-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcommons.py
24 lines (21 loc) · 875 Bytes
/
commons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import io
import PIL
import torch
import torch.nn as nn
from torchvision import models
from PIL import Image
import torchvision.transforms as transforms
def get_model():
checkpoint_path = 'classifier.pt'
model = models.resnet152(pretrained=True)
model.fc = nn.Sequential(nn.Linear(2048, 512),nn.ReLU(),nn.Linear(512,102),nn.LogSoftmax(dim=1))
model.load_state_dict(torch.load(checkpoint_path,map_location='cpu'),strict=False)
model.eval()
return model
def get_tensor(image_bytes):
my_transforms = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])])
image = Image.open(io.BytesIO(image_bytes))
return my_transforms(image).unsqueeze(0)