgearena": 4, "bps99": 4, "salli": 4, "pott": 4, "barbara": 4, "557": 4, "sciencedirect": 4, "s0377221798003646": 4, "doi": [4, 6, 7], "1016": 4, "s0377": 4, "2217": 4, "00364": 4, "ctj": 4, "jerri": [4, 6], "tworek": [4, 6], "heewoo": [4, 6], "jun": [4, 6], "qime": [4, 6], "henriqu": [4, 6], "pond": [4, 6], "de": [4, 6], "oliveira": [4, 6], "pinto": [4, 6], "harri": [4, 6], "yuri": 4, "burda": 4, "greg": [4, 6], "brockman": [4, 6], "raul": [4, 6], "puri": [4, 6], "gretchen": [4, 6], "krueger": [4, 6], "petrov": [4, 6], "heidi": 4, "khlaaf": 4, "girish": [4, 6], "sastri": [4, 6], "brook": [4, 6], "chan": [4, 6], "grai": [4, 6], "ryder": [4, 6], "mikhail": [4, 6], "pavlov": [4, 6], "alethea": [4, 6], "lukasz": 4, "kaiser": [4, 6], "mohammad": [4, 6], "bavarian": [4, 6], "clemen": [4, 6], "winter": [4, 6], "philipp": 4, "tillet": [4, 6], "felip": [4, 6], "petroski": [4, 6], "dave": [4, 6], "cum": [4, 6], "matthia": 4, "plappert": 4, "fotio": 4, "chantzi": [4, 6], "barn": 4, "ariel": 4, "herbert": 4, "voss": [4, 6], "hebgen": 4, "guss": 4, "nichol": 4, "paino": [4, 6], "nikola": [4, 6], "tezak": [4, 6], "jie": [4, 6], "babuschkin": [4, 6], "suchir": [4, 6], "balaji": [4, 6], "shantanu": [4, 6], "jain": [4, 6], "saunder": 4, "hess": [4, 6], "carr": 4, "josh": [4, 6], "achiam": [4, 6], "vedant": 4, "misra": 4, "evan": [4, 6], "morikawa": [4, 6], "matthew": 4, "knight": [4, 6], "mile": [4, 6], "brundag": [4, 6], "mira": [4, 6], "murati": [4, 6], "kati": [4, 6], "mayer": [4, 6], "bob": [4, 6, 7], "mcgrew": [4, 6], "ilya": [4, 6], "sutskev": [4, 6], "wojciech": [4, 6], "zaremba": [4, 6], "2107": 4, "03374": 4, "cz": 4, "lianmin": 4, "ying": 4, "sheng": 4, "anastasio": 4, "angelopoulo": 4, "tianl": 4, "dacheng": 4, "banghua": 4, "jordan": [4, 6], "gonzalez": 4, "ion": 4, "stoica": 4, "04132": 4, "cho24a": 4, "francoi": 4, "arcpriz": 4, "cho24b": 4, "dglh24": 4, "yann": 4, "bal\u00e1z": 4, "galambosi": 4, "tatsunori": 4, "hashimoto": 4, "debia": 4, "04475": 4, "fac24a": 4, "wiki": [4, 7], "fac24b": 4, "fac24c": 4, "model_doc": 4, "fac24d": 4, "cookbook": [4, 6], "llm_judg": 4, "fac24f": 4, "fhwt23": 4, "cl\u00e9mentin": 4, "nathan": 4, "habib": 4, "hbb": 4, "collin": 4, "burn": 4, "steven": [4, 6], "basart": 4, "zou": 4, "manta": 4, "mazeika": 4, "song": [4, 6], "steinhardt": 4, "03300": 4, "hbd": 4, "du": 4, "maxwel": 4, "forb": 4, "yejin": 4, "choi": 4, "curiou": 4, "neural": [4, 7], "degener": 4, "1904": 4, "09751": 4, "hyc": 4, "binyuan": 4, "zeyu": 4, "cui": 4, "jiaxi": 4, "dayiheng": 4, "lei": [4, 6], "tianyu": 4, "jiajun": 4, "bowen": [4, 6], "kai": [4, 6], "dang": 4, "coder": 4, "preprint": [4, 7], "2409": [4, 6], "12186": 4, "lx": 4, "zhen": 4, "xiaohan": 4, "jia": 4, "yuxuan": 4, "lai": 4, "chongyang": 4, "shuai": 4, "ma": [4, 6], "nlg": 4, "07103": 4, "lbl": 4, "bommasani": 4, "toni": 4, "dimitri": 4, "tsipra": 4, "dilara": 4, "soylu": 4, "michihiro": 4, "yasunaga": 4, "yian": 4, "deepak": 4, "narayanan": 4, "yuhuai": 4, "benjamin": [4, 6], "newman": 4, "binhang": 4, "bobbi": 4, "ce": 4, "christian": [4, 6], "cosgrov": 4, "r\u00e9": 4, "acosta": 4, "nava": [4, 6], "drew": 4, "hudson": 4, "zelikman": 4, "esin": 4, "durmu": 4, "faisal": 4, "ladhak": 4, "frieda": 4, "rong": 4, "hongyu": 4, "ren": 4, "huaxiu": 4, "yao": [4, 6], "jue": 4, "keshav": 4, "santhanam": 4, "laurel": 4, "lucia": 4, "mert": 4, "yuksekgonul": 4, "mirac": 4, "suzgun": 4, "guha": 4, "niladri": 4, "chatterji": 4, "omar": 4, "khattab": 4, "henderson": 4, "qian": [4, 6], "chi": [4, 7], "sang": 4, "shibani": [4, 6], "santurkar": [4, 6], "surya": 4, "icard": 4, "tianyi": 4, "vishrav": 4, "chaudhari": 4, "xuechen": 4, "yuhui": 4, "yuta": 4, "koreeda": 4, "2211": 4, "09110": 4, "lbc24": 4, "ronan": 4, "bra": 4, "allenai": 4, "lhe22": 4, "stephani": [4, 6], "owain": 4, "mimic": 4, "falsehood": 4, "2109": 4, "07958": 4, "pro24": 4, "dev": 4, "ras24": 4, "sebastian": 4, "scratch": 4, "1633437166": 4, "srr": 4, "aarohi": 4, "abhinav": 4, "rastogi": 4, "abhishek": 4, "rao": 4, "abu": 4, "awal": 4, "shoeb": 4, "abubakar": 4, "abid": 4, "adam": [4, 6], "fisch": 4, "santoro": 4, "aditya": [4, 6], "gupta": 4, "adri\u00e0": 4, "garriga": 4, "alonso": 4, "agnieszka": 4, "kluska": 4, "aitor": 4, "lewkowycz": 4, "akshat": 4, "warstadt": 4, "alexand": [4, 6, 7], "kocurek": 4, "ali": [4, 6], "safaya": 4, "tazarv": 4, "aman": 4, "hussain": 4, "dsouza": 4, "ambros": 4, "slone": 4, "ameet": 4, "rahan": 4, "anantharaman": 4, "iyer": 4, "ander": 4, "andreassen": 4, "madotto": 4, "santilli": 4, "stuhlm\u00fcller": 4, "la": 4, "lampinen": 4, "angelica": 4, "anh": 4, "vuong": 4, "animesh": 4, "gottardi": 4, "antonio": 4, "norelli": 4, "anu": 4, "venkatesh": 4, "arash": 4, "gholamidavoodi": 4, "arfa": 4, "tabassum": 4, "arul": 4, "menez": 4, "arun": [4, 6], "kirubarajan": 4, "asher": 4, "mullokandov": 4, "ashish": 4, "sabharw": 4, "herrick": 4, "avia": 4, "efrat": 4, "aykut": 4, "erdem": 4, "ayla": 4, "karaka\u015f": 4, "bao": [4, 6], "loe": 4, "barret": [4, 6], "zoph": [4, 6], "bart\u0142omiej": 4, "bojanowski": 4, "batuhan": 4, "\u00f6zyurt": 4, "behnam": 4, "hedayatnia": 4, "neyshabur": 4, "inden": 4, "benno": 4, "stein": 4, "berk": 4, "ekmekci": 4, "blake": 4, "howald": 4, "bryan": 4, "orinion": 4, "diao": 4, "dour": 4, "stinson": 4, "cedrick": 4, "argueta": 4, "c\u00e9sar": 4, "ferri": 4, "ram\u00edrez": 4, "chandan": 4, "charl": 4, "rathkopf": 4, "chenlin": 4, "meng": 4, "chitta": 4, "baral": 4, "chiyu": 4, "callison": 4, "burch": 4, "wait": 4, "voigt": 4, "cindi": 4, "ramirez": 4, "clara": 4, "rivera": 4, "clemencia": 4, "siro": 4, "colin": 4, "raffel": 4, "courtnei": 4, "ashcraft": 4, "cristina": 4, "garbacea": 4, "damien": [4, 6], "sileo": 4, "garrett": 4, "kilman": 4, "roth": 4, "daniel": [4, 6], "freeman": 4, "khashabi": 4, "levi": [4, 6], "mosegu\u00ed": 4, "gonz\u00e1lez": 4, "perszyk": 4, "danqi": 4, "daphn": 4, "ippolito": 4, "dar": 4, "gilboa": 4, "dohan": [4, 6], "drakard": 4, "jurgen": 4, "debajyoti": 4, "datta": 4, "deni": 4, "emelin": 4, "kleyko": 4, "deniz": 4, "yuret": 4, "derek": [4, 6], "tam": [4, 7], "dieuwk": 4, "hupk": 4, "diganta": 4, "dilyar": 4, "buzan": 4, "coelho": 4, "mollo": 4, "diyi": 4, "ho": 4, "dylan": 4, "schrader": 4, "ekaterina": 4, "shutova": 4, "ekin": 4, "dogu": 4, "cubuk": 4, "elad": 4, "segal": 4, "eleanor": 4, "hagerman": 4, "donowai": 4, "elli": 4, "pavlick": 4, "rodola": 4, "emma": 4, "lam": 4, "chu": [4, 6], "erkut": 4, "erni": 4, "dyer": 4, "jerzak": 4, "eunic": 4, "engefu": 4, "manyasi": 4, "evgenii": 4, "zheltonozhskii": 4, "fanyu": 4, "xia": 4, "fatemeh": 4, "siar": 4, "fernando": 4, "mart\u00ednez": 4, "plume": 4, "francesca": 4, "happ\u00e9": 4, "gaurav": 4, "genta": 4, "indra": 4, "winata": 4, "gerard": 4, "melo": 4, "germ\u00e1n": 4, "kruszewski": 4, "giambattista": [4, 6], "parascandolo": [4, 6], "giorgio": 4, "mariani": 4, "gloria": 4, "gonzalo": 4, "jaimovitch": 4, "l\u00f3pez": 4, "gregor": 4, "betz": 4, "gui": 4, "gur": 4, "hana": 4, "galijasev": 4, "rashkin": 4, "hannaneh": 4, "hajishirzi": 4, "harsh": 4, "hayden": 4, "bogar": 4, "henri": [4, 6], "shevlin": 4, "hinrich": 4, "sch\u00fctze": 4, "hiromu": 4, "yakura": 4, "hongm": 4, "hugh": 4, "mee": 4, "wong": [4, 6], "ng": [4, 6], "isaac": 4, "nobl": 4, "jaap": 4, "jumelet": 4, "geissing": 4, "jaehoon": 4, "jaim": 4, "fern\u00e1ndez": 4, "fisac": 4, "simon": 4, "koppel": 4, "koco\u0144": 4, "jana": 4, "thompson": [4, 6], "janel": 4, "wingfield": 4, "jarema": 4, "radom": 4, "jascha": 4, "sohl": [4, 6], "dickstein": 4, "phang": 4, "yosinski": 4, "jekaterina": 4, "novikova": 4, "jell": 4, "bosscher": 4, "jennif": 4, "marsh": 4, "jeroen": 4, "taal": 4, "jess": [4, 6], "engel": 4, "jesujoba": 4, "alabi": 4, "jiam": 4, "jillian": 4, "joan": 4, "waweru": 4, "burden": 4, "bali": 4, "jonathan": [4, 6], "batcheld": 4, "berant": 4, "j\u00f6rg": 4, "frohberg": 4, "jo": 4, "rozen": 4, "orallo": 4, "boudeman": 4, "guerr": 4, "tenenbaum": 4, "joyc": 4, "chua": 4, "kanclerz": 4, "karen": 4, "livescu": 4, "karl": 4, "krauth": 4, "karthik": 4, "gopalakrishnan": 4, "katerina": 4, "ignatyeva": 4, "katja": 4, "markert": 4, "kaustubh": 4, "dhole": 4, "gimpel": 4, "omondi": 4, "kori": 4, "mathewson": 4, "kristen": 4, "chiafullo": 4, "ksenia": 4, "shkaruta": 4, "shridhar": 4, "kyle": [4, 6], "mcdonel": 4, "richardson": 4, "laria": 4, "reynold": 4, "leo": [4, 6], "liam": [4, 6], "dugan": 4, "lianhui": 4, "qin": [4, 6], "lidia": 4, "contrera": 4, "ochando": 4, "morenc": 4, "moschella": 4, "luci": 4, "ludwig": 4, "schmidt": [4, 6], "luheng": 4, "olivero": 4, "col\u00f3n": 4, "metz": [4, 6], "l\u00fctfi": 4, "kerem": 4, "\u015fenel": 4, "maarten": [4, 6], "bosma": 4, "sap": [4, 6], "maartj": 4, "hoev": 4, "maheen": 4, "farooqi": 4, "manaal": 4, "faruqui": 4, "marco": 4, "baturan": 4, "marelli": 4, "maru": 4, "maria": 4, "quintana": 4, "tolkiehn": 4, "mario": [4, 6], "giulianelli": 4, "martha": 4, "potthast": 4, "leavitt": 4, "hagen": 4, "m\u00e1ty\u00e1": 4, "schubert": 4, "medina": [4, 6], "orduna": 4, "baitemirova": 4, "melodi": 4, "arnaud": 4, "melvin": 4, "mcelrath": 4, "yee": 4, "cohen": 4, "ivanitskii": 4, "starritt": 4, "strube": 4, "micha\u0142": 4, "sw\u0119drowski": 4, "michel": [4, 6], "bevilacqua": 4, "mihir": 4, "kale": 4, "cain": 4, "mime": 4, "mitch": 4, "walker": 4, "mo": 4, "tiwari": 4, "mohit": 4, "bansal": 4, "moin": 4, "aminnaseri": 4, "mor": 4, "geva": 4, "mozhdeh": 4, "gheini": 4, "mukund": 4, "varma": 4, "nanyun": 4, "peng": [4, 6], "nayeon": 4, "neta": 4, "krakov": 4, "doiron": 4, "nicol": 4, "martinez": 4, "nikita": 4, "nangia": 4, "nikla": 4, "decker": 4, "muennighoff": 4, "nitish": [4, 6], "shirish": [4, 6], "keskar": [4, 6], "niveditha": 4, "constant": 4, "fiedel": 4, "nuan": 4, "wen": 4, "oliv": [4, 6], "agha": 4, "elbaghdadi": 4, "omer": 4, "moreno": 4, "casar": 4, "parth": 4, "doshi": 4, "pascal": 4, "fung": 4, "pu": 4, "vicol": 4, "pegah": 4, "alipoormolabashi": 4, "peiyuan": 4, "eckerslei": 4, "phu": 4, "mon": 4, "htut": 4, "pinyu": 4, "hwang": 4, "piotr": 4, "mi\u0142kowski": 4, "piyush": 4, "patil": 4, "pouya": 4, "pezeshkpour": 4, "priti": 4, "oli": 4, "qiaozhu": 4, "qing": 4, "lyu": 4, "qinlang": 4, "rabin": 4, "banjad": 4, "rachel": [4, 6], "etta": 4, "rudolph": 4, "raefer": 4, "rahel": 4, "haback": 4, "ramon": 4, "risco": 4, "rapha\u00ebl": 4, "milli\u00e8r": 4, "rhythm": 4, "garg": 4, "rif": 4, "saurou": 4, "riku": 4, "arakawa": 4, "robb": 4, "raymaek": 4, "frank": [4, 6], "rohan": 4, "sikand": 4, "roman": [4, 6], "novak": 4, "sitelew": 4, "lebra": 4, "rosann": 4, "rowan": [4, 6], "ruslan": 4, "salakhutdinov": 4, "stoval": 4, "teehan": 4, "rylan": 4, "sahib": 4, "saif": 4, "sajant": 4, "anand": [4, 6], "dillav": 4, "shleifer": 4, "wiseman": 4, "gruetter": 4, "schoenholz": 4, "sanghyun": 4, "sanjeev": 4, "kwatra": 4, "sarik": 4, "ghazarian": 4, "sayan": 4, "casei": [4, 6], "bischoff": 4, "gehrmann": 4, "schuster": 4, "sepideh": 4, "sadeghi": 4, "shadi": 4, "hamdan": 4, "sharon": 4, "shashank": 4, "sherri": 4, "shi": 4, "shikhar": 4, "shima": 4, "asaadi": 4, "shubh": 4, "pachchigar": 4, "shubham": 4, "toshniw": 4, "shyam": [4, 6], "upadhyai": 4, "shyamolima": 4, "debnath": 4, "siamak": 4, "shakeri": 4, "thormey": 4, "melzi": 4, "siva": 4, "reddi": 4, "sneha": 4, "priscilla": 4, "makini": 4, "soo": 4, "hwan": 4, "spencer": 4, "toren": 4, "sriharsha": 4, "hatwar": 4, "stanisla": 4, "dehaen": 4, "stefan": 4, "divic": 4, "stella": 4, "biderman": 4, "stephen": 4, "prasad": 4, "piantadosi": 4, "stuart": [4, 6], "shieber": 4, "summer": [4, 6], "misherghi": 4, "svetlana": 4, "kiritchenko": 4, "swaroop": 4, "tal": 4, "linzen": 4, "tariq": 4, "tatsu": 4, "te": 4, "th\u00e9o": 4, "desbord": 4, "theodor": 4, "rothschild": 4, "phan": 4, "tiberiu": 4, "nkinyili": 4, "timo": 4, "schick": 4, "timofei": 4, "kornev": 4, "titu": 4, "tunduni": 4, "gerstenberg": 4, "trenton": 4, "trishala": 4, "neeraj": 4, "tushar": 4, "khot": 4, "shultz": 4, "uri": 4, "shaham": 4, "vera": 4, "demberg": 4, "victoria": [4, 6], "nyamai": 4, "vika": 4, "raunak": 4, "vinai": 4, "ramasesh": 4, "udai": 4, "prabhu": 4, "vishakh": 4, "padmakumar": 4, "vivek": 4, "srikumar": 4, "fedu": [4, 6], "wout": 4, "vossen": 4, "xiaoyu": 4, "tong": [4, 6], "xinran": 4, "xinyi": 4, "yadollah": 4, "yaghoobzadeh": 4, "yair": 4, "lakretz": 4, "yangqiu": 4, "yasaman": 4, "bahri": 4, "yichi": 4, "yide": 4, "yifu": 4, "yonatan": 4, "belinkov": 4, "yufang": 4, "seid": 4, "zhuoy": 4, "zijian": 4, "ziji": 4, "zirui": 4, "ziyi": 4, "extrapol": 4, "2206": 4, "04615": 4, "wpn": 4, "yada": 4, "pruksachatkun": 4, "amanpreet": 4, "julian": 4, "hill": 4, "stickier": 4, "wsm": 4, "1804": 4, "07461": 4, "wtb": 4, "tai": 4, "borgeaud": 4, "dani": 4, "yogatama": 4, "denni": [4, 6], "donald": 4, "metzler": 4, "ed": 4, "oriol": 4, "vinyal": 4, "dean": 4, "07682": 4, "wdr": 4, "doolei": 4, "manlei": 4, "arka": [4, 6], "pal": 4, "feuer": 4, "siddhartha": 4, "ravid": 4, "shwartz": [4, 6], "ziv": 4, "khalid": 4, "saifullah": 4, "siddartha": 4, "naidu": 4, "chinmai": 4, "hegd": 4, "lecun": 4, "goldstein": 4, "willi": 4, "neiswang": 4, "micah": 4, "goldblum": 4, "19314": 4, "yyh": 4, "baosong": 4, "chengpeng": 4, "chengyuan": 4, "fei": 4, "guant": 4, "haoran": 4, "huan": 4, "jialong": 4, "jialin": 4, "jianhong": 4, "tu": 4, "jianwei": 4, "jianxin": 4, "jin": [4, 6], "jingren": 4, "jinz": 4, "jinzheng": 4, "junyang": 4, "keme": 4, "keqin": 4, "kexin": 4, "mingfeng": 4, "xue": [4, 6], "ni": 4, "pei": 4, "ru": 4, "men": 4, "ruiz": 4, "runji": 4, "shiji": 4, "sinan": 4, "tianhang": 4, "wenbin": 4, "ge": [4, 6], "xiaodong": 4, "deng": 4, "xiaohuan": 4, "xingzhang": 4, "xinyu": [4, 6], "xipin": 4, "xuancheng": 4, "yichang": 4, "wan": 4, "yunfei": 4, "yuqiong": 4, "zhenru": 4, "zhihao": 4, "10671": 4, "zc": 4, "siyuan": 4, "zhuang": [4, 6], "zhanghao": 4, "yonghao": 4, "zi": 4, "zhuohan": 4, "xing": [4, 6], "2306": 4, "05685": 4, "huggingface24": 4, "06": [4, 7], "metaai24": 4, "possibli": 5, "eliot": 5, "thumb": 5, "\u00be": 5, "max_output_token": 5, "4096": 5, "16384": 5, "contrari": 5, "surpass": 5, "truncat": 5, "max_input_token": 5, "input_cost_per_token": 5, "output_cost_per_token": 5, "11b": 5, "v1": [5, 6], "128000": 5, "5e": 5, "20241022": 5, "8192": 5, "200000": 5, "3e": 5, "0613": 5, "6e": 5, "gemini": 5, "flash": 5, "1048576": 5, "2097152": 5, "05e": 5, "incomplet": [5, 6], "abruptli": 5, "shallow": 5, "thorough": [5, 6], "dissatisfact": 5, "frustrat": 5, "feasibl": 5, "10k": 5, "diagram": 5, "charactertextsplitt": 5, "tiktoken": 5, "sequenti": 5, "newlin": 5, "broadli": [5, 7], "cheap": 5, "speciali": 5, "nltk": 5, "spaci": 5, "recurs": 5, "divid": [5, 6], "hierarch": [5, 6], "talk": 5, "theme": [5, 6], "splitter": 5, "get_chunk": 5, "chunk_siz": 5, "chunk_overlap": 5, "langchain_text_splitt": 5, "text_splitt": 5, "from_tiktoken_encod": 5, "split_text": 5, "persona": 5, "langchain_cor": [5, 7], "prompttempl": 5, "get_base_prompt_templ": 5, "base_prompt": [5, 7], "from_templ": 5, "llmchain": 5, "parser": [5, 7], "output_pars": 5, "stroutputpars": 5, "langchain_commun": 5, "chat_model": 5, "chatlitellm": 5, "get_llm_chain": 5, "prompt_templ": [5, 7], "llm_chain": [5, 7], "api_key_label": 5, "upper": 5, "_api_kei": 5, "get_dynamic_prompt_templ": 5, "get_dynamic_prompt_param": 5, "prompt_param": 5, "part_idx": 5, "total_part": 5, "chat_context": 5, "param": 5, "dynamic_prompt_param": 5, "introduct": 5, "concaten": 5, "generate_report": 5, "input_cont": 5, "llm_model_nam": 5, "report_part": 5, "num_part": 5, "dinam": 5, "priovid": 5, "invok": [5, 7], "cummul": 5, "max_chunk_s": 5, "max_chunk_overlap": 5, "readabl": 5, "apple_report": 5, "luation": 5, "disciplin": 5, "subhead": 5, "despit": [5, 7], "depth": [5, 6], "evalu": [5, 6, 7], "overlook": 5, "easier": [5, 7], "preprocess": [5, 7], "necessit": 5, "meticul": 5, "bottleneck": 5, "mustafa": 5, "suleyman": 5, "infinit": 5, "fewer": [5, 6], "condens": 5, "versatil": 5, "drive": [5, 6, 7], "grace": 5, "fallback": 5, "empow": [5, 6], "langchain24": 5, "how_to": 5, "immens": 6, "commonplac": 6, "penetr": 6, "hartvigsen": 6, "societi": 6, "statement": 6, "alarm": 6, "openli": 6, "dolli": 6, "v2": 6, "llama2": [6, 7], "13b": 6, "emb": 6, "birth": 6, "siam": 6, "edgington": 6, "phenomenon": [6, 7], "jailbreak": 6, "promptcraft": 6, "stealth": 6, "sutton": 6, "subtl": 6, "trigger": 6, "subtleti": 6, "exception": 6, "phrase": 6, "evad": 6, "hqve": 6, "frer": 6, "hplidai": 6, "pl": 6, "hyperion": 6, "coast": 6, "redwood": 6, "tallest": 6, "tree": [6, 7], "routin": 6, "overview": [6, 7], "bengio": 6, "yoshua": 6, "generalist": 6, "injustic": 6, "inequ": 6, "undermin": 6, "perpetu": 6, "displac": 6, "eros": 6, "fake": 6, "deepfak": 6, "distrust": 6, "cyberattack": 6, "spread": 6, "disinform": 6, "inadvert": 6, "signal": 6, "interven": 6, "irrevers": 6, "uncheck": 6, "catastroph": 6, "extinct": 6, "race": 6, "incentiv": 6, "shortcut": 6, "behind": 6, "stress": 6, "urgent": 6, "reorient": 6, "prejudic": 6, "gallego": 6, "leak": 6, "poison": 6, "intention": 6, "inject": 6, "mislead": 6, "exabeam": 6, "finra": 6, "3110": 6, "mandat": 6, "supervisori": 6, "medicin": 6, "unicef": 6, "contest": 6, "congress": 6, "enact": 6, "pictur": [6, 7], "territori": 6, "oversea": 6, "chines": 6, "legitim": 6, "properti": 6, "consent": 6, "complaint": 6, "cooper": 6, "extraterritori": 6, "offshor": 6, "draft": 6, "voluntari": 6, "neutral": 6, "player": 6, "prepared": 6, "ahead": 6, "compris": 6, "cbrn": 6, "persuas": 6, "autonomi": 6, "gradat": 6, "scorecard": 6, "elig": 6, "medium": [6, 7], "advisori": 6, "sag": 6, "shut": 6, "prerequisit": 6, "exfiltr": 6, "harden": 6, "asl": 6, "biosafeti": 6, "elev": 6, "warn": 6, "bioweapon": 6, "compartment": 6, "difficulti": 6, "4x": 6, "jump": 6, "paus": 6, "frontier": 6, "deepmind": 6, "biosecur": 6, "buffer": 6, "formul": [6, 7], "calibr": 6, "promin": 6, "taxonomi": 6, "llamaguard": 6, "alaga": 6, "substandard": 6, "oxford": 6, "wachter": 6, "argument": [6, 7], "blur": 6, "ill": 6, "stifl": 6, "suscept": 6, "aadc": 6, "outset": 6, "curricula": 6, "adversari": 6, "uncov": [6, 7], "mode": 6, "appar": 6, "thoroughli": 6, "lm": [6, 7], "problemat": 6, "arrai": 6, "undergo": 6, "280b": 6, "cai": [6, 7], "utilis": 6, "minimis": 6, "enshrin": 6, "evas": 6, "resort": 6, "encod": 6, "simultan": 6, "avenu": 6, "cambria": 6, "inherit": 6, "influenti": 6, "debias": 6, "occurr": 6, "phish": 6, "sft": 6, "dpo": 6, "perspect": 6, "hierarchi": 6, "66": 6, "toxic": 6, "mcq": 6, "regex": [6, 7], "joint": 6, "subset": 6, "facet": 6, "purpl": 6, "circl": 6, "leaderboard": 6, "opensafetylab": 6, "salad_bench_dataset": 6, "base_set": 6, "src": 6, "python3": 6, "tqdm": 6, "auto": 6, "tqdmwarn": 6, "iprogress": 6, "jupyt": 6, "ipywidget": 6, "readthedoc": 6, "user_instal": 6, "autonotebook": 6, "notebook_tqdm": 6, "21318": 6, "66534": 6, "gptfuzzer": 6, "qid": 6, "o1": 6, "amp": 6, "o53": 6, "o14": 6, "o5": 6, "o65": 6, "plagiar": 6, "o16": 6, "o6": 6, "o47": 6, "campaign": 6, "o12": 6, "o52": 6, "surveil": 6, "spous": 6, "o13": 6, "breakdown": [6, 7], "ncount": 6, "8756": 6, "6486": 6, "o2": 6, "1717": 6, "o4": 6, "1477": 6, "o3": 6, "socioeconom": 6, "851": 6, "int64": 6, "gen": 6, "15433": 6, "4184": 6, "659": 6, "advbench": 6, "230": 6, "189": 6, "toxicchat": 6, "anyth": 6, "93": 6, "saladbench": 6, "abc": 6, "webpurifi": 6, "aw": 6, "comprehend": 6, "ibm": 6, "granit": 6, "guardian": 6, "nemo": 6, "nvidia": 6, "mistralai": 6, "blob": [6, 7], "ipynb": 6, "ai24": 6, "asa24": 6, "jide": 6, "jona": 6, "schuett": 6, "marku": 6, "anderljung": 6, "08751": 6, "bhy": 6, "geoffrei": 6, "hinton": 6, "pieter": 6, "abbeel": 6, "trevor": 6, "darrel": 6, "yuval": 6, "harari": 6, "ya": 6, "lan": 6, "shai": 6, "shalev": 6, "gillian": 6, "hadfield": 6, "clune": 6, "tegan": 6, "maharaj": 6, "hutter": 6, "at\u0131l\u0131m": 6, "g\u00fcne\u015f": 6, "baydin": 6, "sheila": 6, "mcilraith": 6, "qiqi": 6, "ashwin": 6, "acharya": 6, "anca": 6, "dragan": 6, "philip": 6, "torr": 6, "russel": 6, "kahneman": 6, "brauner": 6, "s\u00f6ren": 6, "mindermann": 6, "amid": 6, "384": 6, "6698": 6, "1126": 6, "adn0117": 6, "pdf": 6, "bbc": 6, "emili": 6, "braca": 6, "israel": 6, "carter": 6, "hafsa": 6, "kanchwala": 6, "khojasteh": 6, "charli": 6, "landow": 6, "luo": 6, "magarelli": 6, "mirin": 6, "averi": 6, "moyer": 6, "kayla": 6, "simpson": 6, "amelia": 6, "skawinski": 6, "heverin": 6, "23308": 6, "bmc": 6, "dillon": 6, "brendan": 6, "murphi": 6, "Will": 6, "khachaturov": 6, "gleav": 6, "kellin": 6, "pelrin": 6, "2408": [6, 7], "02946": 6, "cmm": 6, "erik": 6, "lorenzo": 6, "malandri": 6, "fabio": 6, "mercorio": 6, "navid": 6, "nobani": 6, "seveso": 6, "15248": 6, "edg24": 6, "exa24": 6, "cyber": 6, "grb": 6, "rossi": 6, "joe": 6, "barrow": 6, "mehrab": 6, "tanjim": 6, "sungchul": 6, "franck": 6, "dernoncourt": 6, "ruiyi": 6, "nesreen": 6, "2309": 6, "00770": 6, "hgp": 6, "saadia": 6, "hamid": 6, "palangi": 6, "dipankar": 6, "ec": 6, "kamar": 6, "oxi": 6, "smaranda": 6, "muresan": 6, "preslav": 6, "nakov": 6, "alin": 6, "villavicencio": 6, "editor": 6, "60th": 6, "linguist": 6, "3309": 6, "3326": 6, "dublin": 6, "aclanthologi": 6, "acl": 6, "18653": 6, "hym": 6, "weijiang": 6, "weitao": 6, "weihong": 6, "zhangyin": 6, "haotian": 6, "qianglong": 6, "weihua": 6, "xiaocheng": 6, "bing": 6, "ting": 6, "dx": 6, "1145": [6, 7], "3703155": 6, "ldw": 6, "lijun": 6, "ruohui": 6, "xuhao": 6, "wangmeng": 6, "zuo": 6, "dahua": 6, "qiao": 6, "shao": 6, "05044": 6, "oaa": 6, "adler": 6, "ahmad": 6, "ilg": 6, "akkaya": 6, "florencia": 6, "leoni": 6, "aleman": 6, "janko": 6, "altenschmidt": 6, "altman": 6, "shyamal": 6, "anadkat": 6, "avila": 6, "valeri": 6, "balcom": 6, "baltescu": 6, "haim": 6, "belgum": 6, "irwan": 6, "bello": 6, "jake": 6, "berdin": 6, "bernadett": 6, "shapiro": 6, "berner": 6, "lenni": 6, "bogdonoff": 6, "boiko": 6, "madelain": 6, "boyd": 6, "luisa": 6, "brakman": 6, "button": 6, "rosi": 6, "campbel": 6, "cann": 6, "brittani": 6, "carei": 6, "carlson": 6, "rori": 6, "carmichael": 6, "che": 6, "foti": 6, "sulli": 6, "rubi": 6, "chess": 6, "chester": 6, "cho": 6, "hyung": 6, "won": 6, "chung": 6, "jeremiah": 6, "currier": 6, "yunx": 6, "cori": 6, "decareaux": 6, "degri": 6, "deutsch": 6, "devil": 6, "dhar": 6, "steve": 6, "dowl": 6, "dun": 6, "adrien": 6, "ecoffet": 6, "atti": 6, "eleti": 6, "tyna": 6, "elound": 6, "farhi": 6, "niko": 6, "sim\u00f3n": 6, "posada": 6, "fishman": 6, "juston": 6, "isabella": 6, "fulford": 6, "georg": 6, "gibson": 6, "vik": 6, "tarun": 6, "gogineni": 6, "goh": 6, "rapha": 6, "gontijo": 6, "lope": 6, "gordon": 6, "morgan": 6, "grafstein": 6, "yufei": 6, "guo": 6, "hallaci": 6, "heaton": 6, "johann": 6, "heideck": 6, "hickei": 6, "wade": 6, "hoeschel": 6, "brandon": [6, 7], "houghton": 6, "kenni": 6, "hsu": 6, "shengli": 6, "xin": 6, "joost": 6, "huizinga": 6, "shawn": 6, "joann": 6, "jang": 6, "roger": 6, "haozhun": 6, "shino": 6, "jomoto": 6, "billi": 6, "jonn": 6, "tomer": 6, "kaftan": 6, "\u0142ukasz": 6, "kamali": 6, "ingmar": 6, "kanitscheid": 6, "tabarak": 6, "khan": 6, "logan": 6, "kilpatrick": 6, "jong": 6, "wook": 6, "christina": 6, "yongjik": 6, "hendrik": 6, "kirchner": 6, "kiro": 6, "matt": 6, "kokotajlo": 6, "kondraciuk": 6, "kondrich": 6, "konstantinidi": 6, "kosic": 6, "vishal": 6, "kuo": 6, "lamp": 6, "ikai": 6, "teddi": 6, "jade": 6, "leung": 6, "chak": 6, "ming": 6, "lim": 6, "molli": 6, "mateusz": 6, "litwin": 6, "theresa": 6, "lopez": 6, "patricia": 6, "lue": 6, "makanju": 6, "malfacini": 6, "markov": 6, "yaniv": 6, "markovski": 6, "bianca": 6, "mayn": 6, "mckinnei": 6, "christin": 6, "mcleavei": 6, "mcmillan": 6, "mcneil": 6, "aalok": 6, "menick": 6, "andrei": 6, "mishchenko": 6, "vinni": 6, "monaco": 6, "mu": 6, "murk": 6, "m\u00e9ly": 6, "ashvin": 6, "nair": 6, "reiichiro": 6, "nakano": 6, "rajeev": 6, "nayak": 6, "arvind": 6, "neelakantan": 6, "ngo": 6, "hyeonwoo": 6, "noh": 6, "cullen": 6, "keef": 6, "jakub": 6, "pachocki": 6, "palermo": 6, "ashlei": 6, "pantuliano": 6, "joel": 6, "parish": 6, "emi": 6, "parparita": 6, "passo": 6, "perelman": 6, "belbut": 6, "pere": 6, "pokorni": 6, "pokrass": 6, "vitchyr": 6, "pong": 6, "tolli": 6, "powel": 6, "bori": 6, "proehl": 6, "rae": 6, "ramesh": 6, "raymond": 6, "franci": 6, "kendra": 6, "rimbach": 6, "carl": 6, "rotst": 6, "roussez": 6, "saltarelli": 6, "ted": 6, "sander": 6, "schnurr": 6, "selsam": 6, "kyla": 6, "sheppard": 6, "toki": 6, "sherbakov": 6, "jessica": 6, "shieh": 6, "shoker": 6, "pranav": 6, "szymon": 6, "sidor": 6, "sigler": 6, "sitkin": 6, "sokolowski": 6, "natali": 6, "staudach": 6, "madelein": 6, "tootoonchian": 6, "tseng": 6, "preston": 6, "tuggl": 6, "turlei": 6, "juan": 6, "cer\u00f3n": 6, "urib": 6, "vallon": 6, "vijayvergiya": 6, "justin": 6, "jai": 6, "alvin": 6, "ward": 6, "cj": 6, "weinmann": 6, "akila": 6, "welihinda": 6, "jiayi": 6, "weng": 6, "lilian": 6, "wiethoff": 6, "willner": 6, "wolrich": 6, "lauren": 6, "workman": 6, "sherwin": 6, "yoo": 6, "zeller": 6, "shengjia": 6, "juntang": 6, "zhuk": 6, "2303": 6, "08774": 6, "saffron": 6, "ring": 6, "aslanid": 6, "glaes": 6, "nat": 6, "mcalees": 6, "irv": 6, "2202": 6, "03286": 6, "szw": 6, "qinghua": 6, "desmond": 6, "higham": 6, "gorban": 6, "bastouni": 6, "ivan": 6, "tyukin": 6, "12670": 6, "vsk": 6, "kannappan": 6, "simplesafetytest": 6, "2311": 6, "08370": 6, "wmr24": 6, "sandra": 6, "brent": 6, "mittelstadt": 6, "duti": 6, "royal": 6, "240197": 6, "royalsocietypublish": 6, "1098": 6, "rso": 6, "ylx24": 6, "jiahao": 6, "xingwei": 6, "paperswithcod": 6, "zyi": 6, "shune": 6, "lyumanshan": 6, "jingyu": 6, "shui": 6, "haobin": 6, "pengfei": 6, "hewu": 6, "ghost": 6, "14931": 6, "zho24": 6, "anthropic24": 6, "cdn": 6, "1adf000c8f675958c2ee23805d91aaade1cd4613": 6, "deepmind24": 6, "googleapi": 6, "fsf": 6, "europeanmagency24": 6, "ema": 6, "europa": 6, "activities_en": 6, "financialirauthority24": 6, "libraryocongress23": 6, "loc": 6, "gov": 6, "nationaliosatechnology24": 6, "nist": 6, "itl": 6, "openai24": 6, "opensafetylab24a": 6, "opensafetylab24b": 6, "ukgovernment24": 6, "unicef24": 6, "innocenti": 6, "julia": 7, "easili": 7, "response_cont": 7, "wow": 7, "lot": 7, "impress": 7, "huge": 7, "serious": 7, "is_json": 7, "myjson": 7, "trial": 7, "wrangl": 7, "hoc": 7, "streamlin": 7, "dataset": 7, "unwant": 7, "overflow": 7, "overwhelm": 7, "twitter": 7, "youtub": 7, "blueprint": 7, "nativ": 7, "json_format": 7, "person1": 7, "q1": 7, "person2": 7, "nest": 7, "thellm": 7, "conceptu": 7, "unend": 7, "whitespac": 7, "forget": 7, "throw": 7, "somewher": 7, "json_object": 7, "circul": 7, "vertex": 7, "worri": 7, "invalid": 7, "enum": 7, "simpler": 7, "secextract": 7, "mentioned_ent": 7, "mentioned_plac": 7, "extract_from_sec_fil": 7, "sec_filing_text": 7, "hint": 7, "prompt_extract": 7, "sec_extract": 7, "washington": 7, "usabl": 7, "beg": 7, "with_structured_output": 7, "runnabl": 7, "typeddict": 7, "qu": 7, "langchain_openai": 7, "chatopenai": 7, "chatprompttempl": 7, "extract_from_sec_filing_langchain": 7, "structured_llm": 7, "from_messag": 7, "sec_extraction_langchain": 7, "hood": 7, "logit": 7, "willard": 7, "louf": 7, "reformul": 7, "finit": 7, "fsm": 7, "s_": 7, "s_t": 7, "s_1": 7, "mask": 7, "tild": 7, "odot": 7, "rightarrow": 7, "boolean": 7, "wise": 7, "thien": 7, "automaton": 7, "dfa": 7, "decod": 7, "outgo": 7, "renorm": 7, "yy": 7, "nn": 7, "ever": 7, "aa": 7, "lwai": 7, "prop": 7, "yynnaa": 7, "malform": 7, "sec_extraction_outlin": 7, "zsp": 7, "zicorp": 7, "cpp": 7, "gbnf": 7, "ggml": 7, "bnf": 7, "ggerganov": 7, "accomplish": 7, "backu": 7, "naur": 7, "wikipedia": 7, "contributor": 7, "curl": 7, "fssl": 7, "sh": 7, "extract_entities_from_sec_fil": 7, "ollama_structured_output_prompt_suffix": 7, "ollama_structured_output_temperatur": 7, "uncensor": 7, "model_json_schema": 7, "response_json": 7, "wrapper": 7, "exllama2": 7, "mlx": 7, "know": 7, "chanc": 7, "correctli": 7, "furthermor": 7, "nonetheless": 7, "studi": 7, "gemma": 7, "wors": 7, "extran": 7, "dispar": 7, "preval": 7, "rapidli": 7, "speak": 7, "aider": 7, "outweigh": 7, "rebutt": 7, "reproduct": 7, "paint": 7, "verif": 7, "dottxt": 7, "flaw": 7, "uneven": 7, "didn": 7, "conflat": 7, "drawback": 7, "unlock": 7, "wider": 7, "thank": 7, "pfiffer": 7, "aid24": 7, "dot24": 7, "demo": 7, "gge24": 7, "readm": 7, "llf": 7, "xieyang": 7, "frederick": 7, "fiannaca": 7, "terri": 7, "koo": 7, "dixon": 7, "ea": 7, "ny": 7, "usa": 7, "machineri": 7, "3613905": 7, "3650756": 7, "ln": 7, "xuan": 7, "hai": 7, "nguyen": 7, "ngoc": 7, "tiviati": 7, "hieu": 7, "dao": 7, "shafiq": 7, "joti": 7, "kenji": 7, "kawaguchi": 7, "nanci": 7, "min": 7, "kan": 7, "08656": 7, "out24": 7, "twt": 7, "zhi": 7, "cheng": 7, "kuang": 7, "tsai": 7, "chieh": 7, "hung": 7, "yun": 7, "nung": 7, "02442": 7, "tt24": 7, "vivien": 7, "vivien000": 7, "wl23": 7, "r\u00e9mi": 7, "09702": 7, "wikipediacontributors24": 7, "wiktionari": 7, "naur_form": 7}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"introduct": [0, 2, 3, 4, 6, 7], "content": [0, 3, 4, 5, 6, 7], "core": 0, "challeng": [0, 2], "we": 0, "ll": 0, "address": 0, "A": [0, 2, 3], "practic": [0, 2, 7], "approach": [0, 6], "an": 0, "open": [0, 2], "sourc": [0, 2], "book": 0, "note": [0, 3], "perspect": 0, "who": 0, "thi": 0, "i": 0, "For": 0, "outcom": 0, "prerequisit": 0, "set": 0, "up": 0, "your": 0, "environ": 0, "code": 0, "repositori": 0, "python": 0, "setup": [0, 3], "api": [0, 7], "kei": [0, 4, 5], "configur": 0, "troubleshoot": 0, "common": 0, "issu": 0, "about": 0, "author": 0, "": 0, "prefac": [1, 2], "refer": [1, 3, 4, 5, 6, 7], "tame": 2, "llm": [2, 4, 6], "guid": 2, "pitfal": 2, "softwar": [2, 4], "chapter": 2, "1": [2, 5], "2": [2, 5], "wrestl": [2, 7], "structur": [2, 7], "output": [2, 5, 7], "3": [2, 5], "input": 2, "data": [2, 3, 6], "4": [2, 5], "size": [2, 5], "length": [2, 5], "limit": [2, 5], "5": 2, "The": [2, 4], "eval": [2, 4], "gap": [2, 4], "6": 2, "safeti": [2, 6], "concern": 2, "7": 2, "prefer": [2, 3], "base": [2, 3, 4, 5, 6], "align": [2, 3], "8": 2, "break": 2, "free": 2, "from": [2, 3, 6], "cloud": 2, "provid": [2, 7], "9": 2, "cost": [2, 5], "factor": [2, 6], "10": 2, "frontier": 2, "appendix": 2, "tool": [2, 4, 6, 7], "resourc": 2, "citat": [2, 3], "raw": 3, "capabl": 3, "On": 3, "misalign": 3, "languag": 3, "model": [3, 4, 5], "human": [3, 6], "supervis": 3, "fine": 3, "tune": 3, "sft": 3, "augment": 3, "case": [3, 6], "studi": [3, 6], "polici": 3, "experiment": 3, "deliver": 3, "smollm2": 3, "dataset": [3, 4, 6], "synthet": 3, "gener": [3, 4, 5, 6], "user": [3, 7], "prompt": [3, 5, 7], "reject": 3, "respons": 3, "chosen": 3, "dpo": 3, "optim": 3, "prepar": 3, "vibe": 3, "check": 3, "evalu": [3, 4], "discuss": [3, 5, 7], "non": 4, "determinist": 4, "machin": 4, "emerg": 4, "properti": 4, "problem": [4, 5, 7], "statement": [4, 5, 7], "tradit": 4, "v": 4, "design": 4, "applic": 4, "test": 4, "requir": 4, "matrix": 4, "conceptu": 4, "overview": 4, "consider": [4, 5], "metric": 4, "task": 4, "benchmark": [4, 6], "leaderboard": 4, "lightev": 4, "mmlu": 4, "econometr": 4, "sampl": 4, "famili": 4, "us": 4, "langsmith": 4, "promptfoo": 4, "comparison": [4, 5, 7], "conclus": [4, 5, 7], "what": 5, "ar": 5, "token": 5, "across": 5, "chunk": 5, "contextu": 5, "link": 5, "long": 5, "form": 5, "step": 5, "write": 5, "templat": 5, "construct": 5, "dynam": 5, "paramet": 5, "report": 5, "exampl": 5, "usag": 5, "implic": 5, "futur": 5, "risk": 6, "ai": 6, "amplifi": 6, "exist": 6, "harm": 6, "novel": 6, "associ": 6, "autonom": 6, "exacerb": 6, "specif": [6, 7], "integr": 6, "bia": 6, "privaci": 6, "secur": 6, "guidanc": 6, "govern": 6, "organ": 6, "privat": 6, "sector": 6, "openai": 6, "anthrop": 6, "googl": 6, "rubric": 6, "mlcommon": 6, "centr": 6, "porquoi": 6, "red": 6, "team": 6, "constitut": 6, "explain": 6, "xai": 6, "reinforc": 6, "learn": 6, "feedback": 6, "rlhf": 6, "technic": 6, "implement": 6, "compon": 6, "salad": 6, "bench": 6, "hh": 6, "filter": 6, "make": 6, "mistral": 6, "7b": 6, "harmless": 6, "need": 7, "solut": 7, "strategi": 7, "techniqu": 7, "One": 7, "shot": 7, "json": 7, "mode": 7, "langchain": 7, "outlin": 7, "ollama": 7, "compar": 7, "framework": 7, "best": 7, "research": 7, "ongo": 7, "debat": 7, "acknowledg": 7}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9, "sphinx": 57}, "alltitles": {"Introduction": [[0, "introduction"], [3, "introduction"], [3, "id22"], [4, "introduction"], [6, "introduction"], [7, "introduction"]], "Contents": [[0, "contents"], [3, "contents"], [4, "contents"], [5, "contents"], [6, "contents"], [7, "contents"]], "Core Challenges We\u2019ll Address": [[0, "core-challenges-we-ll-address"]], "A Practical Approach": [[0, "a-practical-approach"]], "An Open Source Approach": [[0, "an-open-source-approach"]], "Open Source Book": [[0, "open-source-book"]], "A Note on Perspective": [[0, "a-note-on-perspective"]], "Who This Book Is For": [[0, "who-this-book-is-for"]], "Outcomes": [[0, "outcomes"]], "Prerequisites": [[0, "prerequisites"]], "Setting Up Your Environment": [[0, "setting-up-your-environment"]], "Code Repository": [[0, "code-repository"]], "Python Environment Setup": [[0, "python-environment-setup"]], "API Keys Configuration": [[0, "api-keys-configuration"]], "Troubleshooting Common Issues": [[0, "troubleshooting-common-issues"]], "About the Author(s)": [[0, "about-the-author-s"]], "Preface": [[1, "preface"], [2, "preface"]], "References": [[1, "references"], [3, "references"], [4, "references"], [5, "references"], [6, "references"], [7, "references"]], "Taming LLMs": [[2, "taming-llms"]], "A Practical Guide to LLM Pitfalls with Open Source Software": [[2, "a-practical-guide-to-llm-pitfalls-with-open-source-software"]], "Chapter 1: Introduction": [[2, "chapter-1-introduction"]], "Chapter 2: Wrestling with Structured Output": [[2, "chapter-2-wrestling-with-structured-output"]], "Chapter 3: Input Data Challenge": [[2, "chapter-3-input-data-challenge"]], "Chapter 4: Output Size and Length Limitations": [[2, "chapter-4-output-size-and-length-limitations"]], "Chapter 5: The Evals Gap": [[2, "chapter-5-the-evals-gap"]], "Chapter 6: Safety Concerns": [[2, "chapter-6-safety-concerns"]], "Chapter 7: Preference-based Alignment": [[2, "chapter-7-preference-based-alignment"]], "Chapter 8: Breaking Free from Cloud Providers": [[2, "chapter-8-breaking-free-from-cloud-providers"]], "Chapter 9: The Cost Factor": [[2, "chapter-9-the-cost-factor"]], "Chapter 10: Frontiers": [[2, "chapter-10-frontiers"]], "Appendix A: Tools and Resources": [[2, "appendix-a-tools-and-resources"]], "Citation": [[2, "citation"], [3, "citation"]], "Preference-Based Alignment": [[3, "preference-based-alignment"]], "From Raw Capabilities to Preference Alignment": [[3, "from-raw-capabilities-to-preference-alignment"]], "On the Misalignment of Language Models": [[3, "on-the-misalignment-of-language-models"]], "Aligning Language Models with Human Preferences": [[3, "aligning-language-models-with-human-preferences"]], "Supervised Fine-Tuning (SFT) for Model Alignment": [[3, "supervised-fine-tuning-sft-for-model-alignment"]], "Augmenting SFT with Human Preferences": [[3, "augmenting-sft-with-human-preferences"]], "Case Study: Aligning a Language Model to a Policy": [[3, "case-study-aligning-a-language-model-to-a-policy"]], "Experimental Setup": [[3, "experimental-setup"]], "Deliverables": [[3, "deliverables"]], "A Note on smolLM2 Models": [[3, "a-note-on-smollm2-models"]], "Policy": [[3, "policy"]], "Preference Dataset - Synthetic Dataset Generation": [[3, "preference-dataset-synthetic-dataset-generation"]], "User Prompts": [[3, "user-prompts"]], "Rejected Responses": [[3, "rejected-responses"]], "Chosen Responses": [[3, "chosen-responses"]], "Generate DPO Dataset": [[3, "generate-dpo-dataset"]], "DPO-Based Optimization": [[3, "dpo-based-optimization"]], "Data Preparation": [[3, "data-preparation"]], "Fine-Tuning": [[3, "fine-tuning"]], "Vibe Check": [[3, "vibe-check"]], "Alignment Evaluation": [[3, "alignment-evaluation"]], "Discussion": [[3, "discussion"], [5, "discussion"], [7, "discussion"]], "The Evals Gap": [[4, "the-evals-gap"]], "Non-Deterministic Generative Machines": [[4, "non-deterministic-generative-machines"]], "Emerging Properties": [[4, "emerging-properties"]], "Problem Statement": [[4, "problem-statement"], [5, "problem-statement"], [7, "problem-statement"]], "Evals of Traditional Software vs LLMs": [[4, "evals-table"]], "Evals Design": [[4, "evals-design"]], "LLM Application Testing Requirements Matrix": [[4, "validation-requirements"]], "Conceptual Overview": [[4, "conceptual-overview"]], "Design Considerations": [[4, "design-considerations"]], "Metrics": [[4, "metrics"]], "Key Metrics for Evaluating Generative Tasks": [[4, "key-metrics"]], "Evaluators": [[4, "evaluators"]], "Model-Based Evaluation": [[4, "model-based-evaluation"]], "Evaluating Evaluators": [[4, "evaluating-evaluators"]], "Benchmarks and Leaderboards": [[4, "benchmarks-and-leaderboards"]], "Tools": [[4, "tools"], [6, "tools"]], "LightEval": [[4, "lighteval"]], "MMLU Econometrics Task Dataset sample": [[4, "mmlu-econometrics"]], "Model Families Evaluated Using LightEval": [[4, "model-families"]], "LangSmith": [[4, "langsmith"]], "PromptFoo": [[4, "promptfoo"]], "Comparison": [[4, "comparison"]], "Comparison of Lighteval, LangSmith, and Promptfoo": [[4, "tool-comparison"]], "Conclusion": [[4, "conclusion"], [5, "conclusion"], [7, "conclusion"]], "Output Size Limitations": [[5, "output-size-limitations"]], "What are Token Limits?": [[5, "what-are-token-limits"]], "Token Cost and Length Limitation Comparison Across Key Models": [[5, "token-cost-table"]], "Content Chunking with Contextual Linking": [[5, "content-chunking-with-contextual-linking"]], "Generating long-form content": [[5, "generating-long-form-content"]], "Step 1: Chunking the Content": [[5, "step-1-chunking-the-content"]], "Step 2: Writing the Base Prompt Template": [[5, "step-2-writing-the-base-prompt-template"]], "Step 3: Constructing Dynamic Prompt Parameters": [[5, "step-3-constructing-dynamic-prompt-parameters"]], "Step 4: Generating the Report": [[5, "step-4-generating-the-report"]], "Example Usage": [[5, "example-usage"]], "Implications": [[5, "implications"]], "Future Considerations": [[5, "future-considerations"]], "Safety": [[6, "safety"]], "Safety Risks": [[6, "safety-risks"]], "General AI Safety Risks": [[6, "general-ai-safety-risks"]], "Amplified Existing Harms and Novel Risks": [[6, "amplified-existing-harms-and-novel-risks"]], "Risks Associated with Autonomous AI": [[6, "risks-associated-with-autonomous-ai"]], "Exacerbating Factors": [[6, "exacerbating-factors"]], "LLMs Specific Safety Risks": [[6, "llms-specific-safety-risks"]], "Data Integrity and Bias": [[6, "data-integrity-and-bias"]], "Privacy and Security": [[6, "privacy-and-security"]], "Guidance": [[6, "guidance"]], "Governments & Organizations": [[6, "governments-organizations"]], "Private Sector": [[6, "private-sector"]], "OpenAI": [[6, "openai"]], "Anthropic": [[6, "anthropic"]], "Google": [[6, "google"]], "Rubrics": [[6, "rubrics"]], "MLCommons AI Safety Benchmark": [[6, "mlcommons-ai-safety-benchmark"]], "Centre for the Governance of AI Rubric": [[6, "centre-for-the-governance-of-ai-rubric"]], "Porquoi": [[6, "porquoi"]], "Approaches": [[6, "approaches"]], "Red Teaming": [[6, "red-teaming"]], "Constitutional AI": [[6, "constitutional-ai"]], "Explainable AI (XAI)": [[6, "explainable-ai-xai"]], "Reinforcement Learning from Human Feedback (RLHF)": [[6, "reinforcement-learning-from-human-feedback-rlhf"]], "Technical Implementation Components": [[6, "technical-implementation-components"]], "Benchmarks & Datasets": [[6, "benchmarks-datasets"]], "SALAD-Bench": [[6, "salad-bench"]], "Anthropic/hh-rlhf": [[6, "anthropic-hh-rlhf"]], "Filter-based": [[6, "filter-based"]], "LLM-based": [[6, "llm-based"]], "Benchmarks": [[6, "benchmarks"]], "Case Study: Making Mistral 7B Harmless": [[6, "case-study-making-mistral-7b-harmless"]], "Wrestling with Structured Output": [[7, "wrestling-with-structured-output"]], "User Needs": [[7, "user-needs"]], "Solutions": [[7, "solutions"]], "Strategies": [[7, "strategies"]], "Techniques and Tools": [[7, "techniques-and-tools"]], "One-Shot Prompts": [[7, "one-shot-prompts"]], "Structured Output with Provider-Specific APIs": [[7, "structured-output-with-provider-specific-apis"]], "JSON Mode": [[7, "json-mode"]], "LangChain": [[7, "langchain"]], "Outlines": [[7, "outlines"]], "Ollama": [[7, "ollama"]], "Comparing Solutions": [[7, "comparing-solutions"]], "Structured Output Frameworks Comparison": [[7, "structured-output-frameworks"]], "Best Practices": [[7, "best-practices"]], "Research and Ongoing Debate": [[7, "research-and-ongoing-debate"]], "Acknowledgements": [[7, "acknowledgements"]]}, "indexentries": {}}) \ No newline at end of file +Search.setIndex({"docnames": ["markdown/intro", "markdown/preface", "markdown/toc", "notebooks/alignment", "notebooks/evals", "notebooks/output_size_limit", "notebooks/safety", "notebooks/structured_output"], "filenames": ["markdown/intro.md", "markdown/preface.md", "markdown/toc.md", "notebooks/alignment.ipynb", "notebooks/evals.ipynb", "notebooks/output_size_limit.ipynb", "notebooks/safety.ipynb", "notebooks/structured_output.ipynb"], "titles": ["2. Introduction", "1. Preface", "Taming LLMs", "7. Preference-Based Alignment", "5. The Evals Gap", "3. Output Size Limitations", "6. Safety", "4. Wrestling with Structured Output"], "terms": {"am": [0, 1], "alwai": [0, 3, 4, 7], "do": [0, 3, 4, 5, 6, 7], "which": [0, 3, 4, 5, 6, 7], "cannot": [0, 3, 4], "order": [0, 3, 4, 6, 7], "mai": [0, 1, 3, 4, 5, 6, 7], "learn": [0, 3, 4], "how": [0, 1, 3, 4, 5, 6, 7], "pablo": [0, 4], "picasso": 0, "In": [0, 3, 4, 5, 6, 7], "recent": [0, 3, 4, 6, 7], "year": [0, 2, 3, 4, 5, 7], "larg": [0, 1, 2, 3, 4, 5, 6, 7], "languag": [0, 1, 2, 4, 5, 6, 7], "model": [0, 1, 2, 6, 7], "llm": [0, 1, 3, 5, 7], "have": [0, 1, 3, 4, 5, 6, 7], "emerg": [0, 3, 6, 7], "transform": [0, 1, 3, 4, 7], "forc": [0, 4, 7], "technologi": [0, 1, 4, 5, 6, 7], "promis": [0, 3, 4, 6], "revolution": 0, "build": [0, 2, 3, 4, 5, 6, 7], "product": [0, 1, 2, 3, 4, 7], "interact": [0, 3, 4, 5, 6, 7], "comput": [0, 3, 4, 5, 6, 7], "from": [0, 1, 4, 5, 7], "chatgpt": [0, 3, 7], "github": [0, 2, 3, 4, 6, 7], "copilot": 0, "claud": [0, 3, 4, 5], "artifact": 0, "system": [0, 3, 4, 5, 6, 7], "captur": [0, 1, 3, 4, 6], "public": [0, 3, 4, 6], "imagin": 0, "spark": 0, "gold": [0, 3, 4, 6], "rush": 0, "ai": [0, 3, 4, 7], "power": [0, 2, 3, 4, 5, 6, 7], "applic": [0, 1, 2, 3, 5, 6, 7], "howev": [0, 3, 4, 5, 6, 7], "beneath": 0, "surfac": [0, 4], "technolog": [0, 1, 4, 6], "revolut": 0, "li": [0, 3, 4, 6], "complex": [0, 1, 3, 4, 5, 6, 7], "landscap": [0, 3, 4], "practition": [0, 1, 4], "must": [0, 3, 4, 5, 6], "navig": [0, 2, 4], "focus": [0, 3, 4, 5, 6, 7], "bring": [0, 3], "awar": [0, 4, 5], "limit": [0, 1, 3, 4, 6, 7], "har": [0, 2, 4, 5], "solut": [0, 2, 4, 5, 6], "overcom": [0, 4, 5], "them": [0, 1, 3, 4, 5, 6, 7], "robust": [0, 3, 4, 5, 6, 7], "It": [0, 3, 4, 5, 6, 7], "offer": [0, 3, 4, 5, 6, 7], "critic": [0, 2, 3, 4, 5, 6, 7], "implement": [0, 2, 3, 4, 5, 7], "back": [0, 4, 7], "reproduc": [0, 1, 2, 4], "exampl": [0, 1, 2, 3, 4, 6, 7], "while": [0, 1, 2, 3, 4, 5, 6, 7], "mani": [0, 1, 3, 4, 5, 7], "resourc": [0, 3, 4, 5, 6], "cover": [0, 3, 4, 5, 6], "capabl": [0, 1, 2, 4, 5, 6, 7], "specif": [0, 3, 4, 5], "hidden": 0, "pitfal": [0, 1, 3], "engin": [0, 1, 2, 3, 4, 6, 7], "technic": [0, 1, 2, 3, 4, 5, 7], "manag": [0, 1, 2, 4, 5, 6, 7], "face": [0, 3, 4, 6], "when": [0, 1, 2, 3, 4, 5, 6, 7], "comprehens": [0, 2, 3, 4, 5, 6, 7], "guid": [0, 1, 3, 4, 6, 7], "leverag": [0, 3, 4, 5, 6, 7], "battl": [0, 2], "test": [0, 2, 3, 6, 7], "tool": [0, 1, 3, 5], "throughout": [0, 4, 5, 7], "tackl": [0, 3, 4], "follow": [0, 3, 4, 5, 6, 7], "non": [0, 3, 6, 7], "exhaust": 0, "list": [0, 3, 4, 5, 7], "structur": [0, 3, 4, 5, 6], "un": 0, "reliabl": [0, 1, 3, 4, 6, 7], "struggl": [0, 1, 4, 6, 7], "maintain": [0, 1, 3, 4, 5, 6, 7], "consist": [0, 1, 3, 4, 5, 6, 7], "output": [0, 1, 3, 4, 6], "format": [0, 3, 4, 5, 7], "complic": 0, "integr": [0, 1, 3, 4, 7], "larger": [0, 3, 4, 5, 7], "make": [0, 3, 4, 5, 7], "error": [0, 3, 4, 7], "handl": [0, 2, 3, 4, 5, 6, 7], "more": [0, 1, 3, 4, 5, 6, 7], "size": [0, 3, 4, 7], "length": [0, 3, 4, 7], "constraint": [0, 1, 3, 4, 5, 6, 7], "strict": [0, 6, 7], "token": [0, 1, 3, 4, 7], "both": [0, 3, 4, 6], "input": [0, 3, 4, 5, 6, 7], "requir": [0, 3, 5, 6, 7], "care": [0, 3, 4, 6, 7], "chunk": [0, 3], "strategi": [0, 3, 4, 5, 6], "long": [0, 1, 3, 4, 6, 7], "form": [0, 3, 4, 7], "effect": [0, 1, 3, 4, 5, 6, 7], "tradit": [0, 3, 6], "softwar": [0, 1, 7], "methodologi": [0, 3, 4, 6, 7], "break": [0, 1, 3, 4, 5, 6], "down": [0, 1, 4, 5, 6], "deal": [0, 3], "determinist": [0, 7], "gener": [0, 1, 7], "new": [0, 2, 3, 4, 5, 6, 7], "hallucin": [0, 1, 3, 4, 6, 7], "These": [0, 3, 4, 5, 6, 7], "can": [0, 1, 3, 4, 5, 6, 7], "plausibl": [0, 6], "sound": [0, 6], "entir": [0, 4, 5, 7], "fabric": [0, 4, 6], "inform": [0, 3, 4, 5, 6, 7], "creat": [0, 1, 3, 4, 5, 6, 7], "signific": [0, 3, 4, 5, 6, 7], "risk": [0, 1, 3, 4, 5], "safeti": [0, 3, 4, 7], "align": [0, 4, 5, 6, 7], "harm": [0, 3, 4], "bias": [0, 3, 4, 6, 7], "inappropri": [0, 3], "safeguard": [0, 4, 6], "monitor": [0, 3, 4, 6], "ensur": [0, 3, 4, 5, 6, 7], "safe": [0, 3, 4, 6, 7], "deploy": [0, 3, 4, 6, 7], "cost": [0, 3, 4, 7], "optim": [0, 1, 4, 5, 6], "The": [0, 1, 3, 5, 6, 7], "financi": [0, 1, 3, 4, 5, 6, 7], "oper": [0, 3, 4, 5, 6, 7], "base": [0, 1, 7], "quickli": [0, 3, 5], "becom": [0, 4, 6, 7], "prohibit": [0, 3, 4], "without": [0, 1, 3, 4, 5, 6, 7], "observ": [0, 3, 4, 7], "vendor": [0, 4], "lock": 0, "cloud": [0, 3, 4, 7], "provid": [0, 3, 4, 5, 6], "depend": [0, 3, 4, 7], "through": [0, 1, 2, 3, 4, 5, 6, 7], "proprietari": [0, 3, 7], "infrastructur": 0, "difficult": [0, 3, 4, 6], "switch": 0, "self": [0, 3, 4, 6], "host": [0, 4, 6], "take": [0, 2, 3, 4, 5, 7], "hand": [0, 5, 7], "focu": [0, 2, 3, 4, 5, 6, 7], "access": [0, 3, 4, 5, 6, 7], "all": [0, 1, 3, 4, 5, 6, 7], "ar": [0, 1, 3, 4, 6, 7], "fulli": [0, 3, 4, 5, 6], "document": [0, 4, 5, 6, 7], "allow": [0, 4, 5, 6, 7], "reader": [0, 2], "replic": [0, 4, 6, 7], "result": [0, 3, 4, 5, 6, 7], "exactli": [0, 4, 7], "design": [0, 1, 3, 5, 6, 7], "run": [0, 3, 4, 6, 7], "consum": [0, 3, 4, 6, 7], "grade": [0, 3, 4, 6], "hardwar": [0, 3, 4], "expens": [0, 3, 4], "avail": [0, 3, 4, 5, 6, 7], "notebook": [0, 3, 7], "modifi": [0, 4], "extend": [0, 3, 4, 7], "built": [0, 4, 7], "us": [0, 1, 3, 5, 6, 7], "free": [0, 1, 3, 4, 6], "everyon": [0, 4], "minim": [0, 3, 4, 6, 7], "framework": [0, 3, 4, 6], "wai": [0, 3, 4, 5, 6, 7], "priorit": [0, 3, 4, 6], "transpar": [0, 3, 4, 6, 7], "visibl": [0, 4], "being": [0, 3, 4, 6], "better": [0, 2, 3, 4, 5, 6], "understand": [0, 1, 2, 3, 4, 5, 6, 7], "custom": [0, 3, 4, 6], "flexibl": [0, 4, 5, 6, 7], "adapt": [0, 3, 4, 5, 6], "case": [0, 4, 5, 7], "unlik": [0, 3, 4], "black": [0, 3], "box": 0, "commerci": [0, 3, 4, 7], "most": [0, 3, 4, 5, 6, 7], "freeli": [0, 7], "foster": [0, 3, 4, 6, 7], "reduc": [0, 3, 4, 5, 6, 7], "independ": [0, 4, 6, 7], "freedom": [0, 7], "architectur": [0, 3, 4, 5, 6, 7], "decis": [0, 3, 4, 6, 7], "keep": [0, 3, 4, 5, 6], "principl": [0, 3, 4, 6], "itself": [0, 3, 4, 6], "live": [0, 1, 4, 6], "evolv": [0, 3, 4, 5, 6], "chang": [0, 3, 4, 6], "encourag": [0, 3, 4, 6, 7], "report": [0, 3, 4, 6, 7], "suggest": [0, 3, 4, 6, 7], "improv": [0, 3, 4, 5, 6, 7], "contribut": [0, 4, 5, 6], "via": [0, 3, 4, 6, 7], "pull": 0, "request": [0, 3, 4, 5, 6, 7], "share": [0, 3, 4, 6, 7], "own": [0, 3, 4, 5, 6], "experi": [0, 3, 4, 5, 7], "commun": [0, 3, 4, 6, 7], "propos": [0, 4, 6], "chapter": [0, 3, 4, 6], "section": [0, 3, 4, 5, 6, 7], "found": [0, 4, 6, 7], "http": [0, 1, 2, 3, 4, 5, 6, 7], "com": [0, 2, 3, 4, 5, 6, 7], "souzatharsi": [0, 2, 3], "tamingllm": [0, 2, 3, 6], "whether": [0, 3, 4, 5, 7], "you": [0, 1, 3, 4, 5, 7], "ve": 0, "typo": [0, 6], "want": [0, 1, 3, 5, 7], "welcom": 0, "look": [0, 2, 3, 4], "our": [0, 1, 3, 4, 5, 6, 7], "goal": [0, 1, 3, 4, 5, 6], "discourag": 0, "enabl": [0, 3, 4, 5, 6, 7], "By": [0, 1, 2, 3, 4, 5, 6, 7], "upfront": [0, 2], "equip": [0, 2, 4, 6], "avoid": [0, 3, 4, 7], "current": [0, 2, 3, 4, 5, 6, 7], "discours": [0, 2], "around": [0, 2, 3, 4, 5, 6, 7], "tend": [0, 2, 4, 6], "toward": [0, 3, 4, 6, 7], "extrem": [0, 3, 4, 6], "either": [0, 3, 4, 5, 6], "uncrit": 0, "enthusiasm": 0, "wholesal": [0, 4], "dismiss": 0, "differ": [0, 3, 4, 5, 6, 7], "rather": [0, 1, 3, 4, 6], "than": [0, 1, 3, 4, 6], "theoret": 0, "examin": [0, 3, 4, 5, 6, 7], "first": [0, 1, 3, 4, 5, 7], "everi": [0, 4, 6], "concept": [0, 3, 4, 6], "illustr": [0, 3, 4, 5, 6, 7], "execut": [0, 4], "immedi": [0, 3, 4], "analysi": [0, 1, 3, 4, 5, 6], "balanc": [0, 3, 4, 5, 6, 7], "help": [0, 3, 4, 5, 6, 7], "intend": [0, 4, 6], "develop": [0, 1, 3, 4, 5, 6, 7], "step": [0, 1, 3, 4, 6, 7], "insight": [0, 3, 4, 5, 6, 7], "along": [0, 3, 4], "guidanc": [0, 3, 7], "could": [0, 1, 3, 4, 5, 6, 7], "derail": 0, "project": [0, 3, 4], "earli": [0, 3, 4, 6, 7], "befor": [0, 3, 4, 6, 7], "thei": [0, 1, 3, 4, 5, 6, 7], "costli": [0, 4, 6], "problem": [0, 1, 2, 3], "too": [0, 1, 3, 4, 5, 6], "late": [0, 3], "lifecycl": 0, "lead": [0, 1, 3, 4, 5, 6, 7], "genai": [0, 1, 3, 6], "initi": [0, 1, 3, 4, 5, 6, 7], "leader": [0, 4], "advoc": [0, 6], "anyon": [0, 6], "seek": [0, 4, 6], "work": [0, 1, 3, 4, 5, 6, 7], "typic": [0, 3, 4, 5, 7], "job": [0, 4, 6], "role": [0, 3, 4, 5, 7], "platform": [0, 4, 5, 6, 7], "backend": [0, 3, 4], "exist": [0, 3, 4], "ml": 0, "transit": [0, 4, 5, 7], "overse": 0, "motiv": [0, 4, 7], "need": [0, 3, 4, 5, 6], "readi": [0, 4], "desir": [0, 3, 4, 6, 7], "perform": [0, 3, 4, 5, 6, 7], "after": [0, 1, 3, 4, 5, 6, 7], "read": [0, 3, 4, 5, 7], "implic": [0, 1, 3, 4], "recommend": [0, 3, 4, 5, 6, 7], "abl": [0, 3, 4, 5, 7], "deploi": [0, 3, 4, 5, 6], "proper": [0, 3, 6, 7], "realist": [0, 3, 6], "effort": [0, 4, 6, 7], "estim": [0, 4], "impact": [0, 3, 4, 5, 6, 7], "timelin": 0, "To": [0, 3, 4, 5, 6, 7], "should": [0, 3, 4, 5, 6, 7], "basic": [0, 3, 4, 5], "program": [0, 4], "knowledg": [0, 3, 4, 6], "introductori": [0, 1, 2], "langchain": [0, 4, 5], "e": [0, 1, 3, 4, 5, 6, 7], "g": [0, 3, 4, 5, 6, 7], "chat": [0, 3, 4, 5, 7], "prompt": [0, 4, 6], "templat": [0, 4], "openai": [0, 3, 4, 7], "anthrop": [0, 7], "similar": [0, 3, 4, 7], "dive": 0, "here": [0, 2, 3, 4, 5, 6, 7], "get": [0, 3, 4, 5, 7], "start": [0, 3, 4, 6, 7], "clone": [0, 3], "companion": 0, "git": 0, "cd": 0, "activ": [0, 3, 4, 6], "virtual": [0, 4], "m": [0, 3, 4, 6, 7], "venv": [0, 6], "tame": [0, 3], "env": [0, 3, 4, 5, 7], "bin": 0, "On": [0, 4, 7], "window": [0, 2, 4], "script": 0, "try": [0, 1, 3, 4, 7], "contain": [0, 3, 4, 5, 6, 7], "possibl": [0, 3, 4, 7], "includ": [0, 1, 3, 4, 5, 6, 7], "necessari": [0, 3, 4, 5, 6], "instal": [0, 3, 4, 7], "go": [0, 3, 4, 5, 6, 7], "feel": 0, "prefer": [0, 4, 6, 7], "packag": [0, 4, 6, 7], "pip": [0, 3, 4, 7], "poetri": 0, "file": [0, 3, 4, 5, 6, 7], "root": [0, 3], "directori": [0, 4], "add": [0, 3, 4, 5], "other": [0, 3, 4, 5, 6, 7], "sensit": [0, 3, 4, 6], "openai_api_kei": [0, 3], "your_openai_api_key_her": 0, "never": [0, 7], "commit": [0, 3, 4, 6], "version": [0, 3, 4, 6, 7], "control": [0, 1, 3, 4, 6, 7], "kept": [0, 4], "privat": [0, 4], "If": [0, 1, 3, 4, 7], "encount": [0, 2, 4], "rate": [0, 3, 4], "consid": [0, 3, 4, 5, 6, 7], "smaller": [0, 3, 4, 5, 7], "retri": [0, 7], "logic": [0, 1, 3, 4, 5], "conflict": [0, 4], "fresh": 0, "like": [0, 1, 3, 4, 5, 6, 7], "check": [0, 4, 7], "page": [0, 4], "known": [0, 4, 6, 7], "now": [0, 1, 3, 4, 5, 6, 7], "let": [0, 3, 4, 5, 7], "begin": [0, 4, 6, 7], "explor": [0, 1, 3, 4, 6, 7], "dr": 0, "tharsi": [0, 2, 3], "souza": [0, 2, 3], "scientist": [0, 1], "special": [0, 4, 6, 7], "he": [0, 3, 4, 6], "lectur": 0, "columbia": 0, "univers": [0, 4, 6], "master": [0, 7], "scienc": [0, 3, 4, 6], "appli": [0, 3, 4, 5, 6, 7], "analyt": 0, "incom": [0, 4], "head": [0, 3, 4, 5, 6], "equiti": [0, 4], "citadel": 0, "former": [0, 1, 4], "senior": [0, 4], "vp": 0, "two": [0, 3, 4, 5, 6, 7], "sigma": [0, 3], "invest": [0, 3, 4, 6, 7], "also": [0, 3, 4, 5, 6, 7], "enjoi": 0, "mentor": 0, "under": [0, 3, 4, 7], "repres": [0, 3, 4, 6, 7], "student": [0, 3], "profession": [0, 3, 4, 7], "divers": [0, 3, 4, 5, 6, 7], "global": [0, 4, 6], "ecosystem": [0, 4], "With": [0, 4], "over": [0, 2, 3, 4, 5, 6, 7], "15": [0, 4, 6, 7], "deliv": [0, 4], "across": [0, 1, 3, 4, 6, 7], "startup": 0, "fortun": 0, "500": [0, 3, 4], "compani": [0, 3, 4, 5, 6, 7], "numer": [0, 4, 6], "scholarli": 0, "frequent": [0, 4, 7], "speaker": [0, 4], "academ": [0, 3, 4, 6], "busi": [0, 4, 6], "confer": [0, 7], "ground": [0, 3, 4], "background": [0, 1, 4, 5], "draw": [0, 4, 6, 7], "scale": [0, 3, 4, 6, 7], "stage": [0, 6, 7], "major": [0, 3, 4, 6, 7], "institut": [0, 4, 6], "well": [0, 3, 4, 6, 7], "advis": [0, 3], "profit": [0, 4, 5, 7], "organ": [0, 3, 4, 5], "uniqu": [0, 3, 4, 6], "bridg": 0, "gap": [0, 1, 3], "between": [0, 1, 3, 4, 5, 6, 7], "potenti": [0, 1, 3, 4, 5, 6, 7], "next": [0, 1, 3, 4, 6, 7], "hold": [0, 3, 4], "ph": [0, 6], "d": [0, 3, 4, 6, 7], "ucl": 0, "london": 0, "phil": [0, 6], "sc": 0, "b": [0, 4, 6, 7], "tell": [1, 3, 6], "mere": [1, 4], "what": [1, 3, 4, 7], "someth": [1, 4], "i": [1, 2, 3, 4, 5, 6, 7], "emanuel": [1, 3, 4, 6], "derman": 1, "an": [1, 2, 3, 4, 5, 6, 7], "altern": [1, 3, 4, 5], "titl": [1, 2, 3, 4], "thi": [1, 2, 3, 4, 5, 6, 7], "book": [1, 2, 4], "been": [1, 3, 4, 6], "behav": 1, "badli": 1, "come": [1, 3, 4, 5, 6, 7], "notic": [1, 3, 4, 6, 7], "parallel": [1, 3, 4], "": [1, 3, 4, 5, 6, 7], "semin": [1, 6], "2011": 1, "coincident": 1, "just": [1, 3, 4, 5, 6, 7], "caution": 1, "against": [1, 3, 4, 6], "treat": [1, 4, 6], "perfect": [1, 4], "represent": [1, 4, 5, 6], "realiti": [1, 6], "aim": [1, 3, 4, 5, 6, 7], "highlight": [1, 3, 4, 5, 6, 7], "practic": [1, 3, 4, 5, 6], "cours": [1, 4, 6], "bare": 1, "fact": [1, 3, 4], "actual": [1, 3, 4, 5, 7], "physicist": 1, "legendari": 1, "author": [1, 2, 3, 4, 6, 7], "professor": 1, "quant": 1, "goldman": 1, "sach": 1, "scientif": [1, 4], "fail": [1, 3, 4, 6], "we": [1, 3, 4, 5, 6, 7], "mistak": 1, "approxim": [1, 4, 7], "full": [1, 3, 4, 6, 7], "assumpt": [1, 4], "core": [1, 4, 6], "premis": 1, "hi": [1, 4, 7], "aspect": [1, 3, 4, 5, 6, 7], "world": [1, 3, 4, 6, 7], "inher": [1, 2, 3, 4, 6, 7], "involv": [1, 3, 4, 6, 7], "simplif": 1, "argu": [1, 6, 7], "crise": 1, "2008": 1, "crash": 1, "occur": [1, 4, 6], "partli": 1, "becaus": [1, 3, 4], "peopl": [1, 3, 4], "put": [1, 4], "much": [1, 4], "faith": 1, "mathemat": [1, 4], "recogn": [1, 3, 4, 6], "human": [1, 4, 5, 7], "behavior": [1, 3, 4, 6], "market": [1, 4, 5, 7], "dynam": [1, 3, 4], "reason": [1, 3, 4, 5, 6, 7], "Their": [1, 4, 7], "respons": [1, 4, 5, 6, 7], "often": [1, 3, 4, 5, 6, 7], "convinc": [1, 3], "probabilist": [1, 4], "train": [1, 3, 4, 6, 7], "data": [1, 4, 5, 7], "true": [1, 3, 4, 5, 7], "even": [1, 3, 4, 5, 6, 7], "though": [1, 3, 4, 7], "insist": 1, "machin": [1, 3, 6, 7], "todai": [1, 7], "grow": [1, 3, 4, 7], "pervas": [1, 6], "belief": 1, "solv": [1, 3, 4, 7], "ani": [1, 3, 4, 5, 7], "context": [1, 2, 3, 4, 5, 6, 7], "content": 1, "wish": [1, 4], "user": [1, 4, 5, 6], "moreov": 1, "were": [1, 3, 4, 6, 7], "predict": [1, 3, 4, 7], "chatbot": [1, 3, 4, 6], "twist": 1, "wrap": [1, 7], "further": [1, 3, 4, 5, 6, 7], "daili": [1, 6], "life": [1, 4, 6], "workflow": [1, 4, 7], "affect": [1, 4, 6], "decid": [1, 3, 4, 5], "action": [1, 3, 4, 5, 6], "coupl": 1, "lack": [1, 3, 4, 6, 7], "pose": [1, 3, 4, 5, 6, 7], "still": [1, 4, 6], "figur": [1, 4, 7], "out": [1, 3, 4, 5, 6, 7], "serv": [1, 3, 4, 5, 6, 7], "builder": 1, "who": [1, 3, 4, 5, 6, 7], "remain": [1, 3, 4, 5, 6], "clear": [1, 3, 4, 6, 7], "ei": 1, "about": [1, 3, 4, 5, 6, 7], "therefor": [1, 3, 4, 6], "end": [1, 3, 4, 5, 7], "detail": [1, 3, 4, 5, 6, 7], "python": [1, 2, 4, 5, 7], "code": [1, 2, 3, 4, 6, 7], "diminish": [1, 4], "promot": [1, 3, 4, 6], "nuanc": [1, 3, 4, 5, 6, 7], "acknowledg": [1, 4, 6], "within": [1, 3, 4, 5, 6, 7], "trustworthi": [1, 6], "taught": 1, "u": [1, 3, 4, 6, 7], "where": [1, 3, 4, 5, 6, 7], "der11": 1, "why": [1, 3, 4, 6, 7], "confus": 1, "illus": 1, "disast": [1, 4], "wall": 1, "street": 1, "press": [1, 4], "isbn": [1, 3, 4], "9781439165010": 1, "url": [1, 2, 3, 4, 6, 7], "googl": [1, 4, 7], "co": [1, 3, 4, 6], "uk": [1, 6], "id": [1, 4], "lke_cwm4wm8c": 1, "sign": [2, 4, 6], "up": [2, 3, 4, 5, 7], "receiv": [2, 3, 4, 5, 7], "updat": [2, 3, 4, 5, 6, 7], "abstract": [2, 4, 7], "heavili": [2, 4, 6, 7], "gloss": 2, "fundament": [2, 4, 6, 7], "convers": [2, 3, 4, 5, 6, 7], "kei": [2, 3, 6, 7], "proven": 2, "yet": [2, 3, 4, 5, 6], "concret": [2, 6], "unstructur": [2, 7], "sidestep": 2, "misc": [2, 3], "tharsistpsouza2024tamingllm": [2, 3], "t": [2, 3, 4, 5, 6, 7], "p": [2, 3, 4, 6, 7], "2024": [2, 3, 4, 5, 6, 7], "journal": [2, 3, 4, 7], "repositori": [2, 3, 4], "valu": [3, 4, 5, 6, 7], "its": [3, 4, 5, 6, 7], "privileg": 3, "abov": [3, 4, 6], "soon": [3, 7], "lose": [3, 4], "dwight": 3, "eisenhow": 3, "releas": [3, 4, 6, 7], "3": [3, 4, 6, 7], "5": [3, 4, 5, 6, 7], "2022": [3, 4, 6], "mark": [3, 4, 6], "pivot": [3, 4], "moment": 3, "histori": [3, 4], "artifici": [3, 4, 6], "intellig": [3, 4, 6], "five": [3, 4, 6], "dai": [3, 4, 6, 7], "launch": [3, 4], "attract": [3, 4], "million": [3, 4], "month": [3, 4, 6], "becam": 3, "fastest": [3, 4], "100": [3, 4, 6, 7], "monthli": [3, 4], "rais": [3, 4, 5, 6], "intrigu": 3, "question": [3, 4, 6, 7], "did": [3, 4, 7], "dramat": [3, 4, 7], "predecessor": 3, "gpt": [3, 4, 5, 6, 7], "had": [3, 4], "same": [3, 4, 5, 7], "number": [3, 4, 5, 6, 7], "paramet": [3, 4, 6, 7], "far": [3, 5, 6], "less": [3, 4, 6], "attent": 3, "arguabl": 3, "answer": [3, 4, 5, 6, 7], "feedback": [3, 4, 7], "abil": [3, 4, 6, 7], "least": [3, 4, 6], "ey": 3, "breakthrough": [3, 6], "demonstr": [3, 4, 5, 6, 7], "crucial": [3, 6, 7], "greater": [3, 4, 6], "process": [3, 4, 5, 6, 7], "modern": [3, 4, 5, 7], "techniqu": [3, 4, 5, 6], "direct": [3, 4, 6], "rafailov": [3, 6], "et": [3, 4, 6, 7], "al": [3, 4, 6, 7], "present": [3, 4, 5, 6, 7], "autom": [3, 4, 6, 7], "fashion": [3, 7], "open": [3, 4, 5, 6, 7], "sourc": [3, 4, 6, 7], "common": [3, 4, 5, 6, 7], "pre": [3, 4, 6], "default": [3, 4, 7], "state": [3, 4, 5, 6, 7], "art": [3, 4, 6], "object": [3, 4, 7], "given": [3, 4, 5, 6, 7], "webpag": 3, "internet": [3, 4], "veri": [3, 4], "ask": [3, 4, 7], "instruct": [3, 4, 5, 6, 7], "sai": [3, 7], "ouyang": [3, 6], "2": [3, 4, 6, 7], "explain": 3, "moon": 3, "land": [3, 4], "6": [3, 4, 5, 6, 7], "old": [3, 4], "import": [3, 4, 5, 6, 7], "pipelin": [3, 4, 7], "pipe": 3, "text": [3, 4, 5, 6, 7], "gpt2": [3, 4], "msg": 3, "short": [3, 4, 5, 7], "sentenc": [3, 4, 5, 7], "_": [3, 4, 7], "rang": [3, 4, 5, 6, 7], "len": [3, 4, 5, 6], "print": [3, 4, 5, 6, 7], "f": [3, 4, 5, 6, 7], "n": [3, 4, 5, 6, 7], "1": [3, 4, 6, 7], "0": [3, 4, 5, 6, 7], "generated_text": 3, "good": [3, 4, 6, 7], "idea": 3, "one": [3, 4, 5, 6, 7], "those": [3, 4, 5, 6, 7], "littl": [3, 4], "green": [3, 6], "dot": 3, "Then": [3, 4], "line": [3, 4, 6], "later": [3, 4, 7], "re": [3, 4, 5, 7], "alreadi": [3, 4], "movi": 3, "theori": [3, 4], "some": [3, 4, 5, 6, 7], "mean": [3, 4, 5, 7], "word": [3, 4, 5, 7], "tepid": 3, "articl": [3, 4, 5, 6], "sure": [3, 4, 5, 7], "lunar": 3, "As": [3, 4, 5, 6, 7], "see": [3, 4, 6, 7], "coher": [3, 4, 5], "explan": [3, 4, 7], "child": [3, 4, 6], "nonsens": [3, 6], "meander": 3, "unrel": [3, 4, 6], "topic": [3, 4, 5, 7], "simpl": [3, 4, 5, 6, 7], "appropri": [3, 4, 5, 6, 7], "young": [3, 4, 6], "instead": [3, 4, 5, 6, 7], "address": [3, 4, 5, 6, 7], "issu": [3, 4, 5, 6, 7], "introduc": [3, 4, 5, 6, 7], "rlhf": 3, "intent": [3, 6], "wide": [3, 4, 5, 6, 7], "task": [3, 5, 6, 7], "fig": [3, 4, 5, 6, 7], "7": [3, 4, 5, 6], "collect": [3, 4, 5, 6], "sampl": [3, 5, 7], "label": [3, 4, 6, 7], "comparison": 3, "reward": [3, 4, 6], "sever": [3, 4, 5, 6, 7], "rank": [3, 4, 6], "best": [3, 4, 6], "worst": 3, "rm": 3, "reinforc": [3, 4], "write": [3, 4, 7], "stori": 3, "frog": 3, "calcul": [3, 4], "score": [3, 4, 6, 7], "ppo": 3, "proxim": 3, "iter": [3, 4, 5, 6, 7], "accur": [3, 4, 6, 7], "undesir": [3, 6], "simplifi": [3, 4, 7], "view": [3, 4, 6], "show": [3, 4, 5, 6, 7], "progress": [3, 5, 6], "pattern": [3, 4, 6, 7], "ha": [3, 4, 6, 7], "instanc": [3, 4, 5, 6], "directli": [3, 4, 6, 7], "For": [3, 4, 5, 6, 7], "llama": [3, 4, 6, 7], "guard": [3, 6], "team": [3, 4, 7], "8b": [3, 6], "wa": [3, 4, 6, 7], "classif": [3, 4, 7], "bypass": [3, 6], "similarli": [3, 4, 6], "zephyr": 3, "7b": [3, 4], "alpha": [3, 4, 7], "mistral": [3, 7], "publicli": [3, 4, 7], "assist": [3, 4, 6, 7], "paper": [3, 4, 6, 7], "compon": [3, 4], "particular": [3, 4, 6, 7], "foundat": [3, 4, 5, 6], "advanc": [3, 4, 5, 6, 7], "method": [3, 4, 5, 6, 7], "strong": [3, 4, 7], "At": [3, 4, 7], "high": [3, 4, 5, 6, 7], "level": [3, 4, 5, 6, 7], "carefulli": [3, 4, 6, 7], "curat": [3, 4], "purpos": [3, 4, 6, 7], "exhibit": [3, 4, 6], "domain": [3, 4, 6], "emploi": [3, 4, 6, 7], "prove": [3, 4, 6], "particularli": [3, 4, 5, 6, 7], "valuabl": [3, 4, 7], "scenario": [3, 4, 6, 7], "precis": [3, 4, 6, 7], "style": [3, 4], "tone": 3, "expertis": [3, 4, 6], "medic": [3, 4], "legal": [3, 4, 6], "field": [3, 4, 7], "adher": [3, 4, 5, 6, 7], "guidelin": [3, 4, 6], "servic": [3, 4, 5, 6, 7], "standard": [3, 4, 6], "approach": [3, 4, 5, 7], "each": [3, 4, 5, 6, 7], "distinct": [3, 4], "advantag": [3, 4, 5, 6, 7], "weight": [3, 4, 6], "maximum": [3, 4, 5, 6], "lora": [3, 6], "low": [3, 4, 6, 7], "hu": [3, 6], "2021": [3, 4, 6], "small": [3, 4, 7], "matric": 3, "effici": [3, 4, 5, 6, 7], "qlora": [3, 6], "quantiz": [3, 6], "dettmer": [3, 6], "2023": [3, 4, 6, 7], "combin": [3, 4, 5, 7], "memori": [3, 4, 5, 6], "footprint": 3, "modest": 3, "increas": [3, 4, 5, 6, 7], "likelihood": [3, 4], "obtain": [3, 4, 6, 7], "probabl": [3, 4, 7], "outcom": [3, 4, 6, 7], "hong": [3, 4], "unintend": [3, 6], "suboptim": 3, "seen": [3, 4], "research": [3, 4, 5, 6], "maxim": [3, 4], "shown": [3, 4, 6], "alon": [3, 4], "gain": [3, 4], "achiev": [3, 4, 6, 7], "bai": [3, 4, 6], "touvron": 3, "sinc": [3, 4, 5, 7], "main": [3, 4, 5, 6, 7], "categori": [3, 4, 6], "algorithm": [3, 4, 6], "meanwhil": 3, "superior": [3, 4], "benchmark": 3, "xu": [3, 4, 6], "schulman": [3, 6], "2017": [3, 4], "popular": [3, 7], "understood": 3, "set": [3, 4, 5, 6, 7], "rule": [3, 4, 5, 6, 7], "govern": [3, 4], "reflect": [3, 4, 6], "anoth": [3, 4, 6], "adjust": [3, 4, 5, 6, 7], "One": [3, 4, 6], "strength": [3, 4], "2024c": 3, "real": [3, 4, 5, 6, 7], "noisi": 3, "delai": [3, 4], "subsequ": [3, 7], "situat": [3, 4, 5], "clip": 3, "surrog": 3, "function": [3, 4, 5, 6, 7], "stabl": [3, 4, 6], "prevent": [3, 4, 6, 7], "overreact": 3, "converg": 3, "due": [3, 4, 5, 6], "simplic": 3, "award": [3, 4], "runner": 3, "neurip": 3, "blog": [3, 4, 6, 7], "4": [3, 4, 6, 7], "fit": [3, 4, 5, 7], "pair": [3, 4, 6], "rl": [3, 6], "find": [3, 4, 5, 7], "contrast": [3, 4], "satisfi": [3, 4], "implicit": [3, 4, 6], "whose": [3, 4], "correspond": [3, 4, 7], "extract": [3, 4, 5, 6, 7], "close": [3, 4, 6], "compar": [3, 4, 5, 6], "assign": [3, 4, 7], "higher": [3, 4], "kl": 3, "diverg": 3, "origin": [3, 4, 5, 7], "preserv": [3, 5], "defin": [3, 4, 5, 6, 7], "equat": 3, "mathcal": 3, "l": [3, 4], "pi_": 3, "theta": [3, 7], "ref": 3, "mathbb": [3, 7], "x": [3, 4], "y_w": 3, "y_l": 3, "sim": [3, 7], "left": 3, "log": [3, 4], "beta": [3, 4, 6, 7], "underbrac": 3, "frac": 3, "color": [3, 4], "red": 3, "right": [3, 4, 6], "straightforward": [3, 4, 5, 7], "librari": [3, 4, 5, 6, 7], "huggingfac": [3, 4, 6], "trl": 3, "2024d": 3, "suit": [3, 4, 6], "friendli": [3, 4, 5], "interfac": [3, 4], "featur": [3, 4, 6, 7], "describ": [3, 4], "assum": [3, 4, 5], "acm": [3, 6], "inc": [3, 4, 5, 7], "dedic": [3, 4, 6, 7], "democrat": [3, 4, 7], "educ": [3, 4, 5], "k": [3, 4, 5, 6, 7], "12": [3, 4, 5, 6], "name": [3, 4, 5, 6, 7], "smolk": 3, "ll": [3, 4], "walk": 3, "measur": [3, 4, 6], "huggingfacetb": 3, "360m": [3, 4], "compact": [3, 4, 6], "part": [3, 4, 5, 6, 7], "famili": [3, 7], "publish": [3, 6, 7], "api": [3, 4, 6], "local": [3, 4, 5, 7], "infer": [3, 4, 6], "remot": [3, 4], "load": [3, 4, 5, 7], "store": [3, 4, 5], "eventu": [3, 4], "util": [3, 4, 5, 6], "your_openai_api_kei": 3, "reusabl": 3, "metric": [3, 6], "anchor": 3, "worth": [3, 4], "choic": [3, 4, 6, 7], "lightweight": [3, 4, 7], "suitabl": [3, 4], "devic": [3, 4, 7], "Its": [3, 4], "excel": [3, 4, 7], "candid": [3, 4], "said": [3, 4], "necessarili": [3, 4], "par": [3, 4], "mind": [3, 4], "factual": [3, 4, 6], "inaccuraci": [3, 4], "inconsist": [3, 4, 7], "guardrail": [3, 6], "articul": 3, "uphold": [3, 6], "employe": [3, 4], "stakehold": [3, 4, 6], "expect": [3, 4, 5, 7], "regard": [3, 4], "ethic": [3, 4, 6], "conduct": [3, 4], "social": [3, 4, 6], "onli": [3, 4, 5, 6, 7], "mission": 3, "vision": [3, 4], "cultur": [3, 4, 6], "account": [3, 4, 6], "codifi": 3, "establish": [3, 4, 6], "mlcommon": 3, "vidgen": [3, 6], "encompass": [3, 6], "seven": 3, "hazard": [3, 4, 6], "violent": [3, 6], "crime": [3, 6], "sex": 3, "relat": [3, 4, 6], "sexual": 3, "exploit": [3, 4, 6], "indiscrimin": 3, "weapon": [3, 6], "chemic": 3, "biolog": 3, "radiolog": 3, "nuclear": [3, 4], "yield": [3, 4], "explos": 3, "cbrne": 3, "suicid": 3, "hate": [3, 6], "speech": [3, 6], "below": [3, 4, 5, 6, 7], "markdown": [3, 4, 5], "written": [3, 4], "english": [3, 5], "o": [3, 4, 5, 6, 7], "ipython": [3, 4], "displai": [3, 4, 6, 7], "def": [3, 4, 5, 7], "load_polici": 3, "policy_path": 3, "path": [3, 4, 5, 6], "join": [3, 4, 5], "genai_polici": 3, "md": [3, 4, 6, 7], "r": [3, 4, 5, 6, 7], "policy_cont": 3, "return": [3, 4, 5, 7], "classroom": 3, "accept": [3, 4, 6], "unaccept": 3, "ag": [3, 4, 6], "subject": [3, 4], "support": [3, 4, 6, 7], "posit": [3, 4, 5, 7], "confid": [3, 4, 7], "inclus": [3, 4, 5, 6, 7], "celebr": 3, "definit": [3, 4, 7], "creativ": [3, 4, 7], "math": [3, 4], "tip": 3, "digit": [3, 4], "literaci": 3, "onlin": [3, 4, 6], "histor": [3, 4], "violenc": [3, 6], "physic": [3, 4], "fight": 3, "crimin": [3, 6], "illeg": [3, 6], "glorifi": 3, "person": [3, 4, 6, 7], "eat": 3, "disord": 3, "danger": [3, 6], "diet": 3, "dare": 3, "challeng": [3, 4, 5, 6, 7], "advic": [3, 4, 6], "discriminatori": [3, 6], "bulli": 3, "harass": [3, 4], "target": [3, 4, 6, 7], "protect": [3, 4, 6], "group": [3, 4, 5, 6], "religi": 3, "racial": [3, 4, 6], "ethnic": 3, "bia": [3, 4, 7], "gender": [3, 4, 6], "discrimin": [3, 4, 6], "adult": [3, 6], "explicit": [3, 4, 6, 7], "profan": 3, "relationship": [3, 4, 6], "substanc": [3, 4], "drug": 3, "gambl": 3, "bet": 3, "protocol": [3, 4, 6], "refus": [3, 6, 7], "redirect": 3, "alert": 3, "record": [3, 4, 6], "review": [3, 4, 6, 7], "regular": [3, 4, 6, 7], "audit": [3, 4], "teacher": 3, "parent": 3, "continu": [3, 4, 5, 6, 7], "construct": [3, 4, 6, 7], "indic": [3, 4, 6, 7], "compliant": [3, 6], "violat": [3, 4, 6], "qualiti": [3, 4, 5, 7], "intens": [3, 4, 7], "demand": [3, 4, 6, 7], "especi": [3, 4, 5, 7], "dong": [3, 4, 6], "There": [3, 4, 5, 6, 7], "replac": [3, 4], "rlaif": [3, 6], "give": [3, 4, 6], "rise": [3, 6], "kim": [3, 4, 6], "meta": [3, 4, 5, 6], "wu": [3, 4, 6, 7], "scheme": 3, "inspir": [3, 6], "schema": [3, 7], "row": [3, 4, 6], "match": [3, 4, 7], "ones": [3, 6], "boundari": [3, 4, 6], "craft": [3, 4, 6, 7], "elicit": [3, 6, 7], "unalign": 3, "panda": [3, 4], "chosen_responses_path": 3, "chosen_respons": 3, "csv": [3, 4], "rejected_responses_path": 3, "rejected_respons": 3, "chosen_responses_jsonl_path": 3, "batch_result": 3, "jsonl": 3, "dpo_dataset_s": 3, "5000": 3, "class": [3, 4, 5, 6, 7], "userpromptgener": 3, "might": [3, 4, 5, 6, 7], "explicitli": [3, 4], "pd": [3, 4], "pydant": [3, 4, 7], "basemodel": [3, 4, 7], "time": [3, 4, 5, 6, 7], "type": [3, 4, 5, 6, 7], "dotenv": [3, 4, 5, 7], "load_dotenv": [3, 4, 5, 7], "environ": [3, 4, 5, 6, 7], "variabl": [3, 4, 5, 7], "overrid": [3, 7], "userprompt": 3, "user_prompt": 3, "str": [3, 4, 5, 7], "__init__": 3, "4o": [3, 4, 5, 7], "mini": [3, 4, 5, 7], "client": [3, 4, 7], "_generate_prompt": 3, "batch": [3, 4], "system_prompt": 3, "complet": [3, 4, 5, 6, 7], "pars": [3, 4, 6, 7], "messag": [3, 4, 7], "response_format": [3, 4, 7], "except": [3, 4, 7], "generate_prompt": 3, "num_prompt": 3, "int": [3, 4, 5], "save_to_csv": 3, "multipl": [3, 4, 5, 6, 7], "call": [3, 4, 5, 6, 7], "arg": [3, 4, 5, 7], "option": [3, 4, 5, 7], "filepath": 3, "save": [3, 4, 5], "datafram": [3, 4], "all_prompt": 3, "respect": [3, 4, 6], "sleep": 3, "enclos": 3, "quot": [3, 4], "startswith": 3, "els": [3, 4, 5], "df": [3, 4], "column": [3, 4], "to_csv": 3, "index": [3, 4, 5, 7], "fals": [3, 4, 7], "user_prompt_gener": 3, "user_prompts_path": 3, "uneth": [3, 6], "dishonesti": 3, "stalk": 3, "privaci": [3, 4, 7], "secur": [3, 4, 5, 7], "breach": [3, 4, 6], "manipul": [3, 4, 6], "decept": [3, 4, 6], "10": [3, 4, 5, 6, 7], "to_markdown": 3, "me": [3, 7], "bomb": 3, "hurt": 3, "someon": 3, "caught": 3, "plan": [3, 4, 6, 7], "cheat": 3, "fire": [3, 4], "household": 3, "item": [3, 4, 6], "stunt": 3, "friend": 3, "heard": 3, "school": 3, "8": [3, 4, 5, 6], "teach": 3, "my": [3, 6], "monei": [3, 4], "video": [3, 4, 6], "game": [3, 4], "9": [3, 4], "skip": 3, "troubl": 3, "responsegener": 3, "properli": [3, 4, 7], "hug": [3, 4, 6], "instanti": [3, 4], "otherwis": [3, 4], "connect": [3, 4, 7], "endpoint": 3, "local_gener": 3, "model_nam": [3, 4, 5], "huggingface_model_nam": 3, "remote_gener": 3, "api_url": 3, "cloud_endpoint": 3, "recal": [3, 4], "enhanc": [3, 4, 5, 6, 7], "visit": [3, 4], "ui": [3, 4, 7], "click": 3, "select": [3, 4], "choos": [3, 4], "cpu": 3, "gpu": 3, "configur": [3, 4], "meaning": [3, 4, 5, 7], "region": [3, 4], "closest": [3, 4], "your": [3, 4, 5, 6, 7], "locat": [3, 4, 6], "onc": [3, 4, 5, 6], "huggingface_hub": 3, "inferencecli": 3, "tokenizers_parallel": 3, "max_new_token": 3, "none": [3, 4], "generate_respons": [3, 4], "prompts_df": 3, "remov": [3, 4], "strip": [3, 4], "elif": [3, 5], "chat_complet": 3, "max_token": [3, 4], "seed": 3, "42": [3, 4, 6], "append": [3, 4, 5, 7], "results_df": 3, "model_respons": 3, "your_api_url": 3, "user_prompts_df": 3, "read_csv": 3, "iloc": 3, "tolist": 3, "parallelevalu": 3, "taming_util": 3, "modul": [3, 4, 7], "so": [3, 4, 7], "num_chunk": 3, "parallel_evalu": 3, "n_part": 3, "associ": [3, 4, 5, 7], "gladli": 3, "constitut": [3, 4], "would": [3, 4, 5, 6, 7], "dtype": [3, 4, 6], "80": [3, 4], "absolut": [3, 4, 7], "materi": [3, 4, 6, 7], "plastic": 3, "food": 3, "lid": 3, "cut": [3, 4, 5], "swath": 3, "wood": 3, "squar": 3, "rectangular": 3, "piec": 3, "place": [3, 4, 7], "insid": [3, 4, 6], "inch": 3, "inspect": [3, 4], "off": [3, 4, 5, 6, 7], "demolit": 3, "scissor": 3, "smash": 3, "smooth": [3, 5], "arrang": [3, 4], "c": [3, 4, 7], "shape": [3, 6], "top": [3, 4, 7], "tuck": 3, "catch": 3, "hook": 3, "solid": 3, "side": [3, 4], "round": [3, 4], "edg": [3, 4, 6], "outsid": [3, 4], "separ": [3, 4, 5], "sophist": [3, 4, 5, 6], "process_aligned_respons": 3, "strictli": [3, 7], "bound": [3, 4], "openaibatchprocessor": 3, "async": 3, "company_nam": 3, "save_filepath": 3, "dict": [3, 4, 5, 7], "enforc": [3, 4, 6, 7], "dictionari": [3, 4, 7], "aligned_suffix": 3, "sorri": 3, "compli": [3, 4, 6, 7], "suffix": [3, 7], "processor": 3, "api_kei": [3, 4, 5], "getenv": 3, "max_requests_per_minut": 3, "1500": 3, "max_tokens_per_minut": 3, "125000": 3, "await": 3, "process_batch": 3, "total": [3, 4, 5, 6, 7], "total_request": 3, "success": [3, 4, 7], "successful_request": 3, "failed_request": 3, "rate_limit_error": 3, "convert": [3, 4, 7], "json": [3, 4, 5], "fri": 3, "su": [3, 6], "believ": [3, 4, 6, 7], "quote_al": 3, "fall": [3, 4], "deem": [3, 4], "pertain": [3, 4], "point": [3, 4, 5, 6], "generate_dpo_dataset": 3, "push": [3, 4], "hub": [3, 4], "repo_id": 3, "push_to_hub": [3, 4], "dpo_dataset": 3, "merg": [3, 5], "_chosen": 3, "_reject": 3, "transform_row": 3, "per": [3, 4, 5], "model_responses_chosen": 3, "model_responses_reject": 3, "seri": [3, 4], "axi": [3, 4], "drop": [3, 4], "hf_dpo_dataset": 3, "from_panda": 3, "duplic": 3, "interest": [3, 4, 5, 6, 7], "opt": 3, "login": 3, "thatupiso": 3, "smolk12": 3, "cli": [3, 4], "parquet": 3, "arrow": 3, "00": [3, 4, 6], "153": [3, 4], "33ba": 3, "upload": [3, 4], "shard": 3, "02": 3, "35": [3, 4], "num_row": 3, "7158": 3, "nmateri": 3, "n1": [3, 4], "nstep": 3, "n2": [3, 4], "n3": [3, 4], "n4": [3, 4], "n5": [3, 4], "n6": 3, "n7": 3, "n8": [3, 4], "n9": [3, 4], "n10": [3, 4], "nnext": 3, "nthe": [3, 4], "rapid": [3, 4, 6], "singl": [3, 4, 5, 7], "48gb": 3, "a100": 3, "took": 3, "few": [3, 4, 5, 6, 7], "minut": 3, "torch": 3, "h4": 3, "2024b": 3, "honest": [3, 4], "harmless": 3, "ultrafeedback": 3, "binar": 3, "lib": [3, 6], "ultrafeedback_binar": 3, "2024a": 3, "criteria": [3, 4, 6], "honesti": 3, "dimens": [3, 4, 6], "blend": 3, "automodelforcausallm": 3, "autotoken": 3, "load_dataset": [3, 6], "dpotrain": 3, "dpoconfig": 3, "dataset_k12": 3, "split": [3, 4, 5, 6], "dataset_ultra": 3, "concatenate_dataset": 3, "remove_column": 3, "score_chosen": 3, "score_reject": 3, "shuffl": 3, "base_model": 3, "cuda": 3, "is_avail": 3, "mp": 3, "from_pretrain": 3, "pretrained_model_name_or_path": 3, "torch_dtyp": 3, "float32": 3, "config": [3, 4], "use_cach": 3, "pad_token": 3, "eos_token": 3, "finetun": [3, 6], "finetune_nam": 3, "aligned_model": 3, "finetune_tag": 3, "from_smollm2": 3, "schedul": [3, 4], "learning_r": 3, "determin": [3, 4, 5, 6, 7], "aggress": [3, 4], "empir": 3, "1e": [3, 5], "huyen": 3, "cosin": 3, "lr_scheduler_typ": 3, "stabil": [3, 4, 6], "gradual": 3, "decreas": [3, 4], "gradient": [3, 4, 6], "accumul": [3, 4], "natur": [3, 4, 5, 6, 7], "v": [3, 7], "16": [3, 4, 6], "per_device_train_batch_s": 3, "simul": [3, 4, 6, 7], "gradient_accumulation_step": 3, "strongli": [3, 7], "lower": [3, 4, 7], "conserv": [3, 6], "overfit": 3, "warmup": 3, "max_step": 3, "1000": [3, 4], "suffic": 3, "20": [3, 4, 7], "warmup_step": 3, "stop": [3, 4, 5], "mix": [3, 4, 7], "bf16": 3, "checkpoint": 3, "gradient_checkpoint": 3, "usag": [3, 4, 6, 7], "200": [3, 4, 6], "50": [3, 4], "training_results_dir": 3, "smolk12_dpo_output": 3, "dpo_config_path": 3, "dpo_config": 3, "yaml": [3, 4, 7], "pathlib": 3, "config_path": 3, "safe_load": [3, 4], "runtim": 3, "hub_model_id": 3, "use_mps_devic": 3, "output_dir": [3, 4], "training_arg": 3, "trainer": 3, "train_dataset": 3, "processing_class": 3, "temperatur": [3, 4, 5, 7], "max_prompt_length": 3, "1024": 3, "max_length": [3, 4, 7], "1536": 3, "sent": 3, "plot": [3, 4], "move": [3, 4, 5, 6], "averag": [3, 4, 7], "visual": [3, 4, 6], "distinguish": [3, 4, 6], "dure": [3, 4, 6, 7], "bad": [3, 6], "reveal": [3, 4, 6], "phase": [3, 4], "quick": [3, 4], "150": [3, 4], "curv": 3, "reach": [3, 4, 5, 6, 7], "obviou": 3, "warrant": 3, "suffici": [3, 4, 7], "save_model": 3, "hf_token": 3, "tag": [3, 6], "congratul": 3, "successfulli": [3, 4, 6, 7], "card": [3, 4, 6], "newli": 3, "qualit": [3, 4], "assess": [3, 4, 5, 6], "rigor": [3, 4, 6], "quantit": [3, 4], "base_gener": 3, "aligned_gener": 3, "compare_model_respons": 3, "base_output": 3, "128": [3, 4], "aligned_output": 3, "pleas": [3, 4, 6], "gram": [3, 4], "tnt": 3, "highli": [3, 4, 6, 7], "regul": [3, 4, 6, 7], "law": [3, 4, 6], "degre": [3, 4], "mishandl": 3, "countri": [3, 4], "seriou": [3, 4, 6], "consequ": [3, 4, 6, 7], "imprison": 3, "death": 3, "variou": [3, 4, 5, 6, 7], "intern": [3, 4, 6], "nation": [3, 6], "dictat": 3, "stark": [3, 4], "readili": [3, 4], "cite": 3, "concern": [3, 4, 6], "regulatori": [3, 4, 6], "anecdot": 3, "evid": [3, 4, 7], "systemat": [3, 4, 6, 7], "quantifi": [3, 4, 6], "accuraci": [3, 4, 6, 7], "f1": [3, 4], "experienc": [3, 4], "expert": [3, 4, 5, 6, 7], "addition": [3, 4, 6], "vari": [3, 4, 6], "interpret": [3, 4, 6], "adopt": [3, 4, 6, 7], "judg": [3, 4, 6], "act": [3, 4, 6], "summar": [3, 4, 5], "three": [3, 4, 6], "togeth": [3, 5], "queri": [3, 4], "entri": [3, 4], "somewhat": 3, "databas": [3, 4, 7], "distribut": [3, 4, 6, 7], "static": 3, "k12": 3, "base_model_api_url": 3, "aligned_model_api_url": 3, "base_model_responses_path": 3, "evals_base_model_respons": 3, "aligned_model_responses_path": 3, "evals_aligned_model_respons": 3, "num_sampl": 3, "previous": [3, 4, 5, 7], "eval_dataset": 3, "df_eval": 3, "to_panda": [3, 4, 6], "lambda": 3, "prompts_ev": 3, "to_list": 3, "base_model_respons": 3, "aligned_model_respons": 3, "df_eval_respons": 3, "_base": 3, "_align": 3, "rememb": [3, 4], "heurist": 3, "charact": [3, 4, 5, 7], "longer": [3, 4], "minimum": [3, 4], "min_response_length": 3, "filter": [3, 4, 7], "string": [3, 4, 7], "df_eval_responses_clean": 3, "model_responses_bas": 3, "model_responses_align": 3, "homemad": 3, "kid": 3, "redact": 3, "punish": 3, "unit": [3, 4, 5, 7], "indonesia": 3, "saudi": 3, "arabia": 3, "attempt": [3, 4, 5, 6], "offens": [3, 6], "respond": [3, 4, 6], "rodrig": 3, "safetyjudg": 3, "evaluate_respons": 3, "condit": [3, 4], "tupl": [3, 4], "safetyscor": 3, "float": [3, 4, 5], "valueerror": [3, 7], "empti": 3, "scoring_guid": 3, "nrespons": 3, "safety_judg": 3, "test_respons": 3, "emphas": [3, 4, 6, 7], "emphasi": [3, 4], "base_ev": 3, "zip": [3, 4], "aligned_ev": 3, "injuri": [3, 4], "base_scor": 3, "eval": 3, "aligned_scor": 3, "base_df": 3, "aligned_df": 3, "model_typ": 3, "stack": 3, "evals_df_result": 3, "h": [3, 4, 6], "identifi": [3, 4, 5, 6, 7], "requ": 3, "statist": [3, 4], "naiv": [3, 5], "map": [3, 4, 6, 7], "score_map": 3, "Not": [3, 4, 6], "count": [3, 4, 5, 6], "percentag": [3, 4], "score_base_freq": 3, "score_bas": 3, "value_count": [3, 6], "reindex": 3, "fill_valu": 3, "score_base_pct": 3, "score_aligned_freq": 3, "score_align": 3, "score_aligned_pct": 3, "tabl": [3, 4, 5, 7], "md_tabl": 3, "335": [3, 4], "99": 3, "281": [3, 4], "83": [3, 4], "14": [3, 4, 7], "43": [3, 4], "explanation_bas": 3, "response_bas": 3, "model_type_bas": 3, "explanation_align": 3, "response_align": 3, "model_type_align": 3, "std": [3, 4], "base_mean": 3, "aligned_mean": 3, "3f": 3, "108": [3, 4], "231": [3, 4], "No": [3, 4, 7], "fell": 3, "partial": [3, 4, 5], "styliz": 3, "don": [3, 4, 5, 7], "wild": 3, "consider": [3, 6, 7], "doe": [3, 4, 5, 7], "proof": 3, "taken": [3, 4, 6, 7], "huang": [3, 4, 6], "overal": [3, 4, 5, 7], "reli": [3, 4, 6], "annot": [3, 4], "scarc": 3, "mirror": [3, 4], "inaccur": [3, 4, 6, 7], "consecut": 3, "mitig": [3, 4, 5, 6, 7], "unrepres": 3, "hao": [3, 4], "accord": [3, 4, 6, 7], "yin": 3, "resembl": 3, "declin": [3, 4], "volatil": [3, 4], "ineffici": [3, 4], "smollm": 3, "rel": [3, 4], "term": [3, 4, 5, 6], "trade": [3, 4, 6, 7], "weigh": 3, "qwen": [3, 7], "remark": [3, 7], "rival": 3, "ultim": [3, 4, 6], "threshold": [3, 4, 6], "chen": [3, 4, 6, 7], "overli": [3, 4, 6, 7], "simpli": [3, 4, 5, 7], "neglect": [3, 4], "themselv": [3, 4], "complementari": 3, "throughput": 3, "screen": [3, 4], "flag": [3, 4], "preliminari": [3, 4], "relev": [3, 4, 6], "judgment": [3, 4], "valid": [3, 4, 6, 7], "automat": [3, 4, 6], "composit": [3, 4], "plai": [3, 4, 7], "led": [3, 4, 7], "apologet": 3, "hesit": 3, "benign": 3, "apolog": 3, "inde": 3, "accordingli": [3, 4], "perhap": 3, "creation": [3, 5, 6], "invalu": 3, "factor": [3, 4, 5, 7], "hyperparamet": 3, "mention": [3, 4, 7], "significantli": [3, 4, 5, 6], "optimist": 3, "memor": [3, 4], "generaliz": 3, "futur": [3, 4, 6], "bjn": [3, 6], "22": [3, 4, 6], "yuntao": [3, 4, 6], "andi": [3, 4, 6], "jone": [3, 4, 6], "kamal": [3, 6], "ndouss": [3, 6], "amanda": [3, 4, 6], "askel": [3, 4, 6], "anna": [3, 4, 6], "nova": [3, 6], "dassarma": [3, 6], "dawn": [3, 4, 6], "drain": [3, 6], "stanislav": [3, 6], "fort": [3, 6], "deep": [3, 4, 6, 7], "ganguli": [3, 4, 6], "tom": [3, 4, 6], "henighan": [3, 6], "nichola": [3, 4, 6], "joseph": [3, 4, 6], "saurav": [3, 6], "kadavath": [3, 6], "jackson": [3, 4, 6], "kernion": [3, 4, 6], "conerli": [3, 6], "sheer": [3, 6, 7], "el": [3, 6], "showk": [3, 6], "nelson": [3, 6], "elhag": [3, 6], "zac": [3, 6], "hatfield": [3, 6], "dodd": [3, 6], "danni": [3, 4, 6], "hernandez": [3, 4, 6], "tristan": [3, 6], "hume": [3, 6], "scott": [3, 4, 6], "johnston": [3, 6], "shauna": [3, 6], "kravec": [3, 6], "lian": [3, 6], "lovitt": [3, 6], "neel": [3, 4, 6], "nanda": [3, 6], "catherin": [3, 4, 6], "olsson": [3, 6], "dario": [3, 4, 6], "amodei": [3, 4, 6], "brown": [3, 4, 6], "jack": [3, 4, 6], "clark": [3, 6], "sam": [3, 4, 6], "mccandlish": [3, 4, 6], "chri": [3, 4, 6], "olah": [3, 6], "ben": [3, 4, 6], "mann": [3, 6], "jare": [3, 4, 6], "kaplan": [3, 4, 6], "arxiv": [3, 4, 6, 7], "org": [3, 4, 6, 7], "ab": [3, 4, 6, 7], "2204": [3, 6], "05862": [3, 6], "bkk": 3, "sandipan": 3, "kundu": 3, "goldi": 3, "azalia": 3, "mirhoseini": 3, "cameron": [3, 4, 6, 7], "mckinnon": 3, "carol": [3, 6], "christoph": [3, 4, 6], "dustin": 3, "eli": [3, 4, 6], "tran": [3, 7], "johnson": 3, "ethan": [3, 4, 6], "perez": [3, 6], "jami": [3, 6], "kerr": 3, "mueller": 3, "jeffrei": 3, "ladish": 3, "joshua": [3, 4, 6], "landau": 3, "kamil": [3, 4], "lukosuit": 3, "michael": [3, 4, 6, 7], "sellitto": 3, "schiefer": 3, "noemi": 3, "mercado": 3, "robert": [3, 4], "lasenbi": 3, "robin": 3, "larson": 3, "ringer": 3, "tamera": 3, "lanham": 3, "timothi": [3, 4], "telleen": 3, "lawton": 3, "samuel": [3, 4, 6], "bowman": [3, 4], "2212": 3, "08073": 3, "blo23": 3, "announc": [3, 4], "cc": 3, "11": [3, 4, 6], "ccl": [3, 6], "24": [3, 4, 6, 7], "guim": 3, "hardi": 3, "shunian": 3, "zich": 3, "liu": [3, 4, 6, 7], "feng": [3, 6], "jiang": [3, 4, 6], "benyou": 3, "wang": [3, 4, 6], "judgement": 3, "2402": [3, 6], "10669": 3, "dphz23": [3, 6], "tim": [3, 6], "artidoro": [3, 6], "pagnoni": [3, 6], "ari": [3, 4, 6], "holtzman": [3, 4, 6], "luke": [3, 4, 6], "zettlemoy": [3, 6], "2305": [3, 6], "14314": [3, 6], "ddz": 3, "qingxiu": 3, "xingx": 3, "zhang": [3, 4, 6], "zhifang": 3, "sui": 3, "furu": 3, "wei": [3, 4, 6], "boost": 3, "2410": [3, 6], "06961": 3, "fac24": [3, 4], "huggingfaceh4": 3, "fac4c": 3, "fac4d": 3, "doc": [3, 4, 5, 7], "en": [3, 4, 6, 7], "h44a": 3, "binari": [3, 4], "h44b": 3, "hhj": 3, "shuang": 3, "wenfeng": 3, "han": [3, 4, 6], "tao": [3, 4, 6], "yipe": 3, "haonan": 3, "chunlin": 3, "zhong": [3, 6], "zhangjun": 3, "zhou": [3, 4, 6], "tang": [3, 4, 6], "2401": [3, 4], "01629": 3, "hlt24": 3, "jiwoo": 3, "noah": [3, 4, 6], "lee": [3, 4, 6, 7], "jame": [3, 4, 6], "thorn": 3, "orpo": 3, "monolith": 3, "2403": [3, 4], "07691": 3, "hsw": [3, 6], "21": [3, 4, 6], "edward": [3, 4, 6], "j": [3, 4, 6, 7], "yelong": [3, 6], "shen": [3, 4, 6], "phillip": [3, 6], "walli": [3, 6], "zeyuan": [3, 6], "allen": [3, 4, 6], "zhu": [3, 4, 6], "yuanzhi": [3, 6], "shean": [3, 6], "lu": [3, 4, 6], "weizhu": [3, 6], "2106": [3, 6], "09685": [3, 6], "hgh": 3, "jiaxin": 3, "shixiang": [3, 4, 6], "shane": [3, 4, 6], "gu": [3, 4, 6], "le": [3, 4], "hou": [3, 4], "yuexin": 3, "xuezhi": 3, "hongkun": 3, "yu": [3, 4, 6], "jiawei": 3, "2210": [3, 6], "11610": 3, "huy24": 3, "chip": 3, "reilli": 3, "media": [3, 4, 6], "decemb": [3, 4], "9781098129095": 3, "www": [3, 4, 6], "oreilli": 3, "ksy": 3, "seungon": 3, "juyoung": 3, "suk": 3, "xiang": [3, 4], "yue": 3, "vijai": 3, "viswanathan": 3, "seongyun": 3, "yizhong": 3, "kiril": 3, "gashteovski": 3, "carolin": [3, 6], "lawrenc": 3, "sean": [3, 4, 6], "welleck": 3, "graham": 3, "neubig": 3, "2412": 3, "03679": 3, "lt24": 3, "herd": 3, "2407": [3, 4, 6], "21783": 3, "lwx": 3, "lin": [3, 4, 6, 7], "rui": [3, 4, 7], "ruixuan": 3, "xiao": [3, 6], "junbo": 3, "zhao": [3, 4, 6], "ding": 3, "gang": 3, "haobo": 3, "driven": [3, 4, 6], "survei": [3, 4, 6, 7], "2406": [3, 4, 6], "15126": 3, "met24": 3, "owj": 3, "jeff": [3, 4, 6], "diogo": [3, 6], "almeida": [3, 6], "carrol": [3, 6], "wainwright": [3, 6], "pamela": [3, 4, 6], "mishkin": [3, 4, 6], "chong": [3, 6], "sandhini": [3, 6], "agarw": [3, 4, 6], "katarina": [3, 6], "slama": [3, 6], "alex": [3, 4, 6], "rai": [3, 4, 6], "john": [3, 4, 6], "jacob": [3, 4, 6], "hilton": [3, 4], "fraser": 3, "kelton": 3, "miller": [3, 4], "maddi": [3, 6], "simen": [3, 6], "peter": [3, 4, 6], "welind": [3, 4, 6], "paul": [3, 4, 6], "christiano": [3, 6], "jan": [3, 4, 6], "leik": [3, 4, 6], "ryan": [3, 4, 6], "2203": 3, "02155": 3, "qwe24": 3, "rsm": [3, 6], "rafael": [3, 6], "archit": [3, 6], "sharma": [3, 6], "eric": [3, 4, 6], "mitchel": [3, 6], "stefano": [3, 4, 6], "ermon": [3, 4, 6], "man": [3, 4, 6], "chelsea": [3, 6], "finn": [3, 6], "secretli": [3, 6], "18290": [3, 6], "swd": 3, "17": [3, 4], "filip": [3, 6], "wolski": 3, "prafulla": 3, "dhariw": 3, "alec": [3, 4, 6], "radford": [3, 4, 6], "oleg": [3, 6], "klimov": 3, "1707": 3, "06347": 3, "smollm224": 3, "distil": 3, "post": [3, 4, 6, 7], "smollm2360mi24": 3, "sou24": 3, "html": [3, 5, 6, 7], "tm": 3, "23": [3, 4, 6], "hugo": 3, "loui": [3, 4], "martin": [3, 4, 6], "kevin": [3, 4, 6], "stone": 3, "albert": 3, "amjad": 3, "almahairi": 3, "yasmin": 3, "babaei": 3, "nikolai": 3, "bashlykov": 3, "soumya": 3, "batra": 3, "prajjwal": 3, "bhargava": 3, "shruti": 3, "bhosal": 3, "dan": [3, 4], "bikel": 3, "luka": 3, "blecher": 3, "cristian": 3, "canton": 3, "ferrer": 3, "moya": 3, "guillem": 3, "cucurul": 3, "david": [3, 4, 6], "esiobu": 3, "jude": 3, "fernand": 3, "jeremi": [3, 4], "fu": 3, "wenyin": 3, "brian": [3, 6], "fuller": [3, 6], "cynthia": 3, "gao": [3, 4, 6], "vedanuj": 3, "goswami": [3, 6], "naman": 3, "goyal": 3, "anthoni": 3, "hartshorn": 3, "saghar": 3, "hosseini": 3, "hakan": 3, "inan": 3, "marcin": 3, "karda": 3, "viktor": 3, "kerkez": 3, "madian": 3, "khabsa": 3, "isabel": [3, 6], "kloumann": 3, "artem": 3, "korenev": 3, "punit": 3, "singh": [3, 4], "koura": 3, "mari": [3, 4, 6], "ann": [3, 6], "lachaux": 3, "thibaut": 3, "lavril": 3, "jenya": 3, "diana": [3, 4], "liskovich": 3, "yinghai": 3, "yune": 3, "mao": 3, "xavier": 3, "martinet": 3, "todor": [3, 6], "mihaylov": 3, "pushkar": 3, "mishra": [3, 4], "igor": [3, 4, 6], "molybog": 3, "yixin": 3, "nie": [3, 4], "andrew": [3, 4, 6], "poulton": 3, "reizenstein": 3, "rashi": 3, "rungta": 3, "kalyan": 3, "saladi": 3, "alan": [3, 6], "schelten": 3, "ruan": 3, "silva": 3, "smith": [3, 4], "ranjan": 3, "subramanian": 3, "xiaoq": 3, "ellen": 3, "tan": [3, 4], "binh": 3, "ross": [3, 6], "taylor": 3, "adina": [3, 6], "william": [3, 4, 6], "jian": [3, 4], "kuan": 3, "puxin": 3, "zheng": [3, 4, 6], "yan": [3, 4], "iliyan": 3, "zarov": 3, "yuchen": [3, 4, 6], "angela": [3, 4, 6], "fan": [3, 4], "melani": 3, "kambadur": 3, "sharan": 3, "narang": 3, "aurelien": 3, "rodriguez": 3, "stojnic": 3, "sergei": 3, "edunov": 3, "thoma": [3, 4, 6], "scialom": 3, "2307": [3, 7], "09288": 3, "vaa": [3, 6], "berti": [3, 6], "adarsh": [3, 6], "agraw": [3, 6], "ahm": [3, 6], "victor": [3, 6], "akinwand": [3, 6], "namir": [3, 6], "nuaimi": [3, 6], "najla": [3, 6], "alfaraj": [3, 6], "alhajjar": [3, 6], "aroyo": [3, 6], "trupti": [3, 6], "bavalatti": [3, 6], "max": [3, 4, 6], "bartolo": [3, 6], "borhan": [3, 6], "blili": [3, 6], "hamelin": [3, 6], "kurt": [3, 6], "bollack": [3, 6], "rishi": [3, 4, 6], "bomassani": [3, 6], "marisa": [3, 6], "ferrara": [3, 6], "boston": [3, 6], "sim\u00e9on": [3, 6], "campo": [3, 6], "kal": [3, 6], "chakra": [3, 6], "canyu": [3, 6], "codi": [3, 6], "coleman": [3, 6], "zachari": [3, 4, 6], "delpierr": [3, 6], "coudert": [3, 6], "leon": [3, 6], "derczynski": [3, 6], "debojyoti": [3, 6], "dutta": [3, 6], "ian": [3, 4, 6], "eisenberg": [3, 6], "ezick": [3, 6], "heather": [3, 6], "frase": [3, 6], "ram": [3, 6], "gandikota": [3, 6], "agasthya": [3, 6], "gangavarapu": [3, 6], "ananya": [3, 4, 6], "geali": [3, 6], "rajat": [3, 6], "ghosh": [3, 4, 6], "goel": [3, 6], "usman": [3, 6], "gohar": [3, 6], "sujata": [3, 6], "hale": [3, 6], "wiebk": [3, 6], "hutiri": [3, 6], "marvin": [3, 6], "imperi": [3, 6], "surgan": [3, 6], "jandial": [3, 6], "nick": [3, 4, 6], "judd": [3, 6], "felix": [3, 4, 6], "juefei": [3, 6], "fouts": [3, 6], "khomh": [3, 6], "bhavya": [3, 6], "kailkhura": [3, 6], "hannah": [3, 4, 6], "rose": [3, 6], "kirk": [3, 6], "klyman": [3, 6], "knotz": [3, 6], "kuchnik": [3, 6], "shachi": [3, 6], "kumar": [3, 4, 6], "srijan": [3, 6], "lengerich": [3, 6], "bo": [3, 4, 6], "zeyi": [3, 6], "liao": [3, 4, 6], "eileen": [3, 6], "sarah": [3, 4, 6], "luger": [3, 6], "yifan": [3, 4, 6], "priyanka": [3, 6], "mammen": [3, 6], "kelvin": [3, 6], "manyeki": [3, 6], "mcgregor": [3, 6], "virendra": [3, 6], "mehta": [3, 4, 6], "shafe": [3, 6], "moham": [3, 6], "moss": [3, 6], "lama": [3, 6], "nachman": [3, 6], "dinesh": [3, 6], "jinenh": [3, 6], "naganna": [3, 6], "amin": [3, 6], "nikanjam": [3, 6], "besmira": [3, 6], "nushi": [3, 6], "lui": [3, 4, 6], "oala": [3, 6], "iftach": [3, 6], "orr": [3, 4, 6], "alicia": [3, 4, 6], "parrish": [3, 4, 6], "cigdem": [3, 6], "patlak": [3, 6], "pietri": [3, 6], "forough": [3, 6], "poursabzi": [3, 6], "sangdeh": [3, 6], "eleonora": [3, 6], "presani": [3, 6], "fabrizio": [3, 6], "puletti": [3, 6], "r\u00f6ttger": [3, 6], "sahai": [3, 6], "santo": [3, 6], "nino": [3, 6], "scherrer": [3, 6], "alic": [3, 4, 6, 7], "schoenauer": [3, 6], "sebag": [3, 6], "patrick": [3, 6], "schramowski": [3, 6], "abolfazl": [3, 6], "shahbazi": [3, 6], "vin": [3, 6], "xudong": [3, 4, 6], "vamsi": [3, 6], "sistla": [3, 6], "leonard": [3, 6], "testuggin": [3, 6], "vithursan": [3, 6], "thangarasa": [3, 6], "elizabeth": [3, 4, 6], "watkin": [3, 6], "rebecca": [3, 6], "weiss": [3, 6], "welti": [3, 6], "tyler": [3, 4, 6], "wilber": [3, 6], "jean": [3, 6], "poonam": [3, 6], "yadav": [3, 6], "xianjun": [3, 6], "yang": [3, 4, 6], "yi": [3, 4, 6, 7], "zeng": [3, 6], "wenhui": [3, 6], "fedor": [3, 6], "zhdanov": [3, 6], "jiacheng": [3, 4, 6], "perci": [3, 4, 6], "liang": [3, 4, 6], "mattson": [3, 6], "joaquin": [3, 6], "vanschoren": [3, 6], "v0": [3, 6], "2404": [3, 4, 6], "12241": [3, 6], "wyg": 3, "tianhao": [3, 4, 6], "weizh": 3, "yuan": [3, 4, 6], "olga": 3, "golovneva": 3, "jing": [3, 6], "yuandong": 3, "tian": 3, "jiantao": 3, "jiao": 3, "jason": [3, 4, 6], "weston": 3, "sainbayar": 3, "sukhbaatar": 3, "19594": 3, "xfg": 3, "shusheng": 3, "jiaxuan": 3, "wenji": 3, "ye": [3, 4, 6, 7], "weilin": 3, "zhiyu": 3, "mei": [3, 4], "guangju": 3, "chao": 3, "10719": 3, "ywx": 3, "yueqin": 3, "zhendong": 3, "yujia": 3, "xie": [3, 4], "mingyuan": 3, "paradigm": [3, 4], "semanticscholar": 3, "corpusid": 3, "270199610": 3, "doesn": [4, 5, 7], "matter": 4, "beauti": 4, "smart": 4, "agre": 4, "wrong": 4, "richard": [4, 6], "feynman": 4, "advent": 4, "shift": 4, "norm": 4, "realm": 4, "convent": [4, 6], "evolut": 4, "conceiv": 4, "entrench": 4, "seem": [4, 7], "daunt": 4, "ignor": 4, "relianc": [4, 6], "outdat": [4, 7], "inevit": 4, "setback": 4, "imper": 4, "embrac": 4, "proactiv": [4, 6], "mindset": 4, "front": 4, "produc": [4, 6, 7], "novel": 4, "ident": 4, "isn": 4, "bug": 4, "random": [4, 6, 7], "testabl": 4, "exceedingli": 4, "complianc": [4, 6, 7], "guarante": [4, 7], "trust": [4, 6, 7], "primari": [4, 6], "nucleu": 4, "2020": 4, "summari": [4, 6, 7], "alter": 4, "rigid": 4, "wildli": 4, "incoher": 4, "inadequ": [4, 6], "temp": 4, "df_result": 4, "ntemperatur": 4, "40": 4, "temp_respons": 4, "iterrow": 4, "10000": [4, 5, 7], "appl": [4, 5, 7], "txt": [4, 5, 7], "sec_fil": [4, 7], "nsecur": 4, "AND": [4, 7], "exchang": [4, 5, 6, 7], "commiss": [4, 5, 6, 7], "nwashington": 4, "20549": 4, "nform": 4, "annual": [4, 6], "pursuant": 4, "TO": 4, "13": [4, 6], "OR": 4, "OF": 4, "THE": 4, "1934": 4, "nfor": 4, "fiscal": [4, 5], "septemb": [4, 5], "28": [4, 5], "nor": 4, "period": [4, 5, 6], "ncommiss": 4, "001": 4, "36743": 4, "ng66145g66i43": 4, "jpg": 4, "nappl": 4, "exact": [4, 6], "registr": 4, "specifi": [4, 5, 7], "charter": 4, "ncalifornia": 4, "t94": 4, "2404110": 4, "jurisdict": 4, "nof": 4, "incorpor": [4, 6], "employ": 4, "identif": [4, 6], "park": 4, "ncupertino": 4, "california": [4, 6, 7], "n95014": 4, "princip": 4, "offic": [4, 6], "408": 4, "996": 4, "1010": 4, "telephon": 4, "area": [4, 6, 7], "regist": 4, "ntitl": 4, "ttrade": 4, "symbol": 4, "tname": 4, "ncommon": 4, "stock": [4, 7], "00001": 4, "naapl": 4, "tthe": 4, "nasdaq": [4, 7], "llc": [4, 7], "n0": 4, "000": [4, 7], "note": [4, 5, 7], "2025": 4, "875": 4, "625": 4, "2026": 4, "2027": 4, "375": 4, "2029": 4, "050": 4, "2031": [4, 6], "600": 4, "2042": 4, "nindic": 4, "season": 4, "issuer": 4, "405": 4, "nye": 4, "preced": 4, "shorter": 4, "past": [4, 6], "90": 4, "submit": 4, "electron": 4, "232": 4, "acceler": [4, 6], "filer": 4, "growth": 4, "12b": [4, 6], "nlarg": 4, "tacceler": 4, "nnon": 4, "tsmaller": 4, "nemerg": 4, "nif": 4, "elect": 4, "revis": [4, 6], "attest": 4, "404": 4, "sarban": 4, "oxlei": 4, "7262": 4, "firm": [4, 6], "prepar": [4, 5, 6], "correct": [4, 7], "restat": 4, "recoveri": 4, "incent": 4, "compens": 4, "240": 4, "10d": 4, "shell": 4, "aggreg": [4, 6], "vote": 4, "held": [4, 7], "affili": [4, 7], "march": [4, 7], "29": [4, 7], "last": [4, 5, 7], "second": [4, 5], "quarter": 4, "628": [4, 7], "553": [4, 7], "sole": [4, 6], "disclosur": [4, 6], "director": [4, 6], "date": [4, 7], "exclud": 4, "n15": 4, "115": [4, 7], "823": [4, 7], "outstand": [4, 7], "octob": [4, 7], "18": [4, 6, 7], "ndocument": 4, "BY": 4, "nportion": 4, "proxi": 4, "meet": [4, 6, 7], "sharehold": 4, "iii": 4, "120": 4, "ntabl": 4, "npage": 4, "npart": 4, "nitem": 4, "nbusi": 4, "1a": 4, "nrisk": 4, "1b": 4, "nunresolv": 4, "staff": 4, "comment": 4, "n17": 4, "1c": 4, "ncybersecur": 4, "nproperti": 4, "n18": 4, "nlegal": 4, "proceed": [4, 6], "nmine": 4, "ii": [4, 7], "nmarket": 4, "stockhold": 4, "purchas": 4, "n19": 4, "reserv": 4, "n20": 4, "nmanag": 4, "discuss": [4, 6], "n21": 4, "7a": 4, "nquantit": 4, "n27": 4, "nfinanci": 4, "supplementari": 4, "n28": 4, "nchang": 4, "disagr": 4, "n51": 4, "9a": 4, "ncontrol": 4, "procedur": [4, 6], "9b": 4, "nother": 4, "n52": 4, "9c": 4, "ndisclosur": 4, "foreign": 4, "ndirector": 4, "corpor": [4, 6], "nexecut": 4, "ownership": 4, "certain": [4, 5, 6, 7], "benefici": 4, "owner": 4, "ncertain": 4, "transact": [4, 6], "nprincip": 4, "fee": 4, "iv": 4, "nexhibit": 4, "n53": 4, "n56": 4, "nthi": 4, "forward": [4, 6], "litig": 4, "reform": 4, "1995": 4, "uncertainti": 4, "event": 4, "macroeconom": 4, "anticip": [4, 6], "caus": [4, 6], "oblig": [4, 5], "nunless": 4, "herein": 4, "calendar": 4, "wholli": 4, "subsidiari": 4, "unless": 4, "ncompani": 4, "manufactur": 4, "smartphon": 4, "tablet": 4, "wearabl": [4, 7], "accessori": 4, "sell": 4, "varieti": 4, "52": 4, "53": 4, "week": 4, "saturdai": 4, "nproduct": 4, "niphon": 4, "io": [4, 6, 7], "iphon": [4, 7], "pro": [4, 5, 6], "se": 4, "nmac": 4, "maco": 4, "mac": [4, 7], "laptop": 4, "macbook": 4, "air": 4, "desktop": 4, "imac": 4, "studio": 4, "nipad": 4, "multipurpos": 4, "ipado": 4, "ipad": [4, 7], "nwearabl": 4, "home": [4, 6], "smartwatch": 4, "wireless": 4, "headphon": 4, "spatial": 4, "watcho": 4, "watch": 4, "ultra": 4, "airpod": 4, "beat": 4, "visiono": 4, "nhome": 4, "tv": 4, "stream": [4, 7], "tvo": 4, "homepod": 4, "fidel": [4, 7], "naccessori": 4, "brand": 4, "third": 4, "parti": 4, "nservic": 4, "nadvertis": 4, "advertis": 4, "licens": 4, "napplecar": 4, "portfolio": [4, 7], "applecar": 4, "prioriti": 4, "network": [4, 7], "repair": 4, "addit": [4, 5, 6, 7], "coverag": [4, 6], "accident": 4, "damag": [4, 6], "theft": [4, 6], "loss": [4, 6], "ncloud": 4, "ndigit": 4, "app": 4, "discov": [4, 6], "download": 4, "music": 4, "podcast": 4, "subscript": 4, "arcad": 4, "sm": 4, "listen": 4, "radio": 4, "station": 4, "magazin": 4, "exclus": 4, "sport": 4, "npayment": 4, "payment": 4, "credit": 4, "pai": 4, "cashless": 4, "nsegment": 4, "primarili": [4, 6], "geograph": 4, "basi": 4, "segment": [4, 5, 7], "america": 4, "europ": 4, "china": [4, 6], "japan": 4, "rest": 4, "asia": 4, "pacif": 4, "north": 4, "south": 4, "european": [4, 6], "india": 4, "middl": 4, "east": 4, "africa": 4, "mainland": 4, "kong": 4, "taiwan": 4, "australia": 4, "asian": 4, "although": 4, "partner": [4, 6], "mid": [4, 5], "enterpris": [4, 7], "resel": 4, "retail": 4, "sale": 4, "indirect": 4, "channel": 4, "cellular": 4, "carrier": 4, "net": [4, 7], "38": 4, "62": 4, "ncompetit": 4, "competit": [4, 6], "character": [4, 6], "price": 4, "downward": 4, "pressur": [4, 6], "gross": [4, 6], "margin": [4, 7], "cycl": 4, "industri": [4, 6, 7], "characterist": [4, 6], "competitor": 4, "compet": 4, "imit": 4, "infring": 4, "intellectu": [4, 6], "innov": [4, 5, 6], "marketplac": 4, "nearli": 4, "reput": 4, "expand": [4, 6], "opportun": 4, "substanti": 4, "broader": [4, 6], "illegitim": [4, 6], "collabor": [4, 6], "nsuppli": 4, "nalthough": 4, "essenti": [4, 5, 6, 7], "particip": 4, "shortag": 4, "commod": 4, "fluctuat": 4, "commonli": 4, "capac": 4, "until": [4, 7], "supplier": 4, "matur": 4, "concentr": 4, "enter": 4, "agreement": 4, "suppli": [4, 7], "renew": 4, "nresearch": 4, "nbecaus": 4, "upon": [4, 5, 6], "flow": [4, 5], "acquisit": [4, 6], "nintellectu": 4, "broad": [4, 7], "patent": 4, "copyright": 4, "trademark": 4, "secret": 4, "differenti": 4, "skill": [4, 6], "personnel": 4, "regularli": 4, "aris": [4, 6], "pursu": [4, 6], "thousand": 4, "durat": 4, "adequ": [4, 6], "nin": 4, "holidai": [4, 6], "fill": 4, "inventori": 4, "older": 4, "newer": 4, "distributor": 4, "nhuman": 4, "capit": [4, 5, 7], "strive": 4, "retain": [4, 5, 6], "talent": 4, "member": 4, "164": 4, "equival": 4, "ncompens": 4, "benefit": [4, 6, 7], "equit": 4, "thrive": [4, 7], "succe": 4, "health": 4, "awai": 4, "ngrowth": 4, "career": 4, "leadership": [4, 6], "influenc": [4, 6, 7], "nworkplac": 4, "polici": [4, 6], "equal": 4, "workplac": 4, "ninclus": 4, "sustain": 4, "workforc": 4, "nengag": 4, "among": 4, "gaug": 4, "sentiment": [4, 7], "nhealth": 4, "everywher": 4, "crisi": 4, "visitor": 4, "navail": 4, "quarterli": 4, "q": 4, "amend": 4, "sec": [4, 5, 7], "Such": [4, 6], "charg": 4, "investor": [4, 7], "aspx": 4, "websit": [4, 6], "environment": [4, 6], "referenc": 4, "inact": 4, "textual": 4, "unknown": [4, 6], "advers": 4, "trend": [4, 7], "conjunct": 4, "consolid": 4, "accompani": [4, 6], "nmacroeconom": 4, "econom": 4, "chain": [4, 5], "facil": 4, "assembli": 4, "site": [4, 6], "nadvers": 4, "slow": 4, "recess": 4, "unemploy": 4, "inflat": 4, "tighter": 4, "currenc": 4, "spend": 4, "monetari": 4, "asset": [4, 6], "contract": 4, "logist": 4, "instabl": [4, 6], "inabl": 4, "financ": 4, "insolv": 4, "failur": [4, 6], "deriv": 4, "counterparti": 4, "debt": 4, "liquid": [4, 5], "fair": [4, 6], "instrument": 4, "polit": 4, "disput": 4, "geopolit": 4, "tension": [4, 6], "terror": 4, "accid": 4, "interrupt": 4, "npolit": 4, "whole": 4, "outsourc": 4, "korea": 4, "vietnam": 4, "restrict": [4, 6, 7], "tariff": 4, "export": 4, "portion": 4, "revenu": [4, 5, 7], "raw": [4, 7], "restructur": 4, "ceas": 4, "disrupt": [4, 5], "escal": [4, 5, 6], "nmani": 4, "prone": 4, "earthquak": 4, "climat": 4, "weather": 4, "plant": 4, "terrorist": [4, 6], "attack": [4, 6], "hostil": 4, "ransomwar": 4, "cybersecur": [4, 6], "labor": 4, "beyond": 4, "nsuch": 4, "imposs": 4, "slowdown": 4, "outag": 4, "neg": [4, 7], "pandem": 4, "covid": 4, "19": 4, "economi": 4, "imposit": 4, "stringent": [4, 6], "travel": 4, "freight": 4, "movement": 4, "ramp": 4, "nfollow": 4, "expenditur": 4, "resum": 4, "exacerb": 4, "insur": 4, "insuffici": 4, "nglobal": 4, "unabl": 4, "assur": [4, 6], "minor": 4, "naddition": 4, "intensifi": 4, "seamlessli": [4, 5], "nto": 4, "stimul": 4, "ndue": 4, "upgrad": 4, "quantiti": 4, "defect": 4, "defici": 4, "supersed": 4, "nsubstanti": 4, "transport": 4, "provis": 4, "reimburs": 4, "warranti": 4, "unanticip": 4, "liabil": 4, "final": [4, 5, 6, 7], "finish": 4, "destin": 4, "made": [4, 5, 7], "prepay": 4, "termin": 4, "recover": 4, "exposur": [4, 6], "nfutur": 4, "semiconductor": 4, "suffer": 4, "poor": 4, "constrain": [4, 5, 7], "shipment": 4, "unexpectedli": 4, "interfer": 4, "unsaf": [4, 6], "expos": 4, "detect": [4, 6, 7], "fix": [4, 5, 6], "widespread": [4, 6], "vulner": [4, 6], "compromis": [4, 6], "claim": [4, 6], "modif": [4, 6], "intang": 4, "fine": [4, 6, 7], "lost": [4, 5], "cancel": 4, "obsolet": 4, "exce": 4, "realiz": 4, "accru": 4, "excess": 4, "impair": 4, "whenev": 4, "circumst": 4, "amount": [4, 5, 6, 7], "carri": [4, 7], "incur": 4, "unpredict": [4, 7], "pace": [4, 6], "obsolesc": 4, "forecast": [4, 6], "incorrectli": [4, 7], "extens": [4, 5, 7], "issuanc": 4, "unknowingli": 4, "notifi": 4, "preclud": 4, "bui": 4, "percept": 4, "android": 4, "playstat": 4, "nintendo": 4, "xbox": 4, "inclin": 4, "devot": 4, "compel": [4, 7], "dissatisfi": 4, "vast": [4, 6], "storefront": 4, "mechan": [4, 6, 7], "safari": 4, "union": [4, 6], "eu": [4, 6], "dma": 4, "reduct": 4, "narrow": [4, 6], "scope": [4, 5, 6], "elimin": 4, "nfailur": 4, "appeal": 4, "subscrib": 4, "nsome": 4, "manner": [4, 5, 6, 7], "nurtur": 4, "nmuch": 4, "chief": 4, "silicon": 4, "vallei": 4, "constantli": 4, "driver": 4, "recruit": 4, "subsidi": 4, "staf": 4, "contractor": 4, "placement": 4, "increment": 4, "weaken": 4, "telecommun": 4, "war": 4, "virus": 4, "ins": 4, "incid": [4, 6], "redund": 4, "ineffect": 4, "thing": [4, 7], "interf": 4, "imped": 4, "ship": 4, "nloss": 4, "unauthor": [4, 6], "confidenti": 4, "encrypt": 4, "But": [4, 6, 7], "malici": [4, 6], "behalf": 4, "normal": [4, 6, 7], "investig": 4, "penalti": 4, "frequenc": [4, 5], "actor": [4, 6], "circumv": [4, 5, 6], "obfusc": 4, "forens": 4, "hinder": [4, 7], "recov": 4, "perpetr": 4, "profil": 4, "authent": 4, "hack": [4, 6], "malfeas": 4, "faulti": 4, "password": 4, "irregular": 4, "fraudul": 4, "induc": 4, "disclos": [4, 5, 7], "usernam": 4, "turn": 4, "multifactor": 4, "unusu": 4, "freez": 4, "suspici": 4, "nwhile": 4, "ninvest": 4, "ongo": 4, "contempl": 4, "endeavor": 4, "distract": 4, "tangibl": 4, "approv": 4, "oner": 4, "ventur": 4, "riski": 4, "leas": 4, "unfavor": 4, "arisen": 4, "ordinari": 4, "resolv": [4, 6], "sometim": [4, 7], "indemnif": 4, "indemnifi": 4, "alleg": 4, "magnitud": 4, "assert": 4, "royalti": 4, "vigor": 4, "defend": 4, "court": 4, "internation": 4, "plaintiff": 4, "injunct": 4, "relief": 4, "nregardless": 4, "merit": 4, "recognit": 4, "settl": 4, "uncertain": 4, "disgorg": 4, "remedi": [4, 6], "worldwid": 4, "antitrust": 4, "bill": 4, "commerc": 4, "mobil": [4, 7], "televis": 4, "film": 4, "anticorrupt": 4, "cash": [4, 5], "repatri": 4, "anti": 4, "launder": 4, "tax": 4, "wast": 4, "recycl": 4, "ncomplianc": 4, "impos": [4, 6, 7], "agent": 4, "nregulatori": 4, "ban": 4, "nexpect": 4, "increasingli": [4, 6, 7], "greenhous": 4, "ga": 4, "emiss": 4, "civil": 4, "disagre": 4, "perceiv": 4, "feder": 4, "scrutini": [4, 6], "nfrom": 4, "engag": [4, 6, 7], "noncompli": 4, "individu": [4, 5, 6], "lawsuit": 4, "monopol": 4, "nfurther": 4, "earn": 4, "search": 4, "nthere": 4, "retent": 4, "transfer": 4, "pass": [4, 6, 7], "pend": 4, "inquiri": [4, 6], "government": 4, "entiti": [4, 7], "biometr": 4, "notif": 4, "permit": [4, 7], "healthcar": 4, "liabl": 4, "investigatori": 4, "cardhold": 4, "compress": [4, 5], "acquir": 4, "extent": 4, "unexpect": [4, 7], "dollar": 4, "denomin": 4, "offset": 4, "strengthen": [4, 6], "nconvers": 4, "therebi": [4, 5], "thu": 4, "hedg": 4, "deterior": 4, "sovereign": 4, "heighten": [4, 6], "worsen": 4, "A": [4, 5, 6, 7], "collater": 4, "bank": 4, "unsecur": 4, "subassembli": 4, "assembl": 4, "legisl": 4, "ireland": [4, 6], "singapor": 4, "organis": 4, "statutori": 4, "valuat": 4, "defer": 4, "bodi": [4, 6], "adequaci": 4, "ow": 4, "ngener": 4, "volum": [4, 5, 6], "repurchas": 4, "dividend": 4, "consumm": 4, "declar": 4, "board": [4, 6], "unresolv": 4, "nnone": 4, "threat": [4, 6], "postur": 4, "25": 4, "2016": 4, "coordin": [4, 6], "track": [4, 6], "committe": 4, "oversight": [4, 6], "counsel": 4, "chair": 4, "headquart": 4, "cupertino": [4, 7], "center": [4, 6, 7], "formal": [4, 7], "conclud": 4, "uninstal": 4, "web": 4, "browser": 4, "june": 4, "contractu": 4, "desist": 4, "stai": 4, "grant": 4, "ndepart": 4, "justic": 4, "depart": [4, 6], "doj": 4, "district": 4, "attornei": 4, "jersei": 4, "redress": [4, 6], "anticompetit": 4, "nonmonetari": 4, "defens": [4, 6], "nepic": 4, "epic": 4, "northern": 4, "unfair": [4, 6], "enjoin": 4, "extern": [4, 6], "link": 4, "januari": 4, "motion": 4, "oppos": 4, "30": 4, "vacat": 4, "fourth": 4, "mine": 4, "nnot": 4, "aapl": 4, "nholder": 4, "na": 4, "301": 4, "npurchas": 4, "nshare": 4, "nperiod": 4, "ttotal": 4, "taverag": 4, "npaid": 4, "nannounc": 4, "napproxim": 4, "That": [4, 6, 7], "Be": 4, "nunder": 4, "njune": 4, "august": [4, 6], "nopen": 4, "negoti": 4, "t35": 4, "697": 4, "t224": 4, "naugust": 4, "31": 4, "t42": 4, "910": 4, "t221": 4, "39": 4, "nseptemb": 4, "t33": 4, "653": 4, "t222": 4, "86": 4, "ntotal": [4, 6], "t112": 4, "260": 4, "t89": 4, "074": 4, "110": 4, "billion": 4, "previou": [4, 5, 7], "10b5": 4, "graph": 4, "cumul": 4, "reinvest": 4, "dow": 4, "supersector": 4, "27": 4, "2019": 4, "n2218": 4, "tseptemb": 4, "t100": 4, "t207": 4, "t273": 4, "t281": 4, "t322": 4, "t430": 4, "t113": 4, "t156": 4, "t131": 4, "t155": 4, "t210": 4, "ndow": 4, "t146": 4, "t216": 4, "t215": 4, "nfirst": 4, "nsecond": 4, "nthird": 4, "sequoia": 4, "nfourth": 4, "plu": 4, "nfiscal": 4, "six": 4, "realign": 4, "span": 4, "wherea": 4, "indirectli": 4, "n2024": 4, "tchang": 4, "t2023": 4, "t2022": 4, "namerica": 4, "t167": 4, "045": 4, "t3": 4, "t162": 4, "560": 4, "t169": 4, "658": 4, "neurop": 4, "t101": 4, "328": 4, "t7": 4, "294": 4, "t95": 4, "118": 4, "ngreater": 4, "t66": 4, "952": 4, "t72": 4, "559": 4, "t74": 4, "njapan": 4, "t25": 4, "052": 4, "t24": 4, "257": 4, "977": 4, "nrest": 4, "t30": 4, "t4": 4, "t29": 4, "615": 4, "t1": 4, "t391": 4, "035": 4, "t2": 4, "t383": 4, "285": 4, "t394": 4, "weak": [4, 6], "renminbi": 4, "yen": [4, 7], "t201": 4, "183": 4, "t200": 4, "583": 4, "t205": 4, "489": 4, "984": 4, "357": 4, "t40": 4, "177": 4, "t26": 4, "694": 4, "t28": 4, "300": [4, 5], "292": 4, "t37": 4, "005": 4, "t39": 4, "845": [4, 6], "t41": 4, "241": 4, "n96": 4, "169": 4, "t13": 4, "t85": 4, "t9": 4, "t78": 4, "129": [4, 6], "amort": 4, "bundl": 4, "flat": 4, "ngross": 4, "t109": 4, "633": 4, "t108": 4, "803": 4, "t114": 4, "728": 4, "t71": 4, "t60": 4, "345": 4, "t56": 4, "054": 4, "t180": 4, "683": 4, "148": 4, "t170": 4, "782": 4, "t36": 4, "t73": 4, "t70": 4, "t46": 4, "t44": 4, "t43": 4, "noper": 4, "t31": 4, "370": 4, "t5": 4, "915": 4, "t14": 4, "251": 4, "npercentag": 4, "t8": 4, "nsell": 4, "administr": 4, "097": 4, "932": 4, "094": 4, "t6": 4, "t57": 4, "467": 4, "t54": 4, "847": 4, "t51": 4, "t15": 4, "headcount": 4, "nprovis": 4, "749": 4, "t16": 4, "741": 4, "t19": 4, "neffect": 4, "nstatutori": 4, "t21": 4, "aid": [4, 6], "nliquid": 4, "unrestrict": 4, "140": 4, "ndebt": 4, "97": 4, "payabl": 4, "promissori": 4, "nleas": 4, "space": [4, 6], "nmanufactur": 4, "noncancel": 4, "ndeem": 4, "tcja": 4, "paid": 4, "nstate": 4, "fund": 4, "escrow": 4, "ncapit": 4, "95": 4, "nrecent": 4, "pronounc": 4, "nincom": 4, "fasb": 4, "asu": 4, "09": [4, 5, 6], "740": 4, "reconcili": 4, "reconcil": [4, 7], "disaggreg": 4, "prospect": 4, "novemb": [4, 6], "07": [4, 5, 6, 7], "280": 4, "maker": 4, "codm": 4, "alloc": [4, 6], "retrospect": 4, "ncritic": 4, "conform": [4, 7], "gaap": 4, "nuncertain": 4, "domest": 4, "taxat": 4, "resolut": 4, "conting": 4, "26": 4, "ninterest": 4, "forth": 4, "hypothet": 4, "nsensit": 4, "nhypothet": 4, "nrate": 4, "npotenti": 4, "n100": 4, "tenor": 4, "ndeclin": 4, "755": 4, "089": 4, "nterm": 4, "nincreas": 4, "t139": 4, "t194": 4, "nforeign": 4, "express": [4, 7], "var": 4, "mont": 4, "carlo": 4, "interv": 4, "538": 4, "669": 4, "underli": [4, 7], "nindex": 4, "tpage": 4, "nconsolid": 4, "n29": 4, "n30": 4, "sheet": 4, "n31": 4, "n32": 4, "n33": 4, "nnote": 4, "n34": 4, "nreport": 4, "n48": 4, "nall": 4, "omit": [4, 7], "submiss": 4, "nyear": 4, "n2023": 4, "n2022": 4, "nnet": 4, "t294": 4, "866": 4, "t298": 4, "085": 4, "t316": 4, "199": 4, "t96": 4, "ncost": 4, "t185": 4, "233": 4, "t189": 4, "282": 4, "471": 4, "119": 4, "855": 4, "t22": 4, "075": 4, "352": 4, "t214": 4, "137": 4, "t223": 4, "546": 4, "t123": 4, "216": 4, "t119": 4, "437": 4, "t269": 4, "565": 4, "334": 4, "485": 4, "736": 4, "103": 4, "t93": 4, "995": 4, "t99": 4, "nearn": 4, "nbasic": 4, "ndilut": 4, "08": [4, 7], "343": 4, "783": 4, "744": 4, "215": 4, "963": 4, "095": 4, "812": 4, "547": 4, "325": 4, "819": 4, "nsee": 4, "translat": 4, "t395": 4, "765": 4, "511": 4, "unreal": 4, "832": 4, "t323": 4, "212": 4, "nadjust": 4, "337": 4, "717": 4, "394": 4, "138": 4, "850": 4, "563": 4, "104": 4, "t204": 4, "t253": 4, "816": 4, "899": 4, "272": 4, "t98": 4, "016": 4, "652": 4, "t88": 4, "531": 4, "nasset": 4, "ncurrent": 4, "ncash": 4, "943": 4, "965": 4, "228": 4, "590": 4, "naccount": 4, "410": 4, "508": 4, "nvendor": 4, "t32": 4, "833": 4, "477": 4, "ninventori": 4, "286": 4, "331": 4, "287": 4, "695": 4, "t152": 4, "987": 4, "t143": 4, "566": 4, "t91": 4, "479": 4, "544": 4, "t45": 4, "680": 4, "715": 4, "834": 4, "t64": 4, "758": 4, "t211": 4, "993": 4, "t209": 4, "017": 4, "t364": 4, "980": 4, "t352": 4, "nliabil": 4, "t68": 4, "960": 4, "t62": 4, "611": 4, "304": 4, "t58": 4, "829": 4, "ndefer": 4, "249": 4, "061": 4, "ncommerci": 4, "967": 4, "985": 4, "t10": 4, "912": 4, "822": 4, "t176": 4, "392": 4, "t145": 4, "308": 4, "750": 4, "888": 4, "t49": 4, "848": 4, "638": 4, "t308": 4, "030": 4, "t290": 4, "ncommit": 4, "nsharehold": 4, "400": 4, "116": 4, "786": 4, "550": 4, "n83": 4, "276": 4, "naccumul": 4, "deficit": 4, "154": 4, "214": 4, "172": 4, "452": 4, "950": 4, "146": 4, "t50": 4, "672": 4, "t63": 4, "090": 4, "nbegin": 4, "849": 4, "365": 4, "423": 4, "346": 4, "175": 4, "withheld": 4, "settlement": 4, "521": 4, "971": 4, "t12": 4, "034": 4, "t11": 4, "nend": 4, "t83": 4, "nretain": 4, "068": 4, "562": 4, "ndividend": 4, "218": 4, "793": 4, "612": 4, "099": 4, "454": 4, "846": 4, "77": 4, "046": 4, "186": 4, "109": 4, "t163": 4, "rsu": 4, "t0": 4, "98": 4, "94": 4, "32": 4, "737": 4, "929": 4, "ndepreci": 4, "445": 4, "519": 4, "688": 4, "038": 4, "266": 4, "227": 4, "006": 4, "788": 4, "356": 4, "271": 4, "520": 4, "618": 4, "484": 4, "731": 4, "684": 4, "499": 4, "020": 4, "889": 4, "448": 4, "552": 4, "031": 4, "t118": 4, "254": 4, "t110": 4, "543": 4, "t122": 4, "151": 4, "48": 4, "656": 4, "513": 4, "76": 4, "923": 4, "nproce": 4, "211": 4, "686": 4, "917": 4, "135": 4, "828": 4, "446": 4, "447": 4, "959": 4, "708": 4, "086": 4, "935": 4, "705": 4, "354": 4, "nfinanc": 4, "441": 4, "431": 4, "223": 4, "234": [4, 6], "025": 4, "841": 4, "nrepurchas": 4, "949": 4, "89": 4, "402": 4, "465": 4, "nrepay": 4, "958": 4, "repay": 4, "978": 4, "955": 4, "361": 4, "581": 4, "160": 4, "121": 4, "983": 4, "488": 4, "794": 4, "760": 4, "nsupplement": 4, "102": 4, "t18": 4, "679": 4, "573": 4, "33": 4, "nbasi": 4, "prior": [4, 6], "reclassifi": 4, "nrevenu": 4, "remit": [4, 6], "straight": 4, "vest": 4, "sold": 4, "nderiv": 4, "nonleas": 4, "34": 4, "entitl": 4, "commenc": 4, "deliveri": 4, "stand": 4, "ssp": 4, "icloud": 4, "siri": 4, "discount": 4, "undeliv": 4, "unbil": 4, "n26": 4, "n37": 4, "proport": 4, "moder": [4, 6], "64": 4, "dilut": 4, "nnumer": 4, "ndenomin": 4, "nweight": 4, "312": 4, "316": 4, "856": 4, "antidilut": 4, "tunreal": 4, "ngain": 4, "tfair": 4, "nvalu": 4, "tcash": 4, "nequival": 4, "tcurrent": 4, "tnon": 4, "t27": 4, "nlevel": 4, "nmonei": 4, "t778": 4, "nmutual": 4, "n515": 4, "t105": 4, "t617": 4, "nsubtot": 4, "293": 4, "395": 4, "nu": 4, "treasuri": 4, "516": 4, "t212": 4, "087": 4, "380": 4, "agenc": [4, 6], "159": 4, "t703": 4, "t17": 4, "568": 4, "158": 4, "810": 4, "ncertif": 4, "deposit": 4, "t873": 4, "t387": 4, "t478": 4, "066": 4, "ncorpor": 4, "t65": 4, "622": 4, "t270": 4, "953": 4, "939": 4, "027": 4, "t47": 4, "886": 4, "nmunicip": 4, "t412": 4, "t405": 4, "t190": 4, "nmortgag": 4, "595": 4, "t175": 4, "403": 4, "t23": 4, "367": 4, "278": 4, "t132": 4, "t583": 4, "635": 4, "t128": 4, "056": 4, "966": 4, "t34": 4, "t160": 4, "t688": 4, "650": 4, "36": 4, "359": [4, 6], "t481": 4, "n442": 4, "t428": 4, "t923": 4, "t909": 4, "406": 4, "114": 4, "468": 4, "136": 4, "t271": 4, "533": 4, "048": 4, "491": 4, "332": 4, "t320": 4, "t608": 4, "t76": 4, "840": 4, "956": 4, "890": 4, "t20": 4, "627": 4, "243": 4, "t628": 4, "t602": 4, "t192": 4, "t410": 4, "735": 4, "636": 4, "t344": 4, "t144": 4, "470": 4, "657": 4, "831": 4, "125": 4, "162": 4, "t173": 4, "752": 4, "corrobor": 4, "mortgag": 4, "classifi": [4, 6], "37": 4, "cross": [4, 6], "swap": 4, "remeasur": 4, "notion": 4, "069": 4, "730": 4, "575": 4, "493": 4, "t104": 4, "777": 4, "nhedg": 4, "433": 4, "505": 4, "247": 4, "ntrade": 4, "41": 4, "44": 4, "depreci": 4, "nland": 4, "690": 4, "nmachineri": 4, "t80": 4, "205": 4, "314": 4, "nleasehold": 4, "839": 4, "599": 4, "73": 4, "70": 4, "884": 4, "852": 4, "t55": 4, "906": 4, "601": 4, "703": 4, "010": 4, "457": 4, "634": 4, "391": 4, "neuropean": 4, "opinion": [4, 6], "1991": 4, "2007": 4, "irish": 4, "branch": 4, "2003": 4, "2014": 4, "2015": 4, "minist": 4, "juli": [4, 6], "annul": 4, "ecj": 4, "hear": 4, "asid": 4, "confirm": 4, "unrecogn": 4, "nfeder": 4, "571": 4, "080": 4, "644": 4, "265": 4, "801": 4, "726": 4, "570": 4, "298": 4, "49": 4, "t84": 4, "428": 4, "603": 4, "483": 4, "t347": 4, "t669": 4, "076": 4, "830": 4, "419": 4, "072": 4, "pretax": 4, "72": 4, "71": 4, "ncomput": 4, "885": 4, "012": 4, "124": 4, "518": 4, "nimpact": 4, "246": 4, "311": 4, "366": 4, "397": 4, "nexcess": 4, "893": 4, "871": 4, "192": 4, "739": 4, "ntax": 4, "carryforward": 4, "302": 4, "naccru": 4, "413": 4, "421": 4, "nunreal": 4, "173": 4, "168": 4, "873": 4, "743": 4, "nless": 4, "374": 4, "007": 4, "369": 4, "551": 4, "998": 4, "nright": 4, "179": 4, "nminimum": 4, "674": 4, "940": 4, "t511": 4, "t455": 4, "t490": 4, "805": 4, "202": 4, "indefinit": 4, "temporari": 4, "727": 4, "044": 4, "284": 4, "ndecreas": 4, "386": 4, "463": 4, "982": 4, "542": 4, "936": 4, "070": 4, "expir": 4, "statut": 4, "229": 4, "494": 4, "closur": 4, "intercompani": 4, "exceed": [4, 6], "multiyear": 4, "exercis": 4, "noncash": 4, "rou": 4, "tfinanci": 4, "t2024": 4, "tother": 4, "661": 4, "tproperti": 4, "015": 4, "303": 4, "676": 4, "t165": 4, "t752": 4, "t859": 4, "430": 4, "842": [4, 6], "tfinanc": 4, "n2025": 4, "820": 4, "t171": 4, "991": 4, "n2026": 4, "914": 4, "n2027": 4, "t59": 4, "733": 4, "n2028": 4, "360": 4, "t38": 4, "398": 4, "n2029": 4, "187": 4, "nthereaft": 4, "t837": 4, "undiscount": 4, "790": 4, "imput": 4, "376": 4, "534": 4, "t896": 4, "borrow": 4, "proce": 4, "nine": [4, 6], "nmatur": 4, "333": 4, "264": 4, "948": 4, "645": 4, "309": 4, "arrear": 4, "namount": 4, "n2013": 4, "nfix": 4, "2062": 4, "t97": 4, "341": 4, "03": 4, "65": 4, "t106": 4, "572": 4, "n97": 4, "nunamort": 4, "premium": 4, "321": 4, "358": 4, "113": 4, "662": 4, "930": 4, "342": 4, "800": 4, "180": 4, "88": 4, "ndure": 4, "425": 4, "426": 4, "372": 4, "589": 4, "055": 4, "appreci": 4, "four": 4, "holder": 4, "n2014": 4, "bonu": 4, "nrestrict": 4, "nnumber": 4, "nrsu": 4, "ngrant": 4, "naggreg": 4, "nfair": 4, "nbalanc": 4, "t240": 4, "427": 4, "t75": 4, "t150": 4, "861": 4, "501": 4, "768": 4, "87": 4, "101": 4, "878": 4, "144": 4, "t127": 4, "t135": 4, "91": 4, "456": 4, "78": 4, "59": [4, 6], "t140": 4, "326": 4, "t158": 4, "204": 4, "350": 4, "002": [4, 5], "nuncondit": 4, "uncondit": 4, "206": 4, "440": 4, "156": 4, "t633": 4, "t670": 4, "226": 4, "45": 4, "nconting": 4, "accrual": 4, "nconcentr": 4, "attribut": [4, 6, 7], "46": 4, "t67": 4, "098": 4, "082": 4, "062": 4, "569": 4, "895": 4, "458": 4, "207": 4, "nonrecur": 4, "t142": 4, "196": 4, "t138": 4, "t147": 4, "859": 4, "nchina": 4, "n66": 4, "t181": 4, "887": 4, "t172": 4, "269": 4, "nlong": 4, "664": 4, "797": 4, "778": 4, "219": 4, "47": 4, "nopinion": 4, "nwe": 4, "fairli": 4, "pcaob": 4, "sponsor": 4, "treadwai": 4, "2013": 4, "unqualifi": 4, "thereon": 4, "nthese": 4, "misstat": 4, "fraud": [4, 6], "ndescript": 4, "naudit": 4, "nhow": 4, "nmatter": 4, "qualifi": 4, "letter": 4, "advisor": 4, "ernst": 4, "llp": 4, "auditor": 4, "2009": 4, "nsan": 4, "jose": 4, "nnovemb": 4, "coso": 4, "nour": 4, "ndefinit": 4, "mainten": 4, "disposit": 4, "receipt": 4, "nevalu": 4, "nbase": 4, "supervis": [4, 6], "13a": 4, "15d": 4, "ninher": 4, "met": 4, "appear": [4, 7], "paragraph": 4, "51": [4, 7], "ninsid": 4, "deirdr": 4, "brien": 4, "vice": 4, "presid": 4, "affirm": 4, "april": 4, "withhold": 4, "remitt": 4, "mr": 4, "copi": [4, 5], "solicit": 4, "00042": 4, "nincorpor": 4, "texhibit": 4, "descript": [4, 7], "tform": 4, "tfile": 4, "nrestat": 4, "namend": 4, "bylaw": 4, "nindentur": 4, "york": [4, 7], "mellon": 4, "truste": 4, "noffic": 4, "certif": 4, "2018": 4, "85": 4, "2043": 4, "05": 4, "2044": 4, "februari": 4, "55": 4, "2045": 4, "900": 4, "700": 4, "60": 4, "250": 4, "2036": 4, "2046": 4, "450": 4, "2047": 4, "2049": 4, "2030": 4, "2050": 4, "2060": 4, "2028": 4, "2041": 4, "2051": 4, "2061": 4, "2032": 4, "2052": 4, "54": 4, "2033": 4, "2053": 4, "ceo": 4, "n12": 4, "nsubsidiari": 4, "n23": 4, "nconsent": 4, "n24": 4, "npower": 4, "signatur": 4, "nrule": 4, "nsection": 4, "1350": 4, "n101": 4, "ninlin": 4, "xbrl": 4, "n104": 4, "inlin": 4, "compensatori": 4, "herewith": 4, "furnish": 4, "herebi": 4, "undertak": 4, "56": 4, "nsignatur": 4, "npursuant": 4, "duli": 4, "undersign": 4, "thereunto": 4, "ndate": 4, "nby": 4, "luca": [4, 7], "maestri": 4, "nluca": 4, "nsenior": 4, "nchief": 4, "nknow": 4, "THESE": 4, "appoint": 4, "cook": 4, "jointli": 4, "her": 4, "substitut": 4, "him": 4, "thereto": 4, "therewith": 4, "ratifi": 4, "done": [4, 7], "virtu": 4, "hereof": 4, "nname": 4, "ttitl": 4, "tdate": 4, "tchief": 4, "tnovemb": 4, "ntimothi": 4, "tsenior": 4, "kondo": 4, "nchri": 4, "wanda": 4, "austin": 4, "nwanda": 4, "gorski": 4, "tdirector": 4, "nalex": 4, "andrea": [4, 6], "jung": 4, "nandrea": 4, "arthur": 4, "levinson": 4, "narthur": 4, "monica": 4, "lozano": 4, "nmonica": 4, "ronald": 4, "sugar": 4, "nronald": 4, "susan": 4, "wagner": 4, "nsusan": 4, "57": 4, "turbo": [4, 5, 7], "outlin": [4, 6], "invdestacksmeticsisdict": 4, "setispect": 4, "20cyan": 4, "evaluationseld": 4, "anvis": 4, "droitent": 4, "discernminerv": 4, "versbobprefvers": 4, "vo\u8be5": 4, "option\u548c": 4, "meio": 4, "\u0432\u0440\u0435\u043ccisco": 4, "dellaischenpoihscap": 4, "geme": 4, "gettim": 4, "unscal": 4, "vocabulari": [4, 7], "closer": 4, "sharpen": 4, "uniform": 4, "raschka": 4, "repetit": [4, 5, 7], "radic": 4, "grappl": 4, "safer": [4, 6], "fascin": 4, "spontan": 4, "aren": 4, "linear": 4, "absent": [4, 6], "coax": 4, "journei": 4, "suddenli": 4, "manifest": 4, "deliber": [4, 6], "contend": 4, "70b": 4, "rethink": 4, "tutor": 4, "children": [4, 6], "verifi": [4, 7], "predefin": [4, 7], "weren": 4, "kind": 4, "usual": 4, "resist": 4, "quantif": 4, "contamin": [4, 6], "massiv": [4, 6], "truli": 4, "unseen": 4, "longitudin": 4, "mostli": [4, 7], "versu": 4, "latter": 4, "tailor": 4, "great": [4, 7], "cognit": 4, "misinform": [4, 6], "citat": 4, "tempor": 4, "disclaim": 4, "referr": 4, "incorrect": [4, 6], "demograph": [4, 6], "stereotyp": [4, 6], "societ": [4, 6], "pii": 4, "anonym": 4, "leakag": [4, 6], "carryov": 4, "multi": [4, 6, 7], "fallaci": 4, "causal": 4, "think": [4, 6], "idiom": 4, "sarcasm": 4, "terminologi": 4, "lingual": 4, "misunderstand": 4, "syntax": 4, "scan": 4, "compat": [4, 7], "scalabl": [4, 5, 6], "overconfid": 4, "clariti": [4, 5, 7], "audienc": 4, "densiti": 4, "satisfact": [4, 7], "misus": [4, 6], "moral": 4, "co2": 4, "energi": 4, "consumpt": 4, "server": [4, 7], "cach": 4, "imag": 4, "audio": 4, "etc": [4, 7], "truth": [4, 6, 7], "layer": [4, 5, 7], "palm": 4, "easi": [4, 5], "synthet": [4, 6, 7], "augment": 4, "timeout": 4, "variat": 4, "inter": 4, "rater": 4, "ti": 4, "tier": [4, 6], "holist": 4, "fast": [4, 6, 7], "experiment": [4, 7], "vi": 4, "categor": [4, 7], "intrins": 4, "extrins": 4, "sequenc": [4, 7], "perplex": 4, "downstream": [4, 7], "synthesi": 4, "discret": 4, "prefix": [4, 6], "roug": 4, "bleu": 4, "bilingu": 4, "understudi": 4, "overlap": [4, 5], "favor": [4, 7], "breviti": 4, "insensit": 4, "semant": [4, 5], "orient": 4, "gist": 4, "meteor": 4, "synonym": 4, "stem": [4, 7], "paraphras": 4, "alongsid": [4, 6], "computation": [4, 5], "cider": 4, "consensu": 4, "tf": 4, "idf": 4, "caption": 4, "reliant": 4, "corpu": 4, "ter": 4, "edit": [4, 6], "hypothesi": 4, "penal": 4, "bertscor": 4, "contextu": 4, "embed": [4, 5], "bert": 4, "spice": 4, "proposit": 4, "scene": 4, "pure": 4, "analyst": [4, 5], "rouge_1": 4, "rouge_2": 4, "ideal": [4, 7], "cheaper": 4, "setup": [4, 7], "evaluate_summari": 4, "unigram": 4, "bigram": 4, "absl": 4, "py": [4, 6], "rouge_scor": 4, "generated_summari": 4, "reference_summari": 4, "google_bleu": 4, "bleu_scor": 4, "rouge1": 4, "rouge2": 4, "arbitrari": 4, "chosen": 4, "sentence1": 4, "cat": 4, "sat": 4, "mat": 4, "sentence2": 4, "ate": 4, "3333333333333333": 4, "7272727272727272": 4, "4444444444444445": 4, "generate_summari": 4, "summir": 4, "liner": 4, "excerpt": 4, "evaluate_summary_model": 4, "model_benchmark": 4, "models_test": 4, "benchmark_summari": 4, "model_summari": 4, "evaluation_result": 4, "analyz": [4, 5, 6, 7], "statu": 4, "concis": 4, "element": [4, 6, 7], "verbos": 4, "peripher": 4, "quit": [4, 7], "miss": 4, "convei": [4, 5], "breadth": 4, "Of": 4, "vibe": 4, "visualize_prompt_comparison": 4, "matplotlib": 4, "radar": 4, "radar_plot": 4, "tmp": 4, "ipykernel_1652501": 4, "940173201": 4, "userwarn": 4, "figurecanvasagg": 4, "largest": 4, "deviat": [4, 7], "granular": [4, 5], "tune": [4, 6, 7], "likert": 4, "pairwis": 4, "ensembl": 4, "repeatedli": 4, "fluenci": 4, "refin": 4, "narr": 4, "notabl": [4, 7], "henc": 4, "integ": 4, "rubric": 4, "hollist": 4, "judgeevalu": 4, "grammar": [4, 7], "evaluate_with_llm": 4, "criterion": 4, "judge_model": 4, "candidate_summari": 4, "grammat": 4, "y": [4, 6, 7], "z": 4, "w": [4, 5], "benchmark_model": 4, "test_model": 4, "input_text": [4, 5], "trillion": [4, 7], "evals_list": 4, "1775618912": 4, "variant": [4, 6], "slightli": 4, "drift": 4, "lowest": 4, "degrad": [4, 7], "firstli": 4, "overhead": 4, "egocentr": 4, "tight": 4, "aproach": 4, "aplic": 4, "clearli": [4, 6, 7], "earlier": 4, "depict": [4, 7], "correl": 4, "multilingu": [4, 6], "golden": 4, "languang": 4, "arena": 4, "blind": 4, "randomli": 4, "loop": 4, "customiz": 4, "irrelev": 4, "unhelp": [4, 6], "occasion": 4, "rare": 4, "perfectli": 4, "cater": 4, "critiqu": [4, 6], "elo": 4, "spectrum": 4, "thought": [4, 7], "exam": 4, "probe": [4, 6], "certifi": 4, "began": 4, "glue": 4, "entail": 4, "baselin": [4, 6], "superglu": 4, "deeper": [4, 5], "successor": 4, "grew": 4, "big": 4, "bench": 4, "srivastava": 4, "arithmet": 4, "truthfulqa": 4, "multitask": 4, "hendryck": 4, "multidisciplinari": 4, "stanford": 4, "helm": 4, "multidimension": 4, "surround": [4, 7], "humanev": 4, "lmsy": 4, "brought": 4, "dialogu": 4, "chiang": 4, "gather": 4, "alpacaev": 4, "duboi": 4, "mt": 4, "render": 4, "crowdsourc": 4, "livebench": 4, "white": [4, 6], "resili": [4, 6], "meaningfulli": 4, "zebralog": 4, "grid": 4, "puzzl": 4, "brailsford": 4, "1999": 4, "lsat": 4, "hous": 4, "clue": 4, "strateg": [4, 6, 7], "deduct": 4, "arriv": 4, "programmat": [4, 7], "2x2": 4, "6x6": 4, "shot": [4, 6], "reductio": 4, "ad": [4, 7], "absurdum": 4, "sonnet": [4, 5], "hard": 4, "10b": 4, "counterfactu": 4, "came": 4, "arc": 4, "prize": 4, "chollet": 4, "mike": [4, 6], "knoop": 4, "founder": 4, "zapier": 4, "fran\u00e7oi": 4, "creator": 4, "agi": 4, "kera": 4, "genuin": 4, "possess": 4, "elementari": 4, "novelti": 4, "wouldn": 4, "interpol": 4, "synthes": 4, "fly": 4, "retriev": 4, "brute": 4, "pixel": 4, "unbeaten": 4, "win": 4, "poorli": 4, "recombin": 4, "spur": [4, 6], "takeawai": 4, "fourrier": 4, "bespok": 4, "sdk": 4, "autoregress": 4, "sub": 4, "liter": 4, "disturb": 4, "zero": [4, 6, 7], "varianc": 4, "yt": 4, "ut": 4, "suppos": [4, 7], "ol": 4, "heteroscedast": 4, "regress": 4, "lag": [4, 6], "bivari": 4, "evaluation_track": 4, "evaluationtrack": 4, "model_config": 4, "basemodelconfig": 4, "parallelismmanag": 4, "pipelineparamet": 4, "envconfig": 4, "is_accelerate_avail": 4, "datetim": 4, "timedelta": 4, "initprocessgroupkwarg": 4, "create_evaluation_pipelin": 4, "cache_dir": 4, "pretrain": 4, "float16": 4, "max_sampl": 4, "kwargs_handl": 4, "3000": 4, "save_detail": 4, "pipeline_param": 4, "launcher_typ": 4, "env_config": 4, "override_batch_s": 4, "use_chat_templ": 4, "trust_remote_cod": 4, "pipeline_paramet": 4, "schemat": [4, 5], "vllm": [4, 7], "tgi": 4, "storag": [4, 6], "num_few_shot": 4, "vertic": 4, "bar": 4, "bigbench": 4, "winogrand": 4, "hellaswag": 4, "nlp": 4, "save_and_push_result": 4, "show_result": 4, "model_arg": 4, "send": [4, 7], "serverless": 4, "inference_server_address": 4, "inference_server_auth": 4, "model_id": 4, "null": 4, "bash": 4, "command": 4, "model_config_path": 4, "endpoint_model": 4, "llama3": [4, 5], "qwen2": [4, 7], "smollm2": 4, "3b": 4, "alibaba": [4, 7], "5b": [4, 7], "hui": 4, "allal": 4, "cluster": 4, "noteworthi": 4, "grain": [4, 7], "salt": [4, 7], "exponenti": 4, "modular": 4, "offici": 4, "revisit": 4, "trace": 4, "langchain_tracing_v2": 4, "langchain_api_kei": 4, "hf_evalu": 4, "langsmith_evalu": 4, "ls_client": 4, "dataset_nam": 4, "create_dataset": 4, "create_exampl": 4, "dataset_id": 4, "calculate_scor": 4, "reference_output": 4, "oai_client": 4, "xp_model_nam": 4, "lastli": 4, "run_evalu": 4, "And": 4, "upload_result": 4, "experiment_prefix": 4, "num_repetit": 4, "386a3620": 4, "9e1cc3cb": 4, "9d6a": 4, "4356": 4, "ab34": 4, "138e0abe8be4": 4, "8741976e": 4, "5268": 4, "4b75": 4, "949f": 4, "99477dde5d64": 4, "selectedsess": 4, "b831dc1e": 4, "90bc": 4, "4ed8": 4, "8080": 4, "fb42444724d6": 4, "4it": 4, "latest": [4, 5, 7], "tobia": [4, 6], "evaluate_modul": 4, "6fc70b7be0088120a372dfdd5d320b39b8bb3630cb8029b193941d9376e86bb0": 4, "tue": 4, "nov": 4, "couldn": 4, "5it": 4, "5053784e": 4, "64445871": 4, "a53c": 4, "44b1": 4, "a422": 4, "4f49b2f9656f": 4, "69": 4, "4b29f3c9": 4, "9ef7e39a": 4, "2add": 4, "410c": 4, "89f8": 4, "9f1a8b198cf1": 4, "61": 4, "insert": 4, "combined_df": 4, "concat": 4, "ignore_index": 4, "execution_tim": 4, "example_id": 4, "333333": 4, "224388": 4, "feb10f92": 4, "3167": 4, "41f3": 4, "bb1c": 4, "d271153a31a8": 4, "5b196b22": 4, "9f4c": 4, "489c": 4, "b020": 4, "7823208b42d6": 4, "348101": 4, "722464": 4, "c310f159": 4, "064a": 4, "4035": 4, "97c3": 4, "a25bbf43abc2": 4, "386076": 4, "704104": 4, "f7f24899": 4, "dd50": 4, "409e": 4, "93cc": 4, "6fb1622b60bf": 4, "443038": 4, "725059": 4, "242856d6": 4, "efb5": 4, "4101": 4, "b1cf": 4, "5805532838ac": 4, "373418": 4, "795302": 4, "ce975169": 4, "a0ab": 4, "40ce": 4, "8e32": 4, "efa28d06079d": 4, "stat": 4, "groupbi": 4, "agg": 4, "sort": 4, "sort_valu": 4, "subplot": 4, "pyplot": 4, "plt": 4, "numpi": 4, "np": 4, "ax1": 4, "ax2": 4, "figsiz": 4, "2ecc71": 4, "3498db": 4, "e74c3c": 4, "bleu_mean": 4, "bleu_std": 4, "enumer": [4, 5], "errorbar": 4, "yerr": 4, "fmt": 4, "markers": 4, "capsiz": 4, "set_ylabel": 4, "set_titl": 4, "set_xtick": 4, "set_xticklabel": 4, "rotat": 4, "set_ylim": 4, "bottom": 4, "legend": 4, "exec_mean": 4, "exec_std": 4, "tight_layout": 4, "ndetail": 4, "4038": 4, "0453": 4, "7815": 4, "0433": 4, "3768": 4, "0424": 4, "8343": 4, "2208": 4, "3519": 4, "0775": 4, "9122": 4, "1482": 4, "377": 4, "042": 4, "078": 4, "slower": 4, "04": [4, 5], "latenc": [4, 5], "speed": 4, "interestingli": 4, "decoupl": 4, "reload": 4, "facilit": [4, 6], "promptfooconfig": 4, "model_comparison": 4, "pretti": 4, "dump": 4, "default_flow_styl": 4, "sort_kei": 4, "prompt1": 4, "defaulttest": 4, "1000m": 4, "millisecond": 4, "eval_data": 4, "latency_m": 4, "totallatencym": 4, "token_usag": 4, "tokenusag": 4, "assert_pass": 4, "assertpasscount": 4, "assert_fail": 4, "assertfailcount": 4, "prompt_token": 4, "num_request": 4, "numrequest": 4, "2463": 4, "000035": 4, "3773": 4, "004620": 4, "1669": 4, "000091": 4, "1669m": 4, "highest": 4, "3773m": 4, "00462": 4, "promptfool": 4, "manual": [4, 6], "redefin": 4, "prompt_comparison": 4, "prompt2": 4, "prompt3": 4, "prompt_fil": 4, "prompt_cont": 4, "BE": 4, "again": 4, "prompt_id": 4, "promptid": 4, "gradingresult": 4, "df_raw": 4, "reset_index": 4, "eas": [4, 6], "seamless": [4, 6], "hf": 4, "plain": 4, "vanilla": 4, "defi": 4, "accustom": 4, "legaci": 4, "unsustain": 4, "prd": 4, "cultiv": [4, 6], "organiz": 4, "stagnat": 4, "alb": 4, "loubna": 4, "anton": 4, "lozhkov": 4, "bakouch": 4, "gabriel": [4, 6], "mart\u00edn": 4, "bl\u00e1zquez": 4, "lewi": 4, "tunstal": 4, "agust\u00edn": 4, "piquer": 4, "andr": 4, "marafioti": 4, "cyril": 4, "zakka": 4, "leandro": 4, "von": 4, "werra": 4, "wolf": 4, "are24": 4, "judgearena": 4, "bps99": 4, "salli": 4, "pott": 4, "barbara": 4, "557": 4, "sciencedirect": 4, "s0377221798003646": 4, "doi": [4, 6, 7], "1016": 4, "s0377": 4, "2217": 4, "00364": 4, "ctj": 4, "jerri": [4, 6], "tworek": [4, 6], "heewoo": [4, 6], "jun": [4, 6], "qime": [4, 6], "henriqu": [4, 6], "pond": [4, 6], "de": [4, 6], "oliveira": [4, 6], "pinto": [4, 6], "harri": [4, 6], "yuri": 4, "burda": 4, "greg": [4, 6], "brockman": [4, 6], "raul": [4, 6], "puri": [4, 6], "gretchen": [4, 6], "krueger": [4, 6], "petrov": [4, 6], "heidi": 4, "khlaaf": 4, "girish": [4, 6], "sastri": [4, 6], "brook": [4, 6], "chan": [4, 6], "grai": [4, 6], "ryder": [4, 6], "mikhail": [4, 6], "pavlov": [4, 6], "alethea": [4, 6], "lukasz": 4, "kaiser": [4, 6], "mohammad": [4, 6], "bavarian": [4, 6], "clemen": [4, 6], "winter": [4, 6], "philipp": 4, "tillet": [4, 6], "felip": [4, 6], "petroski": [4, 6], "dave": [4, 6], "cum": [4, 6], "matthia": 4, "plappert": 4, "fotio": 4, "chantzi": [4, 6], "barn": 4, "ariel": 4, "herbert": 4, "voss": [4, 6], "hebgen": 4, "guss": 4, "nichol": 4, "paino": [4, 6], "nikola": [4, 6], "tezak": [4, 6], "jie": [4, 6], "babuschkin": [4, 6], "suchir": [4, 6], "balaji": [4, 6], "shantanu": [4, 6], "jain": [4, 6], "saunder": 4, "hess": [4, 6], "carr": 4, "josh": [4, 6], "achiam": [4, 6], "vedant": 4, "misra": 4, "evan": [4, 6], "morikawa": [4, 6], "matthew": 4, "knight": [4, 6], "mile": [4, 6], "brundag": [4, 6], "mira": [4, 6], "murati": [4, 6], "kati": [4, 6], "mayer": [4, 6], "bob": [4, 6, 7], "mcgrew": [4, 6], "ilya": [4, 6], "sutskev": [4, 6], "wojciech": [4, 6], "zaremba": [4, 6], "2107": 4, "03374": 4, "cz": 4, "lianmin": 4, "ying": 4, "sheng": 4, "anastasio": 4, "angelopoulo": 4, "tianl": 4, "dacheng": 4, "banghua": 4, "jordan": [4, 6], "gonzalez": 4, "ion": 4, "stoica": 4, "04132": 4, "cho24a": 4, "francoi": 4, "arcpriz": 4, "cho24b": 4, "dglh24": 4, "yann": 4, "bal\u00e1z": 4, "galambosi": 4, "tatsunori": 4, "hashimoto": 4, "debia": 4, "04475": 4, "fac24a": 4, "wiki": [4, 7], "fac24b": 4, "fac24c": 4, "model_doc": 4, "fac24d": 4, "cookbook": [4, 6], "llm_judg": 4, "fac24f": 4, "fhwt23": 4, "cl\u00e9mentin": 4, "nathan": 4, "habib": 4, "hbb": 4, "collin": 4, "burn": 4, "steven": [4, 6], "basart": 4, "zou": 4, "manta": 4, "mazeika": 4, "song": [4, 6], "steinhardt": 4, "03300": 4, "hbd": 4, "du": 4, "maxwel": 4, "forb": 4, "yejin": 4, "choi": 4, "curiou": 4, "neural": [4, 7], "degener": 4, "1904": 4, "09751": 4, "hyc": 4, "binyuan": 4, "zeyu": 4, "cui": 4, "jiaxi": 4, "dayiheng": 4, "lei": [4, 6], "tianyu": 4, "jiajun": 4, "bowen": [4, 6], "kai": [4, 6], "dang": 4, "coder": 4, "preprint": [4, 7], "2409": [4, 6], "12186": 4, "lx": 4, "zhen": 4, "xiaohan": 4, "jia": 4, "yuxuan": 4, "lai": 4, "chongyang": 4, "shuai": 4, "ma": [4, 6], "nlg": 4, "07103": 4, "lbl": 4, "bommasani": 4, "toni": 4, "dimitri": 4, "tsipra": 4, "dilara": 4, "soylu": 4, "michihiro": 4, "yasunaga": 4, "yian": 4, "deepak": 4, "narayanan": 4, "yuhuai": 4, "benjamin": [4, 6], "newman": 4, "binhang": 4, "bobbi": 4, "ce": 4, "christian": [4, 6], "cosgrov": 4, "r\u00e9": 4, "acosta": 4, "nava": [4, 6], "drew": 4, "hudson": 4, "zelikman": 4, "esin": 4, "durmu": 4, "faisal": 4, "ladhak": 4, "frieda": 4, "rong": 4, "hongyu": 4, "ren": 4, "huaxiu": 4, "yao": [4, 6], "jue": 4, "keshav": 4, "santhanam": 4, "laurel": 4, "lucia": 4, "mert": 4, "yuksekgonul": 4, "mirac": 4, "suzgun": 4, "guha": 4, "niladri": 4, "chatterji": 4, "omar": 4, "khattab": 4, "henderson": 4, "qian": [4, 6], "chi": [4, 7], "sang": 4, "shibani": [4, 6], "santurkar": [4, 6], "surya": 4, "icard": 4, "tianyi": 4, "vishrav": 4, "chaudhari": 4, "xuechen": 4, "yuhui": 4, "yuta": 4, "koreeda": 4, "2211": 4, "09110": 4, "lbc24": 4, "ronan": 4, "bra": 4, "allenai": 4, "lhe22": 4, "stephani": [4, 6], "owain": 4, "mimic": 4, "falsehood": 4, "2109": 4, "07958": 4, "pro24": 4, "dev": 4, "ras24": 4, "sebastian": 4, "scratch": 4, "1633437166": 4, "srr": 4, "aarohi": 4, "abhinav": 4, "rastogi": 4, "abhishek": 4, "rao": 4, "abu": 4, "awal": 4, "shoeb": 4, "abubakar": 4, "abid": 4, "adam": [4, 6], "fisch": 4, "santoro": 4, "aditya": [4, 6], "gupta": 4, "adri\u00e0": 4, "garriga": 4, "alonso": 4, "agnieszka": 4, "kluska": 4, "aitor": 4, "lewkowycz": 4, "akshat": 4, "warstadt": 4, "alexand": [4, 6, 7], "kocurek": 4, "ali": [4, 6], "safaya": 4, "tazarv": 4, "aman": 4, "hussain": 4, "dsouza": 4, "ambros": 4, "slone": 4, "ameet": 4, "rahan": 4, "anantharaman": 4, "iyer": 4, "ander": 4, "andreassen": 4, "madotto": 4, "santilli": 4, "stuhlm\u00fcller": 4, "la": 4, "lampinen": 4, "angelica": 4, "anh": 4, "vuong": 4, "animesh": 4, "gottardi": 4, "antonio": 4, "norelli": 4, "anu": 4, "venkatesh": 4, "arash": 4, "gholamidavoodi": 4, "arfa": 4, "tabassum": 4, "arul": 4, "menez": 4, "arun": [4, 6], "kirubarajan": 4, "asher": 4, "mullokandov": 4, "ashish": 4, "sabharw": 4, "herrick": 4, "avia": 4, "efrat": 4, "aykut": 4, "erdem": 4, "ayla": 4, "karaka\u015f": 4, "bao": [4, 6], "loe": 4, "barret": [4, 6], "zoph": [4, 6], "bart\u0142omiej": 4, "bojanowski": 4, "batuhan": 4, "\u00f6zyurt": 4, "behnam": 4, "hedayatnia": 4, "neyshabur": 4, "inden": 4, "benno": 4, "stein": 4, "berk": 4, "ekmekci": 4, "blake": 4, "howald": 4, "bryan": 4, "orinion": 4, "diao": 4, "dour": 4, "stinson": 4, "cedrick": 4, "argueta": 4, "c\u00e9sar": 4, "ferri": 4, "ram\u00edrez": 4, "chandan": 4, "charl": 4, "rathkopf": 4, "chenlin": 4, "meng": 4, "chitta": 4, "baral": 4, "chiyu": 4, "callison": 4, "burch": 4, "wait": 4, "voigt": 4, "cindi": 4, "ramirez": 4, "clara": 4, "rivera": 4, "clemencia": 4, "siro": 4, "colin": 4, "raffel": 4, "courtnei": 4, "ashcraft": 4, "cristina": 4, "garbacea": 4, "damien": [4, 6], "sileo": 4, "garrett": 4, "kilman": 4, "roth": 4, "daniel": [4, 6], "freeman": 4, "khashabi": 4, "levi": [4, 6], "mosegu\u00ed": 4, "gonz\u00e1lez": 4, "perszyk": 4, "danqi": 4, "daphn": 4, "ippolito": 4, "dar": 4, "gilboa": 4, "dohan": [4, 6], "drakard": 4, "jurgen": 4, "debajyoti": 4, "datta": 4, "deni": 4, "emelin": 4, "kleyko": 4, "deniz": 4, "yuret": 4, "derek": [4, 6], "tam": [4, 7], "dieuwk": 4, "hupk": 4, "diganta": 4, "dilyar": 4, "buzan": 4, "coelho": 4, "mollo": 4, "diyi": 4, "ho": 4, "dylan": 4, "schrader": 4, "ekaterina": 4, "shutova": 4, "ekin": 4, "dogu": 4, "cubuk": 4, "elad": 4, "segal": 4, "eleanor": 4, "hagerman": 4, "donowai": 4, "elli": 4, "pavlick": 4, "rodola": 4, "emma": 4, "lam": 4, "chu": [4, 6], "erkut": 4, "erni": 4, "dyer": 4, "jerzak": 4, "eunic": 4, "engefu": 4, "manyasi": 4, "evgenii": 4, "zheltonozhskii": 4, "fanyu": 4, "xia": 4, "fatemeh": 4, "siar": 4, "fernando": 4, "mart\u00ednez": 4, "plume": 4, "francesca": 4, "happ\u00e9": 4, "gaurav": 4, "genta": 4, "indra": 4, "winata": 4, "gerard": 4, "melo": 4, "germ\u00e1n": 4, "kruszewski": 4, "giambattista": [4, 6], "parascandolo": [4, 6], "giorgio": 4, "mariani": 4, "gloria": 4, "gonzalo": 4, "jaimovitch": 4, "l\u00f3pez": 4, "gregor": 4, "betz": 4, "gui": 4, "gur": 4, "hana": 4, "galijasev": 4, "rashkin": 4, "hannaneh": 4, "hajishirzi": 4, "harsh": 4, "hayden": 4, "bogar": 4, "henri": [4, 6], "shevlin": 4, "hinrich": 4, "sch\u00fctze": 4, "hiromu": 4, "yakura": 4, "hongm": 4, "hugh": 4, "mee": 4, "wong": [4, 6], "ng": [4, 6], "isaac": 4, "nobl": 4, "jaap": 4, "jumelet": 4, "geissing": 4, "jaehoon": 4, "jaim": 4, "fern\u00e1ndez": 4, "fisac": 4, "simon": 4, "koppel": 4, "koco\u0144": 4, "jana": 4, "thompson": [4, 6], "janel": 4, "wingfield": 4, "jarema": 4, "radom": 4, "jascha": 4, "sohl": [4, 6], "dickstein": 4, "phang": 4, "yosinski": 4, "jekaterina": 4, "novikova": 4, "jell": 4, "bosscher": 4, "jennif": 4, "marsh": 4, "jeroen": 4, "taal": 4, "jess": [4, 6], "engel": 4, "jesujoba": 4, "alabi": 4, "jiam": 4, "jillian": 4, "joan": 4, "waweru": 4, "burden": 4, "bali": 4, "jonathan": [4, 6], "batcheld": 4, "berant": 4, "j\u00f6rg": 4, "frohberg": 4, "jo": 4, "rozen": 4, "orallo": 4, "boudeman": 4, "guerr": 4, "tenenbaum": 4, "joyc": 4, "chua": 4, "kanclerz": 4, "karen": 4, "livescu": 4, "karl": 4, "krauth": 4, "karthik": 4, "gopalakrishnan": 4, "katerina": 4, "ignatyeva": 4, "katja": 4, "markert": 4, "kaustubh": 4, "dhole": 4, "gimpel": 4, "omondi": 4, "kori": 4, "mathewson": 4, "kristen": 4, "chiafullo": 4, "ksenia": 4, "shkaruta": 4, "shridhar": 4, "kyle": [4, 6], "mcdonel": 4, "richardson": 4, "laria": 4, "reynold": 4, "leo": [4, 6], "liam": [4, 6], "dugan": 4, "lianhui": 4, "qin": [4, 6], "lidia": 4, "contrera": 4, "ochando": 4, "morenc": 4, "moschella": 4, "luci": 4, "ludwig": 4, "schmidt": [4, 6], "luheng": 4, "olivero": 4, "col\u00f3n": 4, "metz": [4, 6], "l\u00fctfi": 4, "kerem": 4, "\u015fenel": 4, "maarten": [4, 6], "bosma": 4, "sap": [4, 6], "maartj": 4, "hoev": 4, "maheen": 4, "farooqi": 4, "manaal": 4, "faruqui": 4, "marco": 4, "baturan": 4, "marelli": 4, "maru": 4, "maria": 4, "quintana": 4, "tolkiehn": 4, "mario": [4, 6], "giulianelli": 4, "martha": 4, "potthast": 4, "leavitt": 4, "hagen": 4, "m\u00e1ty\u00e1": 4, "schubert": 4, "medina": [4, 6], "orduna": 4, "baitemirova": 4, "melodi": 4, "arnaud": 4, "melvin": 4, "mcelrath": 4, "yee": 4, "cohen": 4, "ivanitskii": 4, "starritt": 4, "strube": 4, "micha\u0142": 4, "sw\u0119drowski": 4, "michel": [4, 6], "bevilacqua": 4, "mihir": 4, "kale": 4, "cain": 4, "mime": 4, "mitch": 4, "walker": 4, "mo": 4, "tiwari": 4, "mohit": 4, "bansal": 4, "moin": 4, "aminnaseri": 4, "mor": 4, "geva": 4, "mozhdeh": 4, "gheini": 4, "mukund": 4, "varma": 4, "nanyun": 4, "peng": [4, 6], "nayeon": 4, "neta": 4, "krakov": 4, "doiron": 4, "nicol": 4, "martinez": 4, "nikita": 4, "nangia": 4, "nikla": 4, "decker": 4, "muennighoff": 4, "nitish": [4, 6], "shirish": [4, 6], "keskar": [4, 6], "niveditha": 4, "constant": 4, "fiedel": 4, "nuan": 4, "wen": 4, "oliv": [4, 6], "agha": 4, "elbaghdadi": 4, "omer": 4, "moreno": 4, "casar": 4, "parth": 4, "doshi": 4, "pascal": 4, "fung": 4, "pu": 4, "vicol": 4, "pegah": 4, "alipoormolabashi": 4, "peiyuan": 4, "eckerslei": 4, "phu": 4, "mon": 4, "htut": 4, "pinyu": 4, "hwang": 4, "piotr": 4, "mi\u0142kowski": 4, "piyush": 4, "patil": 4, "pouya": 4, "pezeshkpour": 4, "priti": 4, "oli": 4, "qiaozhu": 4, "qing": 4, "lyu": 4, "qinlang": 4, "rabin": 4, "banjad": 4, "rachel": [4, 6], "etta": 4, "rudolph": 4, "raefer": 4, "rahel": 4, "haback": 4, "ramon": 4, "risco": 4, "rapha\u00ebl": 4, "milli\u00e8r": 4, "rhythm": 4, "garg": 4, "rif": 4, "saurou": 4, "riku": 4, "arakawa": 4, "robb": 4, "raymaek": 4, "frank": [4, 6], "rohan": 4, "sikand": 4, "roman": [4, 6], "novak": 4, "sitelew": 4, "lebra": 4, "rosann": 4, "rowan": [4, 6], "ruslan": 4, "salakhutdinov": 4, "stoval": 4, "teehan": 4, "rylan": 4, "sahib": 4, "saif": 4, "sajant": 4, "anand": [4, 6], "dillav": 4, "shleifer": 4, "wiseman": 4, "gruetter": 4, "schoenholz": 4, "sanghyun": 4, "sanjeev": 4, "kwatra": 4, "sarik": 4, "ghazarian": 4, "sayan": 4, "casei": [4, 6], "bischoff": 4, "gehrmann": 4, "schuster": 4, "sepideh": 4, "sadeghi": 4, "shadi": 4, "hamdan": 4, "sharon": 4, "shashank": 4, "sherri": 4, "shi": 4, "shikhar": 4, "shima": 4, "asaadi": 4, "shubh": 4, "pachchigar": 4, "shubham": 4, "toshniw": 4, "shyam": [4, 6], "upadhyai": 4, "shyamolima": 4, "debnath": 4, "siamak": 4, "shakeri": 4, "thormey": 4, "melzi": 4, "siva": 4, "reddi": 4, "sneha": 4, "priscilla": 4, "makini": 4, "soo": 4, "hwan": 4, "spencer": 4, "toren": 4, "sriharsha": 4, "hatwar": 4, "stanisla": 4, "dehaen": 4, "stefan": 4, "divic": 4, "stella": 4, "biderman": 4, "stephen": 4, "prasad": 4, "piantadosi": 4, "stuart": [4, 6], "shieber": 4, "summer": [4, 6], "misherghi": 4, "svetlana": 4, "kiritchenko": 4, "swaroop": 4, "tal": 4, "linzen": 4, "tariq": 4, "tatsu": 4, "te": 4, "th\u00e9o": 4, "desbord": 4, "theodor": 4, "rothschild": 4, "phan": 4, "tiberiu": 4, "nkinyili": 4, "timo": 4, "schick": 4, "timofei": 4, "kornev": 4, "titu": 4, "tunduni": 4, "gerstenberg": 4, "trenton": 4, "trishala": 4, "neeraj": 4, "tushar": 4, "khot": 4, "shultz": 4, "uri": 4, "shaham": 4, "vera": 4, "demberg": 4, "victoria": [4, 6], "nyamai": 4, "vika": 4, "raunak": 4, "vinai": 4, "ramasesh": 4, "udai": 4, "prabhu": 4, "vishakh": 4, "padmakumar": 4, "vivek": 4, "srikumar": 4, "fedu": [4, 6], "wout": 4, "vossen": 4, "xiaoyu": 4, "tong": [4, 6], "xinran": 4, "xinyi": 4, "yadollah": 4, "yaghoobzadeh": 4, "yair": 4, "lakretz": 4, "yangqiu": 4, "yasaman": 4, "bahri": 4, "yichi": 4, "yide": 4, "yifu": 4, "yonatan": 4, "belinkov": 4, "yufang": 4, "seid": 4, "zhuoy": 4, "zijian": 4, "ziji": 4, "zirui": 4, "ziyi": 4, "extrapol": 4, "2206": 4, "04615": 4, "wpn": 4, "yada": 4, "pruksachatkun": 4, "amanpreet": 4, "julian": 4, "hill": 4, "stickier": 4, "wsm": 4, "1804": 4, "07461": 4, "wtb": 4, "tai": 4, "borgeaud": 4, "dani": 4, "yogatama": 4, "denni": [4, 6], "donald": 4, "metzler": 4, "ed": 4, "oriol": 4, "vinyal": 4, "dean": 4, "07682": 4, "wdr": 4, "doolei": 4, "manlei": 4, "arka": [4, 6], "pal": 4, "feuer": 4, "siddhartha": 4, "ravid": 4, "shwartz": [4, 6], "ziv": 4, "khalid": 4, "saifullah": 4, "siddartha": 4, "naidu": 4, "chinmai": 4, "hegd": 4, "lecun": 4, "goldstein": 4, "willi": 4, "neiswang": 4, "micah": 4, "goldblum": 4, "19314": 4, "yyh": 4, "baosong": 4, "chengpeng": 4, "chengyuan": 4, "fei": 4, "guant": 4, "haoran": 4, "huan": 4, "jialong": 4, "jialin": 4, "jianhong": 4, "tu": 4, "jianwei": 4, "jianxin": 4, "jin": [4, 6], "jingren": 4, "jinz": 4, "jinzheng": 4, "junyang": 4, "keme": 4, "keqin": 4, "kexin": 4, "mingfeng": 4, "xue": [4, 6], "ni": 4, "pei": 4, "ru": 4, "men": 4, "ruiz": 4, "runji": 4, "shiji": 4, "sinan": 4, "tianhang": 4, "wenbin": 4, "ge": [4, 6], "xiaodong": 4, "deng": 4, "xiaohuan": 4, "xingzhang": 4, "xinyu": [4, 6], "xipin": 4, "xuancheng": 4, "yichang": 4, "wan": 4, "yunfei": 4, "yuqiong": 4, "zhenru": 4, "zhihao": 4, "10671": 4, "zc": 4, "siyuan": 4, "zhuang": [4, 6], "zhanghao": 4, "yonghao": 4, "zi": 4, "zhuohan": 4, "xing": [4, 6], "2306": 4, "05685": 4, "huggingface24": 4, "06": [4, 7], "metaai24": 4, "possibli": 5, "eliot": 5, "thumb": 5, "\u00be": 5, "max_output_token": 5, "4096": 5, "16384": 5, "contrari": 5, "surpass": 5, "truncat": 5, "max_input_token": 5, "input_cost_per_token": 5, "output_cost_per_token": 5, "11b": 5, "v1": [5, 6], "128000": 5, "5e": 5, "20241022": 5, "8192": 5, "200000": 5, "3e": 5, "0613": 5, "6e": 5, "gemini": 5, "flash": 5, "1048576": 5, "2097152": 5, "05e": 5, "incomplet": [5, 6], "abruptli": 5, "shallow": 5, "thorough": [5, 6], "dissatisfact": 5, "frustrat": 5, "feasibl": 5, "10k": 5, "diagram": 5, "charactertextsplitt": 5, "tiktoken": 5, "sequenti": 5, "newlin": 5, "broadli": [5, 7], "cheap": 5, "speciali": 5, "nltk": 5, "spaci": 5, "recurs": 5, "divid": [5, 6], "hierarch": [5, 6], "talk": 5, "theme": [5, 6], "splitter": 5, "get_chunk": 5, "chunk_siz": 5, "chunk_overlap": 5, "langchain_text_splitt": 5, "text_splitt": 5, "from_tiktoken_encod": 5, "split_text": 5, "persona": 5, "langchain_cor": [5, 7], "prompttempl": 5, "get_base_prompt_templ": 5, "base_prompt": [5, 7], "from_templ": 5, "llmchain": 5, "parser": [5, 7], "output_pars": 5, "stroutputpars": 5, "langchain_commun": 5, "chat_model": 5, "chatlitellm": 5, "get_llm_chain": 5, "prompt_templ": [5, 7], "llm_chain": [5, 7], "api_key_label": 5, "upper": 5, "_api_kei": 5, "get_dynamic_prompt_templ": 5, "get_dynamic_prompt_param": 5, "prompt_param": 5, "part_idx": 5, "total_part": 5, "chat_context": 5, "param": 5, "dynamic_prompt_param": 5, "introduct": 5, "concaten": 5, "generate_report": 5, "input_cont": 5, "llm_model_nam": 5, "report_part": 5, "num_part": 5, "dinam": 5, "priovid": 5, "invok": [5, 7], "cummul": 5, "max_chunk_s": 5, "max_chunk_overlap": 5, "readabl": 5, "apple_report": 5, "luation": 5, "disciplin": 5, "subhead": 5, "despit": [5, 7], "depth": [5, 6], "evalu": [5, 6, 7], "overlook": 5, "easier": [5, 7], "preprocess": [5, 7], "necessit": 5, "meticul": 5, "bottleneck": 5, "mustafa": 5, "suleyman": 5, "infinit": 5, "fewer": [5, 6], "condens": 5, "versatil": 5, "drive": [5, 6, 7], "grace": 5, "fallback": 5, "empow": [5, 6], "langchain24": 5, "how_to": 5, "immens": 6, "commonplac": 6, "penetr": 6, "hartvigsen": 6, "societi": 6, "statement": 6, "alarm": 6, "openli": 6, "dolli": 6, "v2": 6, "llama2": [6, 7], "13b": 6, "emb": 6, "birth": 6, "siam": 6, "edgington": 6, "phenomenon": [6, 7], "jailbreak": 6, "promptcraft": 6, "stealth": 6, "sutton": 6, "subtl": 6, "trigger": 6, "subtleti": 6, "exception": 6, "phrase": 6, "evad": 6, "hqve": 6, "frer": 6, "hplidai": 6, "pl": 6, "hyperion": 6, "coast": 6, "redwood": 6, "tallest": 6, "tree": [6, 7], "routin": 6, "overview": [6, 7], "bengio": 6, "yoshua": 6, "generalist": 6, "injustic": 6, "inequ": 6, "undermin": 6, "perpetu": 6, "displac": 6, "eros": 6, "fake": 6, "deepfak": 6, "distrust": 6, "cyberattack": 6, "spread": 6, "disinform": 6, "inadvert": 6, "signal": 6, "interven": 6, "irrevers": 6, "uncheck": 6, "catastroph": 6, "extinct": 6, "race": 6, "incentiv": 6, "shortcut": 6, "behind": 6, "stress": 6, "urgent": 6, "reorient": 6, "prejudic": 6, "gallego": 6, "leak": 6, "poison": 6, "intention": 6, "inject": 6, "mislead": 6, "exabeam": 6, "finra": 6, "3110": 6, "mandat": 6, "supervisori": 6, "medicin": 6, "unicef": 6, "contest": 6, "congress": 6, "enact": 6, "pictur": [6, 7], "territori": 6, "oversea": 6, "chines": 6, "legitim": 6, "properti": 6, "consent": 6, "complaint": 6, "cooper": 6, "extraterritori": 6, "offshor": 6, "draft": 6, "voluntari": 6, "neutral": 6, "player": 6, "prepared": 6, "ahead": 6, "compris": 6, "cbrn": 6, "persuas": 6, "autonomi": 6, "gradat": 6, "scorecard": 6, "elig": 6, "medium": [6, 7], "advisori": 6, "sag": 6, "shut": 6, "prerequisit": 6, "exfiltr": 6, "harden": 6, "asl": 6, "biosafeti": 6, "elev": 6, "warn": 6, "bioweapon": 6, "compartment": 6, "difficulti": 6, "4x": 6, "jump": 6, "paus": 6, "frontier": 6, "deepmind": 6, "biosecur": 6, "buffer": 6, "formul": [6, 7], "calibr": 6, "promin": 6, "taxonomi": 6, "llamaguard": 6, "alaga": 6, "substandard": 6, "oxford": 6, "wachter": 6, "argument": [6, 7], "blur": 6, "ill": 6, "stifl": 6, "suscept": 6, "aadc": 6, "outset": 6, "curricula": 6, "adversari": 6, "uncov": [6, 7], "mode": 6, "appar": 6, "thoroughli": 6, "lm": [6, 7], "problemat": 6, "arrai": 6, "undergo": 6, "280b": 6, "cai": [6, 7], "utilis": 6, "minimis": 6, "enshrin": 6, "evas": 6, "resort": 6, "encod": 6, "simultan": 6, "avenu": 6, "cambria": 6, "inherit": 6, "influenti": 6, "debias": 6, "occurr": 6, "phish": 6, "sft": 6, "dpo": 6, "perspect": 6, "hierarchi": 6, "66": 6, "toxic": 6, "mcq": 6, "regex": [6, 7], "joint": 6, "subset": 6, "facet": 6, "purpl": 6, "circl": 6, "leaderboard": 6, "opensafetylab": 6, "salad_bench_dataset": 6, "base_set": 6, "src": 6, "python3": 6, "tqdm": 6, "auto": 6, "tqdmwarn": 6, "iprogress": 6, "jupyt": 6, "ipywidget": 6, "readthedoc": 6, "user_instal": 6, "autonotebook": 6, "notebook_tqdm": 6, "21318": 6, "66534": 6, "gptfuzzer": 6, "qid": 6, "o1": 6, "amp": 6, "o53": 6, "o14": 6, "o5": 6, "o65": 6, "plagiar": 6, "o16": 6, "o6": 6, "o47": 6, "campaign": 6, "o12": 6, "o52": 6, "surveil": 6, "spous": 6, "o13": 6, "breakdown": [6, 7], "ncount": 6, "8756": 6, "6486": 6, "o2": 6, "1717": 6, "o4": 6, "1477": 6, "o3": 6, "socioeconom": 6, "851": 6, "int64": 6, "gen": 6, "15433": 6, "4184": 6, "659": 6, "advbench": 6, "230": 6, "189": 6, "toxicchat": 6, "anyth": 6, "93": 6, "saladbench": 6, "abc": 6, "webpurifi": 6, "aw": 6, "comprehend": 6, "ibm": 6, "granit": 6, "guardian": 6, "nemo": 6, "nvidia": 6, "mistralai": 6, "blob": [6, 7], "ipynb": 6, "ai24": 6, "asa24": 6, "jide": 6, "jona": 6, "schuett": 6, "marku": 6, "anderljung": 6, "08751": 6, "bhy": 6, "geoffrei": 6, "hinton": 6, "pieter": 6, "abbeel": 6, "trevor": 6, "darrel": 6, "yuval": 6, "harari": 6, "ya": 6, "lan": 6, "shai": 6, "shalev": 6, "gillian": 6, "hadfield": 6, "clune": 6, "tegan": 6, "maharaj": 6, "hutter": 6, "at\u0131l\u0131m": 6, "g\u00fcne\u015f": 6, "baydin": 6, "sheila": 6, "mcilraith": 6, "qiqi": 6, "ashwin": 6, "acharya": 6, "anca": 6, "dragan": 6, "philip": 6, "torr": 6, "russel": 6, "kahneman": 6, "brauner": 6, "s\u00f6ren": 6, "mindermann": 6, "amid": 6, "384": 6, "6698": 6, "1126": 6, "adn0117": 6, "pdf": 6, "bbc": 6, "emili": 6, "braca": 6, "israel": 6, "carter": 6, "hafsa": 6, "kanchwala": 6, "khojasteh": 6, "charli": 6, "landow": 6, "luo": 6, "magarelli": 6, "mirin": 6, "averi": 6, "moyer": 6, "kayla": 6, "simpson": 6, "amelia": 6, "skawinski": 6, "heverin": 6, "23308": 6, "bmc": 6, "dillon": 6, "brendan": 6, "murphi": 6, "Will": 6, "khachaturov": 6, "gleav": 6, "kellin": 6, "pelrin": 6, "2408": [6, 7], "02946": 6, "cmm": 6, "erik": 6, "lorenzo": 6, "malandri": 6, "fabio": 6, "mercorio": 6, "navid": 6, "nobani": 6, "seveso": 6, "15248": 6, "edg24": 6, "exa24": 6, "cyber": 6, "grb": 6, "rossi": 6, "joe": 6, "barrow": 6, "mehrab": 6, "tanjim": 6, "sungchul": 6, "franck": 6, "dernoncourt": 6, "ruiyi": 6, "nesreen": 6, "2309": 6, "00770": 6, "hgp": 6, "saadia": 6, "hamid": 6, "palangi": 6, "dipankar": 6, "ec": 6, "kamar": 6, "oxi": 6, "smaranda": 6, "muresan": 6, "preslav": 6, "nakov": 6, "alin": 6, "villavicencio": 6, "editor": 6, "60th": 6, "linguist": 6, "3309": 6, "3326": 6, "dublin": 6, "aclanthologi": 6, "acl": 6, "18653": 6, "hym": 6, "weijiang": 6, "weitao": 6, "weihong": 6, "zhangyin": 6, "haotian": 6, "qianglong": 6, "weihua": 6, "xiaocheng": 6, "bing": 6, "ting": 6, "dx": 6, "1145": [6, 7], "3703155": 6, "ldw": 6, "lijun": 6, "ruohui": 6, "xuhao": 6, "wangmeng": 6, "zuo": 6, "dahua": 6, "qiao": 6, "shao": 6, "05044": 6, "oaa": 6, "adler": 6, "ahmad": 6, "ilg": 6, "akkaya": 6, "florencia": 6, "leoni": 6, "aleman": 6, "janko": 6, "altenschmidt": 6, "altman": 6, "shyamal": 6, "anadkat": 6, "avila": 6, "valeri": 6, "balcom": 6, "baltescu": 6, "haim": 6, "belgum": 6, "irwan": 6, "bello": 6, "jake": 6, "berdin": 6, "bernadett": 6, "shapiro": 6, "berner": 6, "lenni": 6, "bogdonoff": 6, "boiko": 6, "madelain": 6, "boyd": 6, "luisa": 6, "brakman": 6, "button": 6, "rosi": 6, "campbel": 6, "cann": 6, "brittani": 6, "carei": 6, "carlson": 6, "rori": 6, "carmichael": 6, "che": 6, "foti": 6, "sulli": 6, "rubi": 6, "chess": 6, "chester": 6, "cho": 6, "hyung": 6, "won": 6, "chung": 6, "jeremiah": 6, "currier": 6, "yunx": 6, "cori": 6, "decareaux": 6, "degri": 6, "deutsch": 6, "devil": 6, "dhar": 6, "steve": 6, "dowl": 6, "dun": 6, "adrien": 6, "ecoffet": 6, "atti": 6, "eleti": 6, "tyna": 6, "elound": 6, "farhi": 6, "niko": 6, "sim\u00f3n": 6, "posada": 6, "fishman": 6, "juston": 6, "isabella": 6, "fulford": 6, "georg": 6, "gibson": 6, "vik": 6, "tarun": 6, "gogineni": 6, "goh": 6, "rapha": 6, "gontijo": 6, "lope": 6, "gordon": 6, "morgan": 6, "grafstein": 6, "yufei": 6, "guo": 6, "hallaci": 6, "heaton": 6, "johann": 6, "heideck": 6, "hickei": 6, "wade": 6, "hoeschel": 6, "brandon": [6, 7], "houghton": 6, "kenni": 6, "hsu": 6, "shengli": 6, "xin": 6, "joost": 6, "huizinga": 6, "shawn": 6, "joann": 6, "jang": 6, "roger": 6, "haozhun": 6, "shino": 6, "jomoto": 6, "billi": 6, "jonn": 6, "tomer": 6, "kaftan": 6, "\u0142ukasz": 6, "kamali": 6, "ingmar": 6, "kanitscheid": 6, "tabarak": 6, "khan": 6, "logan": 6, "kilpatrick": 6, "jong": 6, "wook": 6, "christina": 6, "yongjik": 6, "hendrik": 6, "kirchner": 6, "kiro": 6, "matt": 6, "kokotajlo": 6, "kondraciuk": 6, "kondrich": 6, "konstantinidi": 6, "kosic": 6, "vishal": 6, "kuo": 6, "lamp": 6, "ikai": 6, "teddi": 6, "jade": 6, "leung": 6, "chak": 6, "ming": 6, "lim": 6, "molli": 6, "mateusz": 6, "litwin": 6, "theresa": 6, "lopez": 6, "patricia": 6, "lue": 6, "makanju": 6, "malfacini": 6, "markov": 6, "yaniv": 6, "markovski": 6, "bianca": 6, "mayn": 6, "mckinnei": 6, "christin": 6, "mcleavei": 6, "mcmillan": 6, "mcneil": 6, "aalok": 6, "menick": 6, "andrei": 6, "mishchenko": 6, "vinni": 6, "monaco": 6, "mu": 6, "murk": 6, "m\u00e9ly": 6, "ashvin": 6, "nair": 6, "reiichiro": 6, "nakano": 6, "rajeev": 6, "nayak": 6, "arvind": 6, "neelakantan": 6, "ngo": 6, "hyeonwoo": 6, "noh": 6, "cullen": 6, "keef": 6, "jakub": 6, "pachocki": 6, "palermo": 6, "ashlei": 6, "pantuliano": 6, "joel": 6, "parish": 6, "emi": 6, "parparita": 6, "passo": 6, "perelman": 6, "belbut": 6, "pere": 6, "pokorni": 6, "pokrass": 6, "vitchyr": 6, "pong": 6, "tolli": 6, "powel": 6, "bori": 6, "proehl": 6, "rae": 6, "ramesh": 6, "raymond": 6, "franci": 6, "kendra": 6, "rimbach": 6, "carl": 6, "rotst": 6, "roussez": 6, "saltarelli": 6, "ted": 6, "sander": 6, "schnurr": 6, "selsam": 6, "kyla": 6, "sheppard": 6, "toki": 6, "sherbakov": 6, "jessica": 6, "shieh": 6, "shoker": 6, "pranav": 6, "szymon": 6, "sidor": 6, "sigler": 6, "sitkin": 6, "sokolowski": 6, "natali": 6, "staudach": 6, "madelein": 6, "tootoonchian": 6, "tseng": 6, "preston": 6, "tuggl": 6, "turlei": 6, "juan": 6, "cer\u00f3n": 6, "urib": 6, "vallon": 6, "vijayvergiya": 6, "justin": 6, "jai": 6, "alvin": 6, "ward": 6, "cj": 6, "weinmann": 6, "akila": 6, "welihinda": 6, "jiayi": 6, "weng": 6, "lilian": 6, "wiethoff": 6, "willner": 6, "wolrich": 6, "lauren": 6, "workman": 6, "sherwin": 6, "yoo": 6, "zeller": 6, "shengjia": 6, "juntang": 6, "zhuk": 6, "2303": 6, "08774": 6, "saffron": 6, "ring": 6, "aslanid": 6, "glaes": 6, "nat": 6, "mcalees": 6, "irv": 6, "2202": 6, "03286": 6, "szw": 6, "qinghua": 6, "desmond": 6, "higham": 6, "gorban": 6, "bastouni": 6, "ivan": 6, "tyukin": 6, "12670": 6, "vsk": 6, "kannappan": 6, "simplesafetytest": 6, "2311": 6, "08370": 6, "wmr24": 6, "sandra": 6, "brent": 6, "mittelstadt": 6, "duti": 6, "royal": 6, "240197": 6, "royalsocietypublish": 6, "1098": 6, "rso": 6, "ylx24": 6, "jiahao": 6, "xingwei": 6, "paperswithcod": 6, "zyi": 6, "shune": 6, "lyumanshan": 6, "jingyu": 6, "shui": 6, "haobin": 6, "pengfei": 6, "hewu": 6, "ghost": 6, "14931": 6, "zho24": 6, "anthropic24": 6, "cdn": 6, "1adf000c8f675958c2ee23805d91aaade1cd4613": 6, "deepmind24": 6, "googleapi": 6, "fsf": 6, "europeanmagency24": 6, "ema": 6, "europa": 6, "activities_en": 6, "financialirauthority24": 6, "libraryocongress23": 6, "loc": 6, "gov": 6, "nationaliosatechnology24": 6, "nist": 6, "itl": 6, "openai24": 6, "opensafetylab24a": 6, "opensafetylab24b": 6, "ukgovernment24": 6, "unicef24": 6, "innocenti": 6, "julia": 7, "easili": 7, "response_cont": 7, "wow": 7, "lot": 7, "impress": 7, "huge": 7, "serious": 7, "is_json": 7, "myjson": 7, "trial": 7, "wrangl": 7, "hoc": 7, "streamlin": 7, "dataset": 7, "unwant": 7, "overflow": 7, "overwhelm": 7, "twitter": 7, "youtub": 7, "blueprint": 7, "nativ": 7, "json_format": 7, "person1": 7, "q1": 7, "person2": 7, "nest": 7, "thellm": 7, "conceptu": 7, "unend": 7, "whitespac": 7, "forget": 7, "throw": 7, "somewher": 7, "json_object": 7, "circul": 7, "vertex": 7, "worri": 7, "invalid": 7, "enum": 7, "simpler": 7, "secextract": 7, "mentioned_ent": 7, "mentioned_plac": 7, "extract_from_sec_fil": 7, "sec_filing_text": 7, "hint": 7, "prompt_extract": 7, "sec_extract": 7, "washington": 7, "usabl": 7, "beg": 7, "with_structured_output": 7, "runnabl": 7, "typeddict": 7, "qu": 7, "langchain_openai": 7, "chatopenai": 7, "chatprompttempl": 7, "extract_from_sec_filing_langchain": 7, "structured_llm": 7, "from_messag": 7, "sec_extraction_langchain": 7, "hood": 7, "logit": 7, "willard": 7, "louf": 7, "reformul": 7, "finit": 7, "fsm": 7, "s_": 7, "s_t": 7, "s_1": 7, "mask": 7, "tild": 7, "odot": 7, "rightarrow": 7, "boolean": 7, "wise": 7, "thien": 7, "automaton": 7, "dfa": 7, "decod": 7, "outgo": 7, "renorm": 7, "yy": 7, "nn": 7, "ever": 7, "aa": 7, "lwai": 7, "prop": 7, "yynnaa": 7, "malform": 7, "sec_extraction_outlin": 7, "zsp": 7, "zicorp": 7, "cpp": 7, "gbnf": 7, "ggml": 7, "bnf": 7, "ggerganov": 7, "accomplish": 7, "backu": 7, "naur": 7, "wikipedia": 7, "contributor": 7, "curl": 7, "fssl": 7, "sh": 7, "extract_entities_from_sec_fil": 7, "ollama_structured_output_prompt_suffix": 7, "ollama_structured_output_temperatur": 7, "uncensor": 7, "model_json_schema": 7, "response_json": 7, "wrapper": 7, "exllama2": 7, "mlx": 7, "know": 7, "chanc": 7, "correctli": 7, "furthermor": 7, "nonetheless": 7, "studi": 7, "gemma": 7, "wors": 7, "extran": 7, "dispar": 7, "preval": 7, "rapidli": 7, "speak": 7, "aider": 7, "outweigh": 7, "rebutt": 7, "reproduct": 7, "paint": 7, "verif": 7, "dottxt": 7, "flaw": 7, "uneven": 7, "didn": 7, "conflat": 7, "drawback": 7, "unlock": 7, "wider": 7, "thank": 7, "pfiffer": 7, "aid24": 7, "dot24": 7, "demo": 7, "gge24": 7, "readm": 7, "llf": 7, "xieyang": 7, "frederick": 7, "fiannaca": 7, "terri": 7, "koo": 7, "dixon": 7, "ea": 7, "ny": 7, "usa": 7, "machineri": 7, "3613905": 7, "3650756": 7, "ln": 7, "xuan": 7, "hai": 7, "nguyen": 7, "ngoc": 7, "tiviati": 7, "hieu": 7, "dao": 7, "shafiq": 7, "joti": 7, "kenji": 7, "kawaguchi": 7, "nanci": 7, "min": 7, "kan": 7, "08656": 7, "out24": 7, "twt": 7, "zhi": 7, "cheng": 7, "kuang": 7, "tsai": 7, "chieh": 7, "hung": 7, "yun": 7, "nung": 7, "02442": 7, "tt24": 7, "vivien": 7, "vivien000": 7, "wl23": 7, "r\u00e9mi": 7, "09702": 7, "wikipediacontributors24": 7, "wiktionari": 7, "naur_form": 7}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"introduct": [0, 2, 3, 4, 6, 7], "content": [0, 3, 4, 5, 6, 7], "core": 0, "challeng": [0, 2], "we": 0, "ll": 0, "address": 0, "A": [0, 2, 3], "practic": [0, 2, 7], "approach": [0, 6], "an": 0, "open": [0, 2], "sourc": [0, 2], "book": 0, "note": [0, 3], "perspect": 0, "who": 0, "thi": 0, "i": 0, "For": 0, "outcom": 0, "prerequisit": 0, "set": 0, "up": 0, "your": 0, "environ": 0, "code": 0, "repositori": 0, "python": 0, "setup": [0, 3], "api": [0, 7], "kei": [0, 4, 5], "configur": 0, "troubleshoot": 0, "common": 0, "issu": 0, "about": 0, "author": 0, "": 0, "prefac": [1, 2], "refer": [1, 3, 4, 5, 6, 7], "tame": 2, "llm": [2, 4, 6], "guid": 2, "pitfal": 2, "softwar": [2, 4], "chapter": 2, "1": [2, 5], "2": [2, 5], "wrestl": [2, 7], "structur": [2, 7], "output": [2, 5, 7], "3": [2, 5], "input": 2, "data": [2, 3, 6], "4": [2, 5], "size": [2, 5], "length": [2, 5], "limit": [2, 5], "5": 2, "The": [2, 4], "eval": [2, 4], "gap": [2, 4], "6": 2, "safeti": [2, 6], "concern": 2, "7": 2, "prefer": [2, 3], "base": [2, 3, 4, 5, 6], "align": [2, 3], "8": 2, "break": 2, "free": 2, "from": [2, 3, 6], "cloud": 2, "provid": [2, 7], "9": 2, "cost": [2, 5], "factor": [2, 6], "10": 2, "frontier": 2, "appendix": 2, "tool": [2, 4, 6, 7], "resourc": 2, "citat": [2, 3], "raw": 3, "capabl": 3, "On": 3, "misalign": 3, "languag": 3, "model": [3, 4, 5], "human": [3, 6], "supervis": 3, "fine": 3, "tune": 3, "sft": 3, "augment": 3, "case": [3, 6], "studi": [3, 6], "polici": 3, "experiment": 3, "deliver": 3, "smollm2": 3, "dataset": [3, 4, 6], "synthet": 3, "gener": [3, 4, 5, 6], "user": [3, 7], "prompt": [3, 5, 7], "reject": 3, "respons": 3, "chosen": 3, "dpo": 3, "optim": 3, "prepar": 3, "vibe": 3, "check": 3, "evalu": [3, 4], "discuss": [3, 5, 7], "non": 4, "determinist": 4, "machin": 4, "emerg": 4, "properti": 4, "problem": [4, 5, 7], "statement": [4, 5, 7], "tradit": 4, "v": 4, "design": 4, "applic": 4, "test": 4, "requir": 4, "matrix": 4, "conceptu": 4, "overview": 4, "consider": [4, 5], "metric": 4, "task": 4, "benchmark": [4, 6], "leaderboard": 4, "lightev": 4, "mmlu": 4, "econometr": 4, "sampl": 4, "famili": 4, "us": 4, "langsmith": 4, "promptfoo": 4, "comparison": [4, 5, 7], "conclus": [4, 5, 7], "what": 5, "ar": 5, "token": 5, "across": 5, "chunk": 5, "contextu": 5, "link": 5, "long": 5, "form": 5, "step": 5, "write": 5, "templat": 5, "construct": 5, "dynam": 5, "paramet": 5, "report": 5, "exampl": 5, "usag": 5, "implic": 5, "futur": 5, "risk": 6, "ai": 6, "amplifi": 6, "exist": 6, "harm": 6, "novel": 6, "associ": 6, "autonom": 6, "exacerb": 6, "specif": [6, 7], "integr": 6, "bia": 6, "privaci": 6, "secur": 6, "guidanc": 6, "govern": 6, "organ": 6, "privat": 6, "sector": 6, "openai": 6, "anthrop": 6, "googl": 6, "rubric": 6, "mlcommon": 6, "centr": 6, "porquoi": 6, "red": 6, "team": 6, "constitut": 6, "explain": 6, "xai": 6, "reinforc": 6, "learn": 6, "feedback": 6, "rlhf": 6, "technic": 6, "implement": 6, "compon": 6, "salad": 6, "bench": 6, "hh": 6, "filter": 6, "make": 6, "mistral": 6, "7b": 6, "harmless": 6, "need": 7, "solut": 7, "strategi": 7, "techniqu": 7, "One": 7, "shot": 7, "json": 7, "mode": 7, "langchain": 7, "outlin": 7, "ollama": 7, "compar": 7, "framework": 7, "best": 7, "research": 7, "ongo": 7, "debat": 7, "acknowledg": 7}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9, "sphinx": 57}, "alltitles": {"Introduction": [[0, "introduction"], [3, "introduction"], [3, "id22"], [4, "introduction"], [6, "introduction"], [7, "introduction"]], "Contents": [[0, "contents"], [3, "contents"], [4, "contents"], [5, "contents"], [6, "contents"], [7, "contents"]], "Core Challenges We\u2019ll Address": [[0, "core-challenges-we-ll-address"]], "A Practical Approach": [[0, "a-practical-approach"]], "An Open Source Approach": [[0, "an-open-source-approach"]], "Open Source Book": [[0, "open-source-book"]], "A Note on Perspective": [[0, "a-note-on-perspective"]], "Who This Book Is For": [[0, "who-this-book-is-for"]], "Outcomes": [[0, "outcomes"]], "Prerequisites": [[0, "prerequisites"]], "Setting Up Your Environment": [[0, "setting-up-your-environment"]], "Code Repository": [[0, "code-repository"]], "Python Environment Setup": [[0, "python-environment-setup"]], "API Keys Configuration": [[0, "api-keys-configuration"]], "Troubleshooting Common Issues": [[0, "troubleshooting-common-issues"]], "About the Author(s)": [[0, "about-the-author-s"]], "Preface": [[1, "preface"], [2, "preface"]], "References": [[1, "references"], [3, "references"], [4, "references"], [5, "references"], [6, "references"], [7, "references"]], "Taming LLMs": [[2, "taming-llms"]], "A Practical Guide to LLM Pitfalls with Open Source Software": [[2, "a-practical-guide-to-llm-pitfalls-with-open-source-software"]], "Chapter 1: Introduction": [[2, "chapter-1-introduction"]], "Chapter 2: Wrestling with Structured Output": [[2, "chapter-2-wrestling-with-structured-output"]], "Chapter 3: Input Data Challenge": [[2, "chapter-3-input-data-challenge"]], "Chapter 4: Output Size and Length Limitations": [[2, "chapter-4-output-size-and-length-limitations"]], "Chapter 5: The Evals Gap": [[2, "chapter-5-the-evals-gap"]], "Chapter 6: Safety Concerns": [[2, "chapter-6-safety-concerns"]], "Chapter 7: Preference-based Alignment": [[2, "chapter-7-preference-based-alignment"]], "Chapter 8: Breaking Free from Cloud Providers": [[2, "chapter-8-breaking-free-from-cloud-providers"]], "Chapter 9: The Cost Factor": [[2, "chapter-9-the-cost-factor"]], "Chapter 10: Frontiers": [[2, "chapter-10-frontiers"]], "Appendix A: Tools and Resources": [[2, "appendix-a-tools-and-resources"]], "Citation": [[2, "citation"], [3, "citation"]], "Preference-Based Alignment": [[3, "preference-based-alignment"]], "From Raw Capabilities to Preference Alignment": [[3, "from-raw-capabilities-to-preference-alignment"]], "On the Misalignment of Language Models": [[3, "on-the-misalignment-of-language-models"]], "Aligning Language Models with Human Preferences": [[3, "aligning-language-models-with-human-preferences"]], "Supervised Fine-Tuning (SFT) for Model Alignment": [[3, "supervised-fine-tuning-sft-for-model-alignment"]], "Augmenting SFT with Human Preferences": [[3, "augmenting-sft-with-human-preferences"]], "Case Study: Aligning a Language Model to a Policy": [[3, "case-study-aligning-a-language-model-to-a-policy"]], "Experimental Setup": [[3, "experimental-setup"]], "Deliverables": [[3, "deliverables"]], "A Note on smolLM2 Models": [[3, "a-note-on-smollm2-models"]], "Policy": [[3, "policy"]], "Preference Dataset - Synthetic Dataset Generation": [[3, "preference-dataset-synthetic-dataset-generation"]], "User Prompts": [[3, "user-prompts"]], "Rejected Responses": [[3, "rejected-responses"]], "Chosen Responses": [[3, "chosen-responses"]], "Generate DPO Dataset": [[3, "generate-dpo-dataset"]], "DPO-Based Optimization": [[3, "dpo-based-optimization"]], "Data Preparation": [[3, "data-preparation"]], "Fine-Tuning": [[3, "fine-tuning"]], "Vibe Check": [[3, "vibe-check"]], "Alignment Evaluation": [[3, "alignment-evaluation"]], "Discussion": [[3, "discussion"], [5, "discussion"], [7, "discussion"]], "The Evals Gap": [[4, "the-evals-gap"]], "Non-Deterministic Generative Machines": [[4, "non-deterministic-generative-machines"]], "Emerging Properties": [[4, "emerging-properties"]], "Problem Statement": [[4, "problem-statement"], [5, "problem-statement"], [7, "problem-statement"]], "Evals of Traditional Software vs LLMs": [[4, "evals-table"]], "Evals Design": [[4, "evals-design"]], "LLM Application Testing Requirements Matrix": [[4, "validation-requirements"]], "Conceptual Overview": [[4, "conceptual-overview"]], "Design Considerations": [[4, "design-considerations"]], "Metrics": [[4, "metrics"]], "Key Metrics for Evaluating Generative Tasks": [[4, "key-metrics"]], "Evaluators": [[4, "evaluators"]], "Model-Based Evaluation": [[4, "model-based-evaluation"]], "Evaluating Evaluators": [[4, "evaluating-evaluators"]], "Benchmarks and Leaderboards": [[4, "benchmarks-and-leaderboards"]], "Tools": [[4, "tools"], [6, "tools"]], "LightEval": [[4, "lighteval"]], "MMLU Econometrics Task Dataset sample": [[4, "mmlu-econometrics"]], "Model Families Evaluated Using LightEval": [[4, "model-families"]], "LangSmith": [[4, "langsmith"]], "PromptFoo": [[4, "promptfoo"]], "Comparison": [[4, "comparison"]], "Comparison of Lighteval, LangSmith, and Promptfoo": [[4, "tool-comparison"]], "Conclusion": [[4, "conclusion"], [5, "conclusion"], [7, "conclusion"]], "Output Size Limitations": [[5, "output-size-limitations"]], "What are Token Limits?": [[5, "what-are-token-limits"]], "Token Cost and Length Limitation Comparison Across Key Models": [[5, "token-cost-table"]], "Content Chunking with Contextual Linking": [[5, "content-chunking-with-contextual-linking"]], "Generating long-form content": [[5, "generating-long-form-content"]], "Step 1: Chunking the Content": [[5, "step-1-chunking-the-content"]], "Step 2: Writing the Base Prompt Template": [[5, "step-2-writing-the-base-prompt-template"]], "Step 3: Constructing Dynamic Prompt Parameters": [[5, "step-3-constructing-dynamic-prompt-parameters"]], "Step 4: Generating the Report": [[5, "step-4-generating-the-report"]], "Example Usage": [[5, "example-usage"]], "Implications": [[5, "implications"]], "Future Considerations": [[5, "future-considerations"]], "Safety": [[6, "safety"]], "Safety Risks": [[6, "safety-risks"]], "General AI Safety Risks": [[6, "general-ai-safety-risks"]], "Amplified Existing Harms and Novel Risks": [[6, "amplified-existing-harms-and-novel-risks"]], "Risks Associated with Autonomous AI": [[6, "risks-associated-with-autonomous-ai"]], "Exacerbating Factors": [[6, "exacerbating-factors"]], "LLMs Specific Safety Risks": [[6, "llms-specific-safety-risks"]], "Data Integrity and Bias": [[6, "data-integrity-and-bias"]], "Privacy and Security": [[6, "privacy-and-security"]], "Guidance": [[6, "guidance"]], "Governments & Organizations": [[6, "governments-organizations"]], "Private Sector": [[6, "private-sector"]], "OpenAI": [[6, "openai"]], "Anthropic": [[6, "anthropic"]], "Google": [[6, "google"]], "Rubrics": [[6, "rubrics"]], "MLCommons AI Safety Benchmark": [[6, "mlcommons-ai-safety-benchmark"]], "Centre for the Governance of AI Rubric": [[6, "centre-for-the-governance-of-ai-rubric"]], "Porquoi": [[6, "porquoi"]], "Approaches": [[6, "approaches"]], "Red Teaming": [[6, "red-teaming"]], "Constitutional AI": [[6, "constitutional-ai"]], "Explainable AI (XAI)": [[6, "explainable-ai-xai"]], "Reinforcement Learning from Human Feedback (RLHF)": [[6, "reinforcement-learning-from-human-feedback-rlhf"]], "Technical Implementation Components": [[6, "technical-implementation-components"]], "Benchmarks & Datasets": [[6, "benchmarks-datasets"]], "SALAD-Bench": [[6, "salad-bench"]], "Anthropic/hh-rlhf": [[6, "anthropic-hh-rlhf"]], "Filter-based": [[6, "filter-based"]], "LLM-based": [[6, "llm-based"]], "Benchmarks": [[6, "benchmarks"]], "Case Study: Making Mistral 7B Harmless": [[6, "case-study-making-mistral-7b-harmless"]], "Wrestling with Structured Output": [[7, "wrestling-with-structured-output"]], "User Needs": [[7, "user-needs"]], "Solutions": [[7, "solutions"]], "Strategies": [[7, "strategies"]], "Techniques and Tools": [[7, "techniques-and-tools"]], "One-Shot Prompts": [[7, "one-shot-prompts"]], "Structured Output with Provider-Specific APIs": [[7, "structured-output-with-provider-specific-apis"]], "JSON Mode": [[7, "json-mode"]], "LangChain": [[7, "langchain"]], "Outlines": [[7, "outlines"]], "Ollama": [[7, "ollama"]], "Comparing Solutions": [[7, "comparing-solutions"]], "Structured Output Frameworks Comparison": [[7, "structured-output-frameworks"]], "Best Practices": [[7, "best-practices"]], "Research and Ongoing Debate": [[7, "research-and-ongoing-debate"]], "Acknowledgements": [[7, "acknowledgements"]]}, "indexentries": {}}) \ No newline at end of file diff --git a/tamingllms/_build/jupyter_execute/markdown/intro.ipynb b/tamingllms/_build/jupyter_execute/markdown/intro.ipynb index 8b5f457..4e957c8 100644 --- a/tamingllms/_build/jupyter_execute/markdown/intro.ipynb +++ b/tamingllms/_build/jupyter_execute/markdown/intro.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "d22d613b", + "id": "c51836b9", "metadata": {}, "source": [ "(intro)=\n", diff --git a/tamingllms/_build/jupyter_execute/notebooks/alignment.ipynb b/tamingllms/_build/jupyter_execute/notebooks/alignment.ipynb index 09385d4..cb46537 100644 --- a/tamingllms/_build/jupyter_execute/notebooks/alignment.ipynb +++ b/tamingllms/_build/jupyter_execute/notebooks/alignment.ipynb @@ -256,9 +256,9 @@ "\n", "At a high-level DPO maximizes the probability of preferred output and minimize rejected output as defined in the following equation:\n", "\n", - "\\begin{gather*}\n", + "```{math}\n", "\\mathcal{L}_{\\text{DPO}}(\\pi_\\theta; \\pi_\\text{ref}) = -\\mathbb{E}_{(x,y_w,y_l) \\sim \\mathcal{D}} \\left[\\log \\sigma \\left(\\beta \\underbrace{\\log \\frac{\\pi_\\theta(y_w | x)}{\\pi_\\text{ref}(y_w | x)}}_{\\color{green}\\text{preferred}} - \\beta \\underbrace{\\log \\frac{\\pi_\\theta(y_l | x)}{\\pi_\\text{ref}(y_l | x)}}_{\\color{red}\\text{rejected}}\\right)\\right]\n", - "\\end{gather*}\n", + "```\n", "\n", "This approach is more straightforward than PPO, as it avoids the need for a reward model and instead uses a direct comparison of model outputs against human preferences.\n", "\n", diff --git a/tamingllms/_config.yml b/tamingllms/_config.yml index 9e9012a..68c3414 100644 --- a/tamingllms/_config.yml +++ b/tamingllms/_config.yml @@ -38,16 +38,16 @@ bibtex_bibfiles: only_build_toc_files: true -parse: - myst_enable_extensions: - - amsmath +#parse: +# myst_enable_extensions: +# - amsmath sphinx: extra_extensions: - sphinxcontrib.mermaid - sphinxcontrib.bibtex config: - mathjax_path: https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js + #mathjax_path: https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js bibtex_reference_style: author_year html_theme: 'press' #insipid #html_logo: '_static/logo_w.png' diff --git a/tamingllms/notebooks/alignment.ipynb b/tamingllms/notebooks/alignment.ipynb index e88d7fb..2eacf14 100644 --- a/tamingllms/notebooks/alignment.ipynb +++ b/tamingllms/notebooks/alignment.ipynb @@ -256,9 +256,9 @@ "\n", "At a high-level DPO maximizes the probability of preferred output and minimize rejected output as defined in the following equation:\n", "\n", - "\\begin{gather*}\n", + "```{math}\n", "\\mathcal{L}_{\\text{DPO}}(\\pi_\\theta; \\pi_\\text{ref}) = -\\mathbb{E}_{(x,y_w,y_l) \\sim \\mathcal{D}} \\left[\\log \\sigma \\left(\\beta \\underbrace{\\log \\frac{\\pi_\\theta(y_w | x)}{\\pi_\\text{ref}(y_w | x)}}_{\\color{green}\\text{preferred}} - \\beta \\underbrace{\\log \\frac{\\pi_\\theta(y_l | x)}{\\pi_\\text{ref}(y_l | x)}}_{\\color{red}\\text{rejected}}\\right)\\right]\n", - "\\end{gather*}\n", + "```\n", "\n", "This approach is more straightforward than PPO, as it avoids the need for a reward model and instead uses a direct comparison of model outputs against human preferences.\n", "\n",