-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodels_torch.py
124 lines (83 loc) · 3.71 KB
/
models_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import torch
from torch.nn.parameter import Parameter
from torch import nn
from utils import *
def matmul_complex(t1, t2):
return torch.view_as_complex(torch.stack((t1.real @ t2.real - t1.imag @ t2.imag, t1.real @ t2.imag + t1.imag @ t2.real),dim=-1))
def pad_eye(W_i):
d_i = W_i.shape[-1]
eyecm = torch.complex(torch.eye(d_i) , torch.zeros(d_i, d_i)).to(W_i.device)
return torch.cat([eyecm.unsqueeze(0), W_i], dim=0)
class spectral_net(nn.Module):
def __init__(self, group_order, irrep_dims, orthognal_init=False):
super().__init__()
self.W = nn.ParameterList()
for d_i in irrep_dims:
W_i = torch.zeros((group_order - 1, d_i, d_i, 2))
if orthognal_init:
torch.nn.init.orthogonal_(W_i)
else:
k = 1. / d_i
W_i.uniform_(-k, k)
W_i.requires_grad = True
self.W.append(Parameter(W_i))
self.group_order = group_order
self.irrep_dims = irrep_dims
def total_weight(self):
W_list = []
for W_i in self.W:
d_i = W_i.shape[-2]
Wcm = torch.view_as_complex(W_i)
W_cm_ext = pad_eye(Wcm).view(self.group_order, d_i * d_i)
W_list.append(W_cm_ext)
return torch.cat(W_list, dim=-1)
def forward(self, x):
res = []
for W_i in self.W:
Wcm = torch.view_as_complex(W_i)
W_cm_ext = pad_eye(Wcm)
W_i_x = (W_cm_ext.unsqueeze(0) * x.unsqueeze(-1).unsqueeze(-1)).sum(1)
W_i_x_T = torch.conj(W_i_x.transpose(-2, -1))
res.append(matmul_complex(W_i_x, W_i_x_T))
return res
def loss(self, x, y):
res_x = self(x)
res_y = self(y)
res_loss = torch.zeros(x.shape[0]).to(x.device)
for (res_x_i, res_y_i) in zip(res_x, res_y):
res_loss += ((res_x_i - res_y_i).abs()**2).mean(-1).mean(-1)
# AB_T = torch.view_as_real(matmul_complex(res_x_i, torch.conj(res_y_i.transpose(-2, -1))))
# res_loss -= (torch.diagonal(AB_T, dim1=-2, dim2=-3).sum(-1)**2).sum(-1)
return res_loss / len(res_x)
def reg(self):
device = self.W[0].device
# d_diag = []
# for d_i in self.irrep_dims:
# d_diag += [ 1. / (d_i ** 2) ] * (d_i ** 2)
# eye_diag = self.group_order * torch.diag(torch.Tensor(d_diag))
# eyecm = torch.complex(eye_diag, torch.zeros(self.group_order, self.group_order)).to(device)
d_tot = torch.Tensor(self.irrep_dims).to(device).sum().float()
eyecm = (d_tot) * torch.complex(torch.eye(self.group_order), torch.zeros(self.group_order, self.group_order)).to(device)
W_tot = self.total_weight()
W_tot_T = torch.conj(W_tot.transpose(-1, -2))
return ((eyecm - matmul_complex(W_tot, W_tot_T) ).abs()**2).mean()
"""
Function recovering the Cayley table from the weights of the model
"""
def get_table(self):
device = self.W[0].device
d = self.group_order
res = torch.zeros((d, d)).to(device)
for g in range(d):
for h in range(d):
diffs = torch.zeros(d).to(device)
for W_i in self.W:
Wcm = torch.view_as_complex(W_i)
W_cm_ext = torch.conj(pad_eye(Wcm).transpose(-2, -1))
W_gh = matmul_complex(W_cm_ext[g], W_cm_ext[h])
diffs += ((W_gh.unsqueeze(0) - W_cm_ext).abs()**2).mean(-1).mean(-1)
res[g, h] = torch.argmin(diffs)
# pad = torch.arange(0, d).to(device)
# res[-1, :] = pad
# res[:, -1] = pad
return res.detach()