A Flask-based web application that uses deep learning to classify X-ray images based on their intensity levels. This project demonstrates the implementation of a medical imaging AI system using modern web technologies and machine learning.
- Upload and classify X-ray images
- Real-time image processing and analysis
- Intensity classification into four categories: Normal, Mild, Moderate, and Severe
- Confidence score for each prediction
- Modern, responsive web interface
- Secure file handling and validation
- Backend: Flask (Python)
- Machine Learning: TensorFlow/Keras
- Image Processing: OpenCV
- Frontend: HTML5, TailwindCSS, JavaScript
- Data Handling: NumPy, Pillow
├── app.py # Application factory
├── config.py # Configuration
├── requirements.txt # Python dependencies
├── routes/
│ ├── main.py # Main routes
│ └── api.py # API routes
├── services/
│ ├── image_processing/
│ │ ├── enhancer.py # Image enhancement
│ │ └── preprocessor.py # Image preprocessing
│ └── ml/
│ ├── model_loader.py # Model loading
│ └── predictor.py # Prediction logic
├── utils/
│ └── file_validator.py # File validation
└── templates/
└── index.html # Web interface